BetaGeoBetaBinomRV#

class pymc_marketing.clv.distributions.BetaGeoBetaBinomRV(name=None, ndim_supp=None, ndims_params=None, dtype=None, inplace=None, signature=None)[source]#

Methods

BetaGeoBetaBinomRV.L_op(inputs, outputs, ...)

Construct a graph for the L-operator.

BetaGeoBetaBinomRV.R_op(inputs, eval_points)

Construct a graph for the R-operator.

BetaGeoBetaBinomRV.__init__([name, ...])

Create a random variable Op.

BetaGeoBetaBinomRV.add_tag_trace([user_line])

Add tag.trace to a node or variable.

BetaGeoBetaBinomRV.batch_ndim(node)

BetaGeoBetaBinomRV.dist_params(node)

Return the node inpust corresponding to dist params

BetaGeoBetaBinomRV.do_constant_folding(...)

Determine whether or not constant folding should be performed for the given node.

BetaGeoBetaBinomRV.grad(inputs, outputs)

Construct a graph for the gradient with respect to each input variable.

BetaGeoBetaBinomRV.infer_shape(fgraph, node, ...)

BetaGeoBetaBinomRV.inplace_on_inputs(...)

Try to return a version of self that tries to inplace in as many as allowed_inplace_inputs.

BetaGeoBetaBinomRV.make_node(rng, size, ...)

Create a random variable node.

BetaGeoBetaBinomRV.make_py_thunk(node, ...)

Make a Python thunk.

BetaGeoBetaBinomRV.make_thunk(node, ...[, impl])

Create a thunk.

BetaGeoBetaBinomRV.perform(node, inputs, outputs)

Calculate the function on the inputs and put the variables in the output storage.

BetaGeoBetaBinomRV.prepare_node(node, ...)

Make any special modifications that the Op needs before doing Op.make_thunk().

BetaGeoBetaBinomRV.rng_fn(rng, alpha, beta, ...)

Sample a numeric random variate.

BetaGeoBetaBinomRV.rng_param(node)

Return the node input corresponding to the rng

BetaGeoBetaBinomRV.size_param(node)

Return the node input corresponding to the size

Attributes

default_output

An int that specifies which output Op.__call__() should return.

destroy_map

A dict that maps output indices to the input indices upon which they operate in-place.

dtype

itypes

name

otypes

signature

view_map

A dict that maps output indices to the input indices of which they are a view.