BaseMMM#

class pymc_marketing.mmm.mmm.BaseMMM(date_column=FieldInfo(annotation=str, required=True, description='Column name of the date variable.'), channel_columns=FieldInfo(annotation=list[str], required=True, description='Column names of the media channel variables.', metadata=[MinLen(min_length=1)]), adstock=FieldInfo(annotation=AdstockTransformation, required=True, description='Type of adstock transformation to apply.', metadata=[InstanceOf()]), saturation=FieldInfo(annotation=SaturationTransformation, required=True, description='Type of saturation transformation to apply.', metadata=[InstanceOf()]), time_varying_intercept=FieldInfo(annotation=bool, required=False, default=False, description='Whether to consider time-varying intercept.'), time_varying_media=FieldInfo(annotation=bool, required=False, default=False, description='Whether to consider time-varying media contributions.'), model_config=FieldInfo(annotation=Union[dict, NoneType], required=False, default=None, description='Model configuration.'), sampler_config=FieldInfo(annotation=Union[dict, NoneType], required=False, default=None, description='Sampler configuration.'), validate_data=FieldInfo(annotation=bool, required=False, default=True, description='Whether to validate the data before fitting to model'), control_columns=None, yearly_seasonality=None, adstock_first=FieldInfo(annotation=bool, required=False, default=True, description='Whether to apply adstock first.'), dag=FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Optional DAG provided as a string Dot format for causal identification.'), treatment_nodes=FieldInfo(annotation=Union[list[str], tuple[str], NoneType], required=False, default=None, description='Column names of the variables of interest to identify causal effects on outcome.'), outcome_node=FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Name of the outcome variable.'))[source]#

Base class for a media mix model using Delayed Adstock and Logistic Saturation (see [1]).

References

[1]

Jin, Yuxue, et al. “Bayesian methods for media mix modeling with carryover and shape effects.” (2017).

Methods

BaseMMM.__init__([date_column, ...])

Define the constructor method.

BaseMMM.attrs_to_init_kwargs(attrs)

Convert attributes to initialization kwargs.

BaseMMM.build_from_idata(idata)

Build model from the InferenceData object.

BaseMMM.build_model(X, y, **kwargs)

Build a probabilistic model using PyMC for marketing mix modeling.

BaseMMM.channel_contributions_forward_pass(...)

Evaluate the channel contribution for a given channel data and a fitted model, ie.

BaseMMM.compute_channel_contribution_original_scale([prior])

Compute the channel contributions in the original scale of the target variable.

BaseMMM.compute_mean_contributions_over_time([...])

Get the contributions of each channel over time.

BaseMMM.create_fit_data(X, y)

Create the fit_data group based on the input data.

BaseMMM.create_idata_attrs()

Create attributes for the inference data.

BaseMMM.fit(X[, y, progressbar, random_seed])

Fit a model using the data passed as a parameter.

BaseMMM.forward_pass(x)

Transform channel input into target contributions of each channel.

BaseMMM.get_channel_contributions_share_samples([prior])

Get the share of channel contributions in the original scale of the target variable.

BaseMMM.get_errors([original_scale])

Get model errors posterior distribution.

BaseMMM.get_target_transformer()

Return the target transformer pipeline used for preprocessing the target variable.

BaseMMM.graphviz(**kwargs)

Get the graphviz representation of the model.

BaseMMM.load(fname)

Create a ModelBuilder instance from a file.

BaseMMM.load_from_idata(idata)

Create a ModelBuilder instance from an InferenceData object.

BaseMMM.plot_channel_contribution_share_hdi([...])

Plot the share of channel contributions in a forest plot.

BaseMMM.plot_components_contributions(...)

Plot the target variable and the posterior predictive model components.

BaseMMM.plot_errors([original_scale, ax])

Plot model errors by taking the difference between true values and predicted.

BaseMMM.plot_grouped_contribution_breakdown_over_time([...])

Plot a time series area chart for all channel contributions.

BaseMMM.plot_posterior_predictive([...])

Plot the posterior predictive distribution from the model fit.

BaseMMM.plot_prior_predictive([...])

Plot the prior predictive distribution from the model fit.

BaseMMM.plot_prior_vs_posterior(var_name[, ...])

Plot the prior vs posterior distribution for a specified variable in a 3 columngrid layout.

BaseMMM.plot_waterfall_components_decomposition([...])

Create a waterfall plot.

BaseMMM.post_sample_model_transformation()

Post-sample model transformation in order to store the HSGP state from fit.

BaseMMM.predict([X, extend_idata])

Use a model to predict on unseen data and return point prediction of all the samples.

BaseMMM.predict_posterior([X, extend_idata, ...])

Generate posterior predictive samples on unseen data.

BaseMMM.predict_proba([X, extend_idata, ...])

Alias for predict_posterior, for consistency with scikit-learn probabilistic estimators.

BaseMMM.preprocess(target, data)

Preprocess the provided data according to the specified target.

BaseMMM.sample_posterior_predictive([X, ...])

Sample from the model's posterior predictive distribution.

BaseMMM.sample_prior_predictive([X, y, ...])

Sample from the model's prior predictive distribution.

BaseMMM.save(fname)

Save the model's inference data to a file.

BaseMMM.set_idata_attrs([idata])

Set attributes on an InferenceData object.

BaseMMM.validate(target, data)

Validate the input data based on the specified target type.

BaseMMM.validate_channel_columns(data)

Validate the channel columns.

BaseMMM.validate_date_col(data)

Validate the date column.

BaseMMM.validate_target(data)

Validate the target column.

Attributes

X

default_model_config

Define the default model configuration.

default_sampler_config

Default sampler configuration for the model.

fit_result

Get the posterior fit_result.

id

Generate a unique hash value for the model.

methods

Get all methods of the object.

output_var

Define target variable for the model.

posterior

posterior_predictive

predictions

preprocessing_methods

A property that provides preprocessing methods for features ("X") and the target variable ("y").

prior

prior_predictive

validation_methods

A property that provides validation methods for features ("X") and the target variable ("y").

version

y

model

date_column

channel_columns