BaseMMM.sample_prior_predictive#

BaseMMM.sample_prior_predictive(X=None, y=None, samples=None, extend_idata=True, combined=True, **kwargs)#

Sample from the model’s prior predictive distribution.

Parameters:
Xarray, shape (n_pred, n_features)

The input data used for prediction using prior distribution.

yarray, shape (n_pred,), optional

The target values (real numbers) used for prediction using prior distribution. If not set, defaults to an array of zeros.

samplesint

Number of samples from the prior parameter distributions to generate. If not set, uses sampler_config[‘draws’] if that is available, otherwise defaults to 500.

extend_idataBoolean

Determine whether the predictions should be added to inference data object. Defaults to True.

combined: Boolean

Combine chain and draw dims into sample. Won’t work if a dim named sample already exists. Defaults to True.

**kwargs: Additional arguments to pass to pymc.sample_prior_predictive
Returns:
prior_predictive_samplesDataArray, shape (n_pred, samples)

Prior predictive samples for each input X