BaseMMM.sample_prior_predictive#
- BaseMMM.sample_prior_predictive(X=None, y=None, samples=None, extend_idata=True, combined=True, **kwargs)#
Sample from the model’s prior predictive distribution.
- Parameters:
- X
array
,shape
(n_pred
,n_features
) The input data used for prediction using prior distribution.
- y
array
,shape
(n_pred,), optional The target values (real numbers) used for prediction using prior distribution. If not set, defaults to an array of zeros.
- samples
int
Number of samples from the prior parameter distributions to generate. If not set, uses sampler_config[‘draws’] if that is available, otherwise defaults to 500.
- extend_idata
Boolean
Determine whether the predictions should be added to inference data object. Defaults to True.
- combined: Boolean
Combine chain and draw dims into sample. Won’t work if a dim named sample already exists. Defaults to True.
- **kwargs: Additional arguments to pass to pymc.sample_prior_predictive
- X
- Returns:
- prior_predictive_samples
DataArray
,shape
(n_pred
,samples
) Prior predictive samples for each input X
- prior_predictive_samples