MMM.fit#
- MMM.fit(X, y=None, progressbar=None, random_seed=None, **kwargs)[source]#
Fit a model using the data passed as a parameter.
- Parameters:
- Xarray_like |
array
,shape
(n_obs
,n_features
) The training input samples. If scikit-learn is available, array-like, otherwise array.
- yarray_like |
array
,shape
(n_obs,) The target values (real numbers). If scikit-learn is available, array-like, otherwise array.
- progressbarbool, optional
Specifies whether the fit progress bar should be displayed. Defaults to True.
- random_seed
RandomState
, optional Provides the sampler with an initial random seed for reproducible samples.
- **kwargs
dict
Additional keyword arguments passed to the sampler.
- Xarray_like |
- Returns:
az.InferenceData
The inference data from the fitted model.
Examples
>>> model = MyModel() >>> idata = model.fit(X, y, progressbar=True)