{ "cells": [ { "cell_type": "markdown", "id": "d2d0bc87", "metadata": {}, "source": [ "# Pareto/NBD Model\n", "The Pareto/Negative-Binomial Distribution model was the first Buy-Till-You-Die (BTYD) model for estimating non-contractual customer activity over a continuous time period. First introduced by Schmittlein, et. al. in 1987 and developed further by Bruce Hardie and Peter Fader, it is frequently used as a benchmark in CLV research due to its robust performance and wide range of functionality. For detailed derivations of this model please refer to\n", "[\"A Note on Deriving the Pareto/NBD Model and Related Expressions.\"](https://www.brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf)\n", "\n", "In this notebook we will use Bayesian inference to fit a Pareto/NBD model in PyMC-Marketing, and compare results with the frequentist [`lifetimes`](https://github.com/CamDavidsonPilon/lifetimes) library (no longer maintained). We will also demonstrate the predictive functionality of this model, along with an example for time-invariant covariates." ] }, { "cell_type": "markdown", "id": "b8fbb64d-caf5-4993-a3cb-6d97bb4c835c", "metadata": {}, "source": [ "## Setup Notebook" ] }, { "cell_type": "code", "execution_count": 2, "id": "c2d1aa7d-a7d5-4404-acad-63e9604d8305", "metadata": {}, "outputs": [], "source": [ "import arviz as az\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import pymc as pm\n", "import seaborn as sb\n", "import xarray as xr\n", "from fastprogress.fastprogress import progress_bar\n", "from lifetimes import ParetoNBDFitter\n", "\n", "from pymc_marketing import clv\n", "from pymc_marketing.prior import Prior\n", "\n", "# Plotting configuration\n", "az.style.use(\"arviz-darkgrid\")\n", "plt.rcParams[\"figure.figsize\"] = [12, 7]\n", "plt.rcParams[\"figure.dpi\"] = 100\n", "plt.rcParams[\"figure.facecolor\"] = \"white\"\n", "\n", "%load_ext autoreload\n", "%autoreload 2\n", "%config InlineBackend.figure_format = \"retina\"" ] }, { "cell_type": "markdown", "id": "b3b916f1", "metadata": {}, "source": [ "## Load Data\n", "\n", "In this notebook we will be using the CDNOW sample dataset, a popular benchmarking dataset in CLV and BTYD modeling research. Refer [here](https://www.brucehardie.com/notes/026/) for more information about the dataset." ] }, { "cell_type": "code", "execution_count": 3, "id": "bdfb31ef", "metadata": { "id": "a374e74d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 6919 entries, 0 to 6918\n", "Data columns (total 5 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 _id 6919 non-null int64 \n", " 1 id 6919 non-null int64 \n", " 2 date 6919 non-null int64 \n", " 3 cds_bought 6919 non-null int64 \n", " 4 spent 6919 non-null float64\n", "dtypes: float64(1), int64(4)\n", "memory usage: 270.4 KB\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
_ididdatecds_boughtspent
04119970101229.33
14119970118229.73
24119970802114.96
34119971212226.48
421219970101363.34
\n", "
" ], "text/plain": [ " _id id date cds_bought spent\n", "0 4 1 19970101 2 29.33\n", "1 4 1 19970118 2 29.73\n", "2 4 1 19970802 1 14.96\n", "3 4 1 19971212 2 26.48\n", "4 21 2 19970101 3 63.34" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "url_cdnow = \"https://raw.githubusercontent.com/pymc-labs/pymc-marketing/main/data/cdnow_transactions.csv\"\n", "\n", "raw_data = pd.read_csv(url_cdnow)\n", "\n", "raw_data.info()\n", "raw_data.head()" ] }, { "cell_type": "markdown", "id": "a67b5a5c-f5d5-4dfb-bdce-6b6f12ff8e45", "metadata": {}, "source": [ "The only requirements for modeling spending behaviour with `ParetoNBDModel` are a customer identifier column, and a datetime column for each purchase. The number of CDs purchased and money spent per transaction could also be useful covariates, so we'll keep them in mind for later.\n", "\n", "It is common for customer transaction databases to also contain returns, discount values, etc., so let's do a quick validation check:" ] }, { "cell_type": "code", "execution_count": 4, "id": "e5cc1545-7894-46f5-b06f-7f503c9ddce6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
_ididdatecds_boughtspent
count6919.0000006919.0000006.919000e+036919.0000006919.000000
mean11682.5158261175.7248161.997217e+072.38170335.278500
std6833.386793679.4264503.744182e+032.21838034.074377
min4.0000001.0000001.997010e+071.0000000.000000
25%5525.000000570.5000001.997022e+071.00000014.490000
50%11749.0000001193.0000001.997042e+072.00000025.990000
75%17717.0000001766.0000001.997103e+073.00000042.970000
max23569.0000002357.0000001.998063e+0740.000000506.970000
\n", "
" ], "text/plain": [ " _id id date cds_bought spent\n", "count 6919.000000 6919.000000 6.919000e+03 6919.000000 6919.000000\n", "mean 11682.515826 1175.724816 1.997217e+07 2.381703 35.278500\n", "std 6833.386793 679.426450 3.744182e+03 2.218380 34.074377\n", "min 4.000000 1.000000 1.997010e+07 1.000000 0.000000\n", "25% 5525.000000 570.500000 1.997022e+07 1.000000 14.490000\n", "50% 11749.000000 1193.000000 1.997042e+07 2.000000 25.990000\n", "75% 17717.000000 1766.000000 1.997103e+07 3.000000 42.970000\n", "max 23569.000000 2357.000000 1.998063e+07 40.000000 506.970000" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data.describe()" ] }, { "cell_type": "markdown", "id": "35d254dc-b4c1-41bc-84d7-d8f779e2d39f", "metadata": {}, "source": [ "Note there were some transactions with spend values of 0! Perhaps these were returns or promotional giveaways. Instances such as this are not true purchasing activities, and should be excluded from modeling." ] }, { "cell_type": "code", "execution_count": 5, "id": "37f8cb9f-077d-4191-bb54-b068c3140080", "metadata": {}, "outputs": [], "source": [ "raw_data = raw_data[raw_data[\"spent\"] > 0]" ] }, { "cell_type": "markdown", "id": "8c693f9b-eaea-4e02-a4e2-798ff1612080", "metadata": {}, "source": [ "Use the `rfm_summary` utility to aggregate data for modeling:" ] }, { "cell_type": "code", "execution_count": 6, "id": "2e10e6e7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2349 entries, 0 to 2348\n", "Data columns (total 4 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 customer_id 2349 non-null int64 \n", " 1 frequency 2349 non-null float64\n", " 2 recency 2349 non-null float64\n", " 3 T 2349 non-null float64\n", "dtypes: float64(3), int64(1)\n", "memory usage: 73.5 KB\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
customer_idfrequencyrecencyT
013.049.078.0
121.02.078.0
230.00.078.0
340.00.078.0
450.00.078.0
\n", "
" ], "text/plain": [ " customer_id frequency recency T\n", "0 1 3.0 49.0 78.0\n", "1 2 1.0 2.0 78.0\n", "2 3 0.0 0.0 78.0\n", "3 4 0.0 0.0 78.0\n", "4 5 0.0 0.0 78.0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rfm_data = clv.rfm_summary(\n", " raw_data,\n", " customer_id_col=\"id\",\n", " datetime_col=\"date\",\n", " datetime_format=\"%Y%m%d\",\n", " time_unit=\"W\",\n", ")\n", "\n", "rfm_data.info()\n", "rfm_data.head()" ] }, { "cell_type": "markdown", "id": "59c4dbf6-21a7-4009-9f3d-608e3b8a9a34", "metadata": {}, "source": [ "Recall the data aggregation definitions from the [CLV Quickstart](https://www.pymc-marketing.io/en/stable/notebooks/clv/clv_quickstart.html):\n", "\n", "- `customer_id` is an index of a unique identifiers for each customer.\n", "- `frequency` is the number of repeat purchases that a customer has made (i.e., total number of purchases minus one).\n", "- `recency` indicates the time period when a customer made their most recent purchase. If a customer has only made 1 purchase, recency is 0.\n", "- `T` is a customer's \"age\", or the number of time periods since their first purchase." ] }, { "cell_type": "markdown", "id": "e10b0672-8967-4ecc-9870-f8c08133f9ee", "metadata": {}, "source": [ "## Model Definition\n", "The Pareto/NBD model is based on the following assumptions for each customer:\n", "1. Customers are active for an unobserved period of time, then become permanently inactive.\n", " \n", "#### Purchasing Process\n", "\n", "2. While active, the the number of transactions made by a customer follows a Poisson process with transaction rate $\\lambda$:\n", " \n", " $$P(X(t)=x|\\lambda) = \\frac{(\\lambda t)^{x}e^{-\\lambda t}}{x!}, x=0,1,2,...$$\n", " \n", " This is equivalent to assuming time between transactions is exponentially distributed with transaction rate $\\lambda$:\n", " \n", " $$f(t_{j}-t_{j-1}| \\lambda) = \\lambda e^{-\\lambda (t_{j} - t_{j - 1})}, \\quad t_{j} \\geq t_{j - 1} \\geq 0$$\n", " \n", " Where $t$ is the time period of the $j$th purchase.\n", "3. Heterogeneity in $\\lambda$ follows a Gamma distribution with shape parameter $r$ and scale parameter $\\alpha$:\n", "\n", " $$g(\\lambda|r, \\alpha) = \\frac{\\alpha^{r}\\lambda^{r - 1}e^{-\\lambda \\alpha}}{\\Gamma(r)}$$\n", "#### Dropout Process\n", "4. The duration of a customer's unobserved active lifetime is exponentially distributed with dropout rate $\\mu$.\n", "\n", "5. Heterogeneity in $\\mu$ also follows a Gamma distribution with shape parameter $s$ and scale parameter $\\beta$:\n", "\n", " $$g(\\mu|s, \\beta) = \\frac{\\beta^{s}\\mu^{s - 1}e^{-\\mu \\beta}}{\\Gamma(s)}$$\n", " \n", "6. Transaction rate $\\lambda$ and time until dropout $\\mu$ vary independently for each customer.\n", "\n", "If we take the expectation across the distributions of $\\lambda$ and $\\mu$, we can derive a likelihood function to estimate parameters $r$, $\\alpha$, $s$, and $\\beta$ across the customer population. For more details on the `ParetoNBD` likelihood please refer to the [docs](https://www.pymc-marketing.io/en/stable/api/generated/pymc_marketing.clv.distributions.ParetoNBD.html#pymc_marketing.clv.distributions.ParetoNBD)." ] }, { "cell_type": "markdown", "id": "bee69f5b-1b9e-4aa4-bdd4-5358c866453c", "metadata": {}, "source": [ "## Model Fitting" ] }, { "cell_type": "markdown", "id": "325d5448", "metadata": {}, "source": [ "### `lifetimes` Benchmark Model\n", "\n", "Let's time travel back to July 2020 and use the old `lifetimes` library to fit a Pareto/NBD model with Maximum Likelihood Estimation (MLE). The `Nelder-Mead` optimizer from `scipy.optimize` is ran under the hood to estimate scalar values for $r$, $\\alpha$, $s$, and $\\beta$." ] }, { "cell_type": "code", "execution_count": 7, "id": "e5b39d06", "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false, "source_hidden": false }, "nteract": { "transient": { "deleting": false } } }, "outputs": [ { "data": { "text/plain": [ "alpha 15.643040\n", "beta 13.798748\n", "r 0.614043\n", "s 0.446610\n", "dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "freq = rfm_data[\"frequency\"].values\n", "rec = rfm_data[\"recency\"].values\n", "T = rfm_data[\"T\"].values\n", "\n", "pnbd_lt = ParetoNBDFitter()\n", "pnbd_lt.fit(freq, rec, T)\n", "pnbd_lt.params_.sort_index()" ] }, { "cell_type": "markdown", "id": "4a0a1b1a", "metadata": { "id": "a2z_ZcC74wPI" }, "source": [ "The Bayesian equivalent of MLE is Maximum a Posteriori(MAP), in which the returned scalar values are regularized with priors during estimation.\n", "\n", "A \"Flat\" prior indicates the user is agnostic, holding no prior beliefs or assumptions about the data. $r$, $\\alpha$, $s$, and $\\beta$ must also be positive values, so let's configure our Bayesian `ParetoNBDModel` with `HalfFlat` priors:" ] }, { "cell_type": "code", "execution_count": 8, "id": "41e2cca2-5c5f-4a64-98d8-71fc8720feac", "metadata": {}, "outputs": [], "source": [ "flat_config = {\n", " \"r_prior\": Prior(\"HalfFlat\"),\n", " \"alpha_prior\": Prior(\"HalfFlat\"),\n", " \"s_prior\": Prior(\"HalfFlat\"),\n", " \"beta_prior\": Prior(\"HalfFlat\"),\n", "}\n", "\n", "pnbd_pymc = clv.ParetoNBDModel(data=rfm_data, model_config=flat_config)" ] }, { "cell_type": "markdown", "id": "19230a77-e717-4bfb-91c0-ee163ad499dd", "metadata": {}, "source": [ "Build the model to view the choice of Priors used for modeling:" ] }, { "cell_type": "code", "execution_count": 9, "id": "5c2da172-2f13-44d2-81ef-6658ccabe111", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pareto/NBD\n", " alpha ~ HalfFlat()\n", " beta ~ HalfFlat()\n", " r ~ HalfFlat()\n", " s ~ HalfFlat()\n", "recency_frequency ~ ParetoNBD(r, alpha, s, beta, )" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_pymc.build_model() # optional step\n", "pnbd_pymc" ] }, { "cell_type": "markdown", "id": "79320dc5-4188-427f-b3f6-1321f52fe193", "metadata": {}, "source": [ "Note it is not necessary to build a model prior to modeling.\n", "\n", "Now let's fit our `ParetoNBDModel` with MAP." ] }, { "cell_type": "code", "execution_count": 10, "id": "42340959-cf08-4cd1-8ef1-9e5223e28c3e", "metadata": { "scrolled": true }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a24e3fbe637a4085a71d32d4e5606467", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "idata_map = pnbd_pymc.fit(fit_method=\"map\")" ] }, { "cell_type": "markdown", "id": "e510b7d1-3148-433d-8275-b65cc9794fbb", "metadata": {}, "source": [ "For MAP fitting `pymc-marketing` uses the `L-BGFS-B` optimizer from `scipy.optimize`, a faster and more stable alternative to `Nelder-Mead`." ] }, { "cell_type": "code", "execution_count": 11, "id": "7d063be9-d9a6-40fa-8dee-c03ca8b2d3fd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "alpha 15.644\n", "beta 13.796\n", "r 0.614\n", "s 0.447\n", "Name: value, dtype: float64\n" ] } ], "source": [ "flat_fit = pnbd_pymc.fit_summary()\n", "print(flat_fit)" ] }, { "cell_type": "markdown", "id": "79eb398c-c980-400d-9178-9bc0c36e6a85", "metadata": {}, "source": [ "Model parameter estimations are equivalent between the frequentist MLE fit from `lifetimes`, and a Bayesian `pymc-marketing` model fit with flat priors. However, the CDNOW sample we're working with is quite small and comprises only 10% of the total CDNOW dataset, so it's quite likely these estimates are overfitting if we attempt to run predictions on the full dataset.\n", "\n", "With prior distributions, we can inform model fitting with our own subjective domain knowledge, and even improve the speed of model fits. The default prior configuration for `ParetoNBDModel` works well for a variety of use cases:" ] }, { "cell_type": "code", "execution_count": 12, "id": "dd7a4db3-1bb2-42fc-bb1d-755907583603", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pareto/NBD\n", " alpha ~ Weibull(2, 10)\n", " beta ~ Weibull(2, 10)\n", " r ~ Weibull(2, 1)\n", " s ~ Weibull(2, 1)\n", "recency_frequency ~ ParetoNBD(r, alpha, s, beta, )" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_map = clv.ParetoNBDModel(data=rfm_data)\n", "pnbd_map.build_model() # required for prior predictive checks\n", "pnbd_map" ] }, { "cell_type": "markdown", "id": "512e5ef6-8fac-43fa-8d54-d6cfa14f64a6", "metadata": {}, "source": [ "#### Prior and Posterior Predictive Checks\n", "PPCs allow us to check the efficacy of our priors, and the peformance of the fitted posteriors. PPCs aren't usually an option with MAP fitted models, but here we're actually sampling from the latent $\\lambda$ and $\\mu$ Gamma distributions, so PPCs are possible for `ParetoNBDModel` regardless of the fit method!\n", "\n", "Let's see how the model performs in a *prior* predictive check, where we sample from the default priors before fitting the model: " ] }, { "cell_type": "code", "execution_count": 13, "id": "fc99916a-5170-465a-9e17-096340cf733d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [alpha, beta, r, recency_frequency, s]\n", "Sampling: [alpha, beta, r, recency_frequency, s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACXcAAAWPCAYAAADpjVXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gUVf/+8TuFkEoKvYQOoSNIVTqKwINSpCM2VERQsQMCIo8FeBQRBJSiCCqgAiJFkCIgKEjvvSYgBEghCSF1f3/wY7+Z3U2ym7qB9+u6vK6cycyZM7szu4Nz53NcTCaTSQAAAAAAAAAAAAAAAAAAp+Ka3wMAAAAAAAAAAAAAAAAAAFgj3AUAAAAAAAAAAAAAAAAATohwFwAAAAAAAAAAAAAAAAA4IcJdAAAAAAAAAAAAAAAAAOCECHcBAAAAAAAAAAAAAAAAgBMi3AUAAAAAAAAAAAAAAAAATohwFwAAAAAAAAAAAAAAAAA4IcJdAAAAAAAAAAAAAAAAAOCECHcBAAAAAAAAAAAAAAAAgBMi3AUAAAAAAAAAAAAAAAAATohwFwAAAAAAAAAAAAAAAAA4IcJdAAAAAAAAAAAAAAAAAOCECHcBAAAAAAAAAAAAAAAAgBMi3AUAAAAAAAAAAAAAAAAATohwFwAAAAAAAAAAAAAAAAA4IcJdAAAAAAAAAAAAAAAAAOCECHcBAAAAAAAAAAAAAAAAgBMi3AUAAAAAAAAAAAAAAAAATohwFwAAAAAAAAAAAAAAAAA4Iff8HgAAAACAe9eIESO0bNkyc/vjjz9Wjx498nFEuFeEhIQY2sePH89w/Xbt2unixYvm9oYNG1SuXLlcGVte4hrMGxERETp27JguXryoGzduKCEhQd7e3vL391fRokVVu3ZtFS1a1KE+Bw4cqH/++cfcnj9/vpo2bZrTQ79rFbTX79y5c/rpp5+0e/duhYaGKjo6WklJSebfd+/eXRMmTMjHETq/Gzdu6NixYwoLC1NUVJRu3bolLy8vFSlSREFBQapZs6ZKlSqV38MEAAAAAACwQrgLAAAAuItYBjXS4+7uLj8/P/n7+6tKlSqqX7++2rdvr6pVq+bBKGGvadOm6Ysvvsh0PTc3N/n5+cnPz08VK1ZU/fr11bp1a9WrVy8PRgnAlvPnz2vJkiX6/fffdfbs2UzXL1u2rFq0aKHHHntM999/v1xcXPJglHB2qampmjJlimbPnq3U1NT8Hk6BEx4eriVLlmjt2rU6duyYTCZThusXL15czZo102OPPaYHH3xQbm5ueTRS4O6yY8cOPfnkkznSF8FzAAAAACDcBQAAANyTkpOTFRkZqcjISJ07d04bNmzQ5MmT1bx5c40aNUrVq1fP7yHCASkpKYqKilJUVJRCQ0P1559/6osvvlDdunX1zjvvqHHjxvk9ROSCadOmGdovv/xyPo0EaV25ckWTJk3S6tWrHQrjXLx4UYsXL9bixYtVsWJFvfrqq+rUqRMhr3vc1KlT9dVXX+X3MAqc6OhoTZ06VYsXLzZUOMvM1atXtWLFCq1YsUIlSpTQSy+9pF69esnd/e7/X6g3btzQt99+a277+fnp6aefzr8BAQAAAAAAs7v//0wAAAAAsNvff/+tnj17aty4cfyF/F3g4MGDevLJJ/XKK69oyJAh+T0c5DDLqm6Eu/Lf77//rpEjRyo2NjbD9YoUKaLU1FTdvHnTZgDs3Llzeu2117RkyRLNnTs3t4YLJxcWFqZZs2YZllWsWFEPPfSQSpUqZQgcVapUKa+H57R27dql4cOH6+rVqxmu5+PjIzc3N8XFxSklJcXq9+Hh4Ro3bpy+/fZbrVmzJreG6zRu3Lhh+F4pW7Ys4S4AAAAAAJwE4S4AAADgLlaxYkWbD+aSk5MVERGhAwcOaPv27UpOTjb/LiEhQaNHj1ZgYKDatm2bh6NFZgICAjR8+HCr5Xcqdx0+fFh///234uPjzb+7M6WXv7+/+vfvn4ejBe4t3377rT766COr5X5+fnr44YfVqlUrNWzYUEFBQSpUqJAkKTExUefPn9euXbv0+++/a/v27Yawlz3TOeLutXTpUkPoqHnz5po1a5Y8PDzycVTObc2aNXrzzTetqnUVLlxYDz30kFq1aqXGjRurePHi5tcxOTlZYWFh2rNnjzZs2KDNmzcbtuc6BHLG8OHDFRAQ4PB29913X46PBQAAAAAKGsJdAAAAwF2sRIkS6tevX4brhIaGavTo0dq+fbt5WUpKit59912tX79e3t7euTa+CRMmaMKECbnW/93Gx8cn0/fz+vXr+vDDD7Vq1SrD8o8//ljt2rVTqVKlcnOId62NGzfm9xByBddgzliyZIlVsMvNzU19+/bVsGHDFBQUZHM7Dw8PVatWTdWqVVO/fv107tw5TZ8+XStWrJDJZMqLocOJ7d6929B+4YUXCHZlYNu2bXrjjTcMgXVJ6tKli15//XWVLVvW5nbu7u6qWLGiKlasqB49eujKlSuaPXu2Fi5caNUXgKx79NFHVa5cufweBgAAAAAUSK75PQAAAAAA+Ss4OFhz585VkyZNDMuvX7+uRYsW5dOokFVFixbV5MmT1bVrV8PyxMREzZ49O59GBdy9jhw5ovfee8+wrFChQpoyZYrGjh2bbrDLlooVK+p///uf5s+fr9KlS+f0UFHAnDlzxtCuWbNmPo3E+V2+fFnDhw83hLFcXFw0evRoffrpp+kGu2wpWbKkRo8eraVLl6p69eq5MVwAAAAAAACHEO4CAAAAIHd3d3300Udyc3MzLF+3bl0+jQjZNXbsWPn5+RmW8X4COSs1NVUjR460mgJu6tSp6tChQ5b7bdKkiZYtW6aGDRtmd4gowGJiYgxtf3//fBqJ8xs3bpxu3LhhWDZ69GgNHDgwy32GhITop59+yta1DAAAAAAAkBMIdwEAAACQdLuCV/PmzQ3LDh48qFu3buXTiJAdvr6+6ty5s2HZlStXdP78+XwaEXD3+fXXX3Xs2DHDsj59+qhdu3bZ7jswMFCTJk3Kdj8ouOLj4w1tV1f+N54tu3bt0h9//GFY1qJFCz3xxBPZ7tvT01Off/55tvsBAAAAAADIDvf8HgAAAAAA53Hfffdp69at5nZSUpKuXr2q4OBgh/pJTk7WoUOHdPLkSUVGRiolJUVBQUHq3LmzVTWpnJCcnKwDBw4oLCxMERERSkxMVGBgoEqUKKEGDRqoSJEiOb5PSYqNjdX+/ft17tw5xcTEyNXVVWXKlFGXLl1yZX+Ouu+++7R48WLDskuXLqlChQoO9WMymXT06FGdOHFCV69eVXJysvz9/dW+fXuVLFky0+2vXr2qAwcOKCIiQpGRkfLw8FDRokVVtWpV1ahRQy4uLg6NJz3Xrl3T3r17deXKFcXExKhIkSKqXLmyGjZsqMKFC+fIPnLC9evXdeDAAV2/fl2RkZEymUzy8fFRuXLlFBISolKlSuX3EJ1aYmKi9u3bp3///VeRkZFKTExUUFCQSpUqpfvvv19eXl55Npavv/7a0Pbz89Pbb7+dY/1nN8xz5swZHTx4UOHh4TKZTAoMDFTVqlVVr149q0qN2ZFX17gkpaSk6PDhwwoNDVVkZKRiYmLk5eWlgIAAValSRSEhIfLw8Mix/d1tTp06pRMnTphfO39/fwUFBalu3boqU6ZMruwzt+8J5s6da2i7ublp3Lhx2e73DmcO1cXFxen48eM6c+aMYmJiFB8fr8KFC8vb21ulS5dWcHCwKlWq5BTHEBUVpX379unq1avmz4mgoCBVqFBBderUydHPpLROnz6tQ4cOKTw8XCkpKSpatKjq1q2rGjVqZLqtyWTSoUOHdOzYMUVGRqpQoUIqXry4GjdubNf9j73i4uK0b98+hYeHKyIiQiaTSUFBQSpXrpzuu+++XPlMy+t79byUnfvzO/e8586dU0REhGJjY+Xv76/ixYurQYMGKlq0aI6N88iRIzp58qTCw8MlScWLF1etWrXuqulg8+ue7dixYzp8+LCuX78uV1dXBQUFqUaNGqpZs2aO3pNwTw8AAIC8RLgLAAAAgFmxYsWslkVGRlqFu0JCQgzt48ePS7r94O7LL7/UkiVLrKZHkqR69eqpZs2a5vaIESO0bNkyc/vjjz9Wjx497B7vuXPnNH36dG3atMnm/qTbD3kbNGigZ599Vu3bt7e77x07dujJJ580t5s0aaIFCxZIuv1wfNq0adqwYYPVdGx+fn5OE+5K7/201K5dO128eNHc3rBhg8qVK6f4+HjNnTtXixYt0tWrV622K1GiRLoPNxMTE/XDDz9o2bJlVpWN0ipevLi6d++u559/PsshvEOHDunTTz/Vjh07lJKSYvV7b29v9ejRQ8OGDVNgYGCW9pHea2Svmzdv6vvvv9eKFSt04sQJmUymdNetUKGC2rZtq169eqlq1aqG31lee/b+Lr0x23MNxsfHq0WLFoqNjTUvW7BggZo0aZLh/mxJSkpSy5YtDefhrFmz1Lp160y33blzp+bOnavt27dbVTS6w8PDQw8++KCGDRumOnXqODw+Rxw+fNj82XfHY489Jl9f31zdrz3WrFmjGTNmWI3vjoCAAD3zzDN6+umn5enpmaV95OU1Lkn79+/X3Llz9ddff1lNV5iWp6enGjVqpEcffVSdOnXKlWDn999/rw8//NDwedOpUydNmjQpWyEMy88ZS+ld48OGDdPLL7+c7nY3btzQnDlztGLFCl26dCnd9apWrapevXqpf//+Dh1HTt0TZMX169e1efNmw7KWLVs6HErPqux+N0ybNk1ffPGFuZ3Ze3nHrl279PXXX2vLli1W9yGWfHx81KBBA3Xo0EFdu3Y1XPNhYWHp3htdvHgx0++V9D5j0lqzZo3mzZun/fv3KzU11eY6AQEBateunYYOHerQ65fRd9jq1as1Y8YMnTx50ua2NWrU0IgRI6yq1kq3v6u+//57ff3117py5YrV711cXNSiRQuNGjVKlStXtnu8ltavX6/58+drz5496b6P3t7eateunV5++WVVrFjR7r7z87rMTbl1fx4aGqqvvvpKGzdu1PXr122u4+Liotq1a+v5559Xx44dszT+1NRULVy4UPPmzdOFCxdsrlOxYkUNHjzYfC4vXbpUI0eONP++e/fumjBhQrr7yO6/rzJ6je2Vm/ds6X3upqam6qefftLs2bMVGhpqc9uSJUvqxRdfVO/eveXunrVHYzl1T//MM8/or7/+MrdffvllDRs2LEtjGjRokOEPtIYMGaLhw4dnqS8AAAA4L8JdAAAAAMzSe+hmj71792rYsGG6du1aDo7INpPJpM8++0xz585VcnJyhuumpKRo165d2rVrl5o0aaIpU6Zk66/uFy9erP/+97+ZPkx1BrYeNtj71+pnzpzRkCFDdO7cOYf3u2XLFo0dO1b//vtvputevXpVs2bN0o8//qhJkybZFfJJa9q0aZo5c6bNUNcdN2/e1Hfffae1a9dq5syZqlu3rkP7yK5ffvlFEyZMsBmss+X8+fOaN2+e5s2bZ9eD89zm5eWlzp0768cffzQvW7p0aZbCXZs2bTK8DsWLF1eLFi0y3CYiIkIjR47Upk2bMu0/MTFRf/zxhzZt2qT+/fvr3XffzbVqMJbTwElSz549c2Vf9rp165ZGjRqlVatWZbheVFSUPvvsM61fv16zZ892OPSYl9d4RESERo0aZfP1tuXWrVvaunWrtm7dqrCwsCw/KLXFZDJp0qRJVhXbBg0apLfeeitHq4HklN9++03jxo1TVFRUpuueOnVKH3/8sebPn6/PPvtM9evXz/J+8+qeYMuWLVaf//l9HeamlJQUjR8/XosWLbJ7m7i4OPM1kZfBncuXL+vVV1/Vvn37Ml03KipKS5cu1YoVK/TSSy/ppZdeyvJ+ExMTNWrUKK1YsSLD9Y4dO6Znn31Wo0aN0sCBA83Lr1y5opdeekmHDh1Kd1uTyaQ///xTjz/+uGbPnq1GjRo5NMYLFy7orbfesuu1uXnzplauXKk1a9Zo2LBhGjJkiEP7Sisv79XzWlbvz1NSUvTJJ59owYIFmW57p5Lbq6++qkaNGmnatGkKCgqye1/Xr1/X0KFDtXfv3gzXO3funEaOHKl169Zp8uTJdvfvDPLrni0qKkqvvvqqtm/fnuF6V65c0fvvv6/Nmzfr888/dzjgnpP39AMGDDCEu3788UcNGTLE4dcgNDRU27ZtM7fd3NzUp08fh/oAAABAwZD/NbkBAAAAOA1bf6luz0P/Y8eOadCgQVYPi3x8fLJcFSY9ycnJeuONN/TVV1/ZDHZ5eHikWznnn3/+UZ8+fdL9S/nMLFmyRGPHjjU8/HFxcVGRIkWy/NffucnWw7uAgIBMt7ty5Yqefvppq2CXl5eXvL29M9z2hx9+0Isvvmgz9OHq6ip/f3+b50RUVJReeuklLV++PNPx3fG///1PX3zxhc1gl63z4OrVqxo0aFCWAmtZYTKZNHHiRL3zzjvpPgTy9PSUv7+/U0yZlRHLig9r165VXFycw/0sWbLE0O7WrVuGD7HOnDmj3r17p/uQ0MvLS0WKFLEK1ZhMJn3//fcaOnRopgHQrPrnn38MbT8/v3ytdpKSkqJhw4ZZBbs8PDzSrZh18OBBvfLKKxlWnbCUl9f4sWPH1LNnz3SDXa6urgoICEj3e8aR48rMrVu39OqrrxqCXW5ubnrvvff09ttvO2Wwa/78+XrttddsBrvc3Nzk7+9vc9wXL17UU089ZVURy155eU9geR1KUuPGjXN0H87k/fffTzfYVahQIQUEBMjX1zffv1NOnz6tvn37phte8vX1VaFChayWJyUl6fPPP9eoUaOy9AcHJpNJb7/9tlWwy8vLSz4+Plbrp6am6sMPPzSf65GRkRo4cKBVsMvPz8/muXvz5k29+OKLNqt7pWfPnj3q3bt3uq+Nt7e3zfvY5ORkTZkyRWPHjrV7X2nl5XWZ17J6fx4bG6vBgwfr66+/thnsunNN2bpP2bVrl/r27avLly/bNcaIiAg9/fTT6Qa7/Pz8rK6JjRs36rXXXsvR77LclF/3bHFxcXrmmWesgl1eXl7p/ptw06ZNeu+99+zeR27c07dt21Zly5Y1t69cuWJ3kD2tRYsWGc6R1q1bq3Tp0g73AwAAAOfnfE8fAAAAAOQbywdNhQoVUvHixTPd7o033jAHPZo1a6Ynn3xSzZo1Mz9Ii4iI0Pr16+0KFmVm6tSpVuEFf39/vfDCC+rYsaN5Op/Y2Fht2bJFc+bM0eHDh83rhoaGaujQoVqyZIlD005dunRJ48ePl3T7oXiPHj3UrVs31a9fX4UKFVJqaqrCwsK0YcOGbB9jTrH14LBMmTKZbjd27Fjzg8ratWtr0KBBevDBB83vX0xMjDZv3mw1ddKaNWv0/vvvG5YVL15c/fr1U9u2bRUSEmJ+QBYeHq7Nmzdr1qxZ5rBdcnKyRo8ererVq2caklm9erXmzJljWObr66sXXnhBnTt3Nk/Jdec8+Oqrr3Ts2DFFR0fr7bffzvQ1yAlffPGFVYUfNzc3de3aVR07dtT9999vfuhkMpl04cIFHThwQBs2bNDmzZt18+ZNqz7HjRtn82dbbUvZuf4aNGigypUr68yZM5JuP9Bes2aNHn/8cbv7uH79uv7880/DsoymCYqKitKgQYMM08i5ubmpY8eO6tatmxo2bGh+/RISErRnzx599913Wr9+vXn9P/74Q1OmTNGbb75p9zjtZTkVYa1atfI14DN16lTzQ+PKlSvrueeeU8uWLVWiRAlJtx9+btmyRVOmTDEEHP/55x8tXbrUrvcyL6/x8PBwPffcc1ZTwlaoUEEDBw5UixYtVL58efP+YmNjdfToUe3YsUNr167ViRMnMj0ee0VERGjIkCGGz1Rvb2999tlnatOmTY7tZ/jw4YbQpL3XuK3prP7880999NFHhge+bm5u6tevn3r06KEaNWrIzc1NSUlJ2rNnj3744QetWbPGvG58fLyGDx+uZcuWOTQVnJS39wRHjx41tMuVK5cj/TqjvXv3avHixYZltWrV0lNPPaWmTZuqVKlS5s8gk8mkixcv6sSJE/rrr7+0ceNGm1N+BgQEmM+rqKgoTZkyxfC7rEzrdfPmTb300ktWAdA7U2S3aNFC3t7eMplMCgsL06pVqzRr1izDub9kyRKVL19eL774okP7XrRokQ4cOCDp9tR2L774olq3bm2urnTt2jX98ssvmj59uvk71mQyafz48VqzZo3efPNNnT9/XpLUokULPfnkk2rSpIm8vLwk3Q6vfPvtt4aAXUxMjCZNmqRPP/000/FduHBBzz//vGGa48KFC6tbt27q0qWL6tata95XXFycduzYoW+++cYQYly8eLFq1qypfv36OfTa5OV1mZeyen9uMpn05ptvWt2X3H///erXr5+aNGlinno8NTVVR48e1fLly7Vo0SIlJCRIul2V6bXXXtOCBQsy/SOPd955x+p7qXbt2nrhhRfUsmVL+fj4yGQyKTQ0VCtWrNCcOXN08+ZN/fHHH4qIiMjWa5QX8vOe7b333tORI0ck3Z5W9JlnntEDDzxgPpejo6O1bt06TZkyxXBP8csvv6hbt242p2a1lBv39G5uburbt6/hs2PhwoV66KGH7D72xMRELV261LCsb9++dm8PAACAgoVwFwAAAABJt0NPln/xXLduXbv+mv/UqVNycXHRqFGj9OSTT1r9PigoSL179872GPfs2aPZs2cbloWEhOjrr79WsWLFDMt9fX3VuXNnPfLII/rwww/1/fffm3934sQJTZ48WSNGjLB732FhYZJu/2X9l19+aTUFj6urq8qXL69nnnnG0cPKFbGxsfrtt98My0qWLKkKFSpkuu2pU6ckSc8++6zeeustq79A9/PzU5cuXQzLQkND9e677xqW3Xnt/fz8rPZRokQJ9erVS126dNFbb72ldevWSbr9kOLtt9/Wr7/+mm5QJioqSv/9738Ny8qXL69vv/3WKrx25zzo0KGDxo4dqyVLlmj//v2ZvgbZtXXrVk2fPt2wLDg4WDNmzFD16tWt1ndxcVGFChVUoUIFPfroo4qOjtZ3331ntV7ah7mWQQ9HH/Q6qnv37oYHUPYGgu5Yvny5oSLDncBYekaMGGF4SFiqVCl9/vnnuu+++6zWLVy4sJo3b67mzZtr+fLlGjVqlHlfc+bMUYcOHVSvXj27x5qZqKgoRUdHG5aFhITkWP9ZcSfY1adPH40dO9bqQbOPj486deqkBx98UAMHDjSE07777rtM38u8vMZNJpOGDx9uFex68cUX9fLLL9t8iO7r66vGjRurcePGGjZsmLZv327zYaqjzp49q+eff16hoaHmZcWLF9eXX35pM1SVHY899pihndVr/MaNGxo5cqQh2OXn56c5c+ZYXT+FChVS06ZN1bRpU/36668aMWKEuRrizZs39cYbb+jnn392KLiYV/cEkqwqceb3dZibfvnlF0P74Ycf1pQpU2xeDy4uLipXrpzKlSundu3a6d1339WWLVuspqX29fU1n1dhYWGGcJePj0+WvlcmTJhgVSFz8ODBGj58uOF+wsXFRcHBwXrxxRfVtWtXq4qh06ZNU6tWrVSrVi27930n2NWlSxdNmDDBqhJSsWLF9Nxzz6levXp6+umnzed6WFiYXnvtNW3dulWurq4aPXq0BgwYYNV/5cqV9f7776tUqVKG12rt2rV69913M5yiLzExUcOHDzcEu6pVq6bPP/9cVapUsVrfx8dH7dq1U7t27TRr1izD9+/HH3+sNm3aOFSdJy+vy7yU1fvzr7/+2lAlqVChQho3bpzNaV1dXV1Vu3Zt1a5dW127dtXgwYPN30979uzRt99+q0GDBqU7xl9++UVbtmwxLOvbt6/Gjh1rqArm4uKi8uXLa+jQoXrsscf01FNP6eLFi3ly35pd+XnPduf+5+WXX7Y5FbO/v7969uypBx980Kra2vfff59puCu37uml29MIT5s2TYmJiZKkbdu2KTQ01PxHKplZu3atIfxXrlw5tWzZ0q5tAQAAUPA497wPAAAAAPJEcnKy3n33Xavp7Rz5y+HnnnvO5sOinDRz5kzDND1FixbVN998YxXsSsvNzU1jxozRww8/bFj+ww8/ZOkv4T/99FOrB0fOaPz48YqJiTEsc+T97Ny5s9555x27pxaZOnWq4YFlmzZt9Nlnn9kMfaTl5eWlyZMnG0ISJ06cSHdKF+l2ZY60752np6fmzJmTYVUyd3d3ffDBB3rggQfsOJrs++STTwzBipIlS2rRokU2HwLZ4u/vr6FDh+bW8LLEcgrFXbt2OTTF6bJlywztjMJEf//9t+Ghq5+fn7755hubDwktde3a1VD1wWQyWVV5y67w8HCrZf7+/jm6j6xo166dxo8fn2EFkSJFiuiDDz4wLDty5Eim72VeXuPr16/X7t27DcuGDx+u1157ze4pcJs1a6Z27drZtW567ky7lTbYVbVqVS1evDjHg105afHixYZgnIuLi7744otMr5/HHntM77zzjmHZoUOHsjQ9Y17cE9y8edNqelhnuA5zy53KNHe8/vrrdl8PLi4uat26tbmSX265cuWKVRWZ7t276/XXX8/wfqJ06dL65ptvDFOoJScn68svv3R4DA0aNNCkSZNsTvt4R5MmTdS1a1fDsjsB1BdeeMFmsCutF154wRCWT0pKyrRy6/Llyw2VZMuWLat58+bZDHbZ2t/AgQPN7YSEBM2fPz/T7SzlxXWZkfbt2yskJMSh/+zlyP35jRs3rMI6EydOtBnsslS7dm1Nnz7dcO3NmzfPHM6xxfI8btGihcaNG5fhtNTBwcGaM2eOChcunOmY8psz3LMNHDjQZrArrdKlS2vkyJGGZZs2bTJXYktPbt7TBwUFqXPnzua2yWRKd+pdWyzX7dOnT75PywsAAIDcw50eAAAAcI8LCwvTc889px07dhiWBwUF2V2xoWjRonr55ZdzY3hm58+ft5o65c0337SqQmGLi4uLxowZY57qRrr9YOynn35yaAzt2rVT69atHdomr0VEROiNN97Q8uXLDcsLFSqk559/3q4+ChUqZFWhJyOXLl3S6tWrzW0vLy+NHz8+w4dWaXl4eFhNlWg59dQdqamp+vHHHw3LnnvuObsqkrm6ulpVScgNmzdvtpoq7OOPP84whFgQlChRQi1atDAss3yIn56DBw8apiPy8vJSp06d0l3f8sHesGHDMqzyZWngwIEqX768ub1u3bocndbIVkWoIkWK5Fj/WVGoUCG99957dq1bt25d1a5d27Ds0KFD6a6fl9e4JM2aNcvQvv/++zV48GC79pVTVq5cqWeeeUZRUVHmZU2bNtXChQtVtmzZPB2LI1JTU/XDDz8YlnXr1k3NmjWza/uBAwdanRsLFixwaAx5cU8gySrYJeX/dZibbty4YWhbTo3sDBYuXKikpCRz29/f3+4qqWXKlNErr7xiWLZ+/Xqr6R0zM2bMGLs+mywr5Um3K3vZE6x2c3PTf/7zH8OyjD5DTSaT1ZRuo0aNcui+4JVXXjGEaX/++WerP8rISF5dl/nB0fvzhQsXGj4/2rdvb/V+ZqR+/fp69NFHze3w8PB0A8vbt2/X2bNnzW13d3eNHTvWrmqIlStX1rPPPmv3uPJLft+zBQQE6I033rBr3Ycfftjwb8ekpCSrabbTyot7essw6ZIlSzIMC95x8uRJ7dq1y9wuVKiQXQFFAAAAFFyEuwAAAIC7WHh4uBYuXGj134IFCzR16lQNGjRIHTt21N9//23YztXVVf/973/l7e1t1366du2a639ZvmXLFsNfTQcEBFhNDZiRkiVLqmPHjoZljlYjye/pauLi4my+n99//72mT5+ul156Se3atdPKlSutth0xYoTd0/e0a9fOoYcWa9asMUy316FDB5UsWdLu7aXboYnixYub27t37zZUabvjxIkTunjxornt5uamPn362L2fSpUqZTr9SnatXbvW0K5Xr54efPDBXN1nXrGstrV8+XKb75Mly6pdjzzyiKFCS1oRERHatm2bue3p6alevXo5NE53d3c98sgj5nZqaqpVJajsSBteuCNteDQ/tG7dWqVKlbJ7/YYNGxraZ86cSXfdvLzGL1++bJ5a7Y7BgwfnaSWKr776Sm+++abh4epjjz2mOXPmOH146OTJk4apsSTpiSeesHt7V1dXq/V37NihW7du2d1HXtwTSM55HeYmyyp5GYWJ8ovl1HOPPvqoAgIC7N6+Z8+ehnvPlJQUbd261e7t70ydZ4+6detaLXvsscfk4eGRpe0z+gw9fPiw4fdlypRR+/bt7drPHUWKFDFMt3bjxg0dP37c7u3z6rrMD47en1veJ6etimavtNWWJOmff/6xud7GjRsN7QcffNCuP0i4o1+/fk5dickZ7tm6du1q92e/m5ub1ZSPGV27eXFPX69ePcPnSWRkpNV+bbGs2vXII49kODUsAAAACj77ancDAAAAKJDOnTuncePGObSNh4eHxo4d69AUfk2bNnVwZI7bu3evod2mTRu7H8Dd8cgjjxhCJocOHVJiYqJd/bi4uKhx48YO7S+nRUVFOfx+urq6aujQoQ493Hf0/bR8oGVZ3cleNWvWNE8lduPGDZ05c0ZVq1Y1rLN//35Du169eg5PM/XQQw859LDYUZavh63qIAVV27ZtFRAQYK5mdOnSJW3fvj3D6S4TExO1atUqw7IePXqku/6uXbsMQc6GDRvKx8fH4bHWqlXL0N67d6/V9KxZZWu6r/j4+BzpO6sc/XyyrPpjWRUorby8xrdv325oBwQEqFWrVlnan6OSk5M1btw4q6qOQ4YM0fDhw/NkDNll+V1ZpkwZh6eQ7NChg0aNGmW+DpOSknTo0CG7pzzLi3sCyTmvw9xUr149HTx40NweOXKkPv/8c9WoUSMfR/V/bt68aRU2cvQz18fHRy1btjQEG/bu3Wt3WMSRabN9fX1VpEgRw2efI9tbTgWd0Wfozp07De0HH3zQrspNlmrVqmWoorh3716r77r05NV1mZHhw4c7FPazh6P355GRkTp58qS5XbhwYTVp0sTh/VqGCPft22dzPcuwsqOhvpIlS6pu3bpW97/Owhnu2Rx9/4KDgw1tR+5/cuuefsCAAYYqhwsXLjRUh7MUHx9vVaXZ3orbAAAAKLgIdwEAAAAwa9Kkid59912HHxRWr149l0b0fywfGDr6sNrWNgkJCTp//ryqVauW6bZly5ZNt9KQs6pdu7befvttu6fjusPR99PywdXx48e1cOFCh/qQbj9wS+vq1atWwQ/LqVPsfaiZlr1VPbIiJiZGoaGhhmUNGjTItf3lNQ8PDz366KOGadqWLl2aYbhrw4YNhqntgoODM3wQZ/kAMzExMUvn0+nTpw3tO6GinGCrqmFMTEyO9Z8Vjk7RZvnwNTY2Nt118/IaP3LkiKHdoEGDLIUgHBUXF6fBgwcbgp/u7u56//33C9Q0RznxXenr66uKFSsaphI7fvy43cGXvLgnkJzzOsxNvXv31g8//GAOUpw7d07dunVT06ZN1aFDBzVv3tyhqdBy2qlTpwwV/lxcXLL0fVunTh1DuMuR6lSWgavMeHt7G4Idjky5ann+2Zom9A7L77XIyMgsfYZavhaOfK/l1XWZkUcffTTHpxN19P78wIEDhjCSn5+f1XTf9rCsPJnee5ET9621atVy2nCXM9yzOTpVsr33P3l5T9+5c2dNnDjRfJ+0e/dunTx5Mt1/o65cudLwfVetWjWHwqkAAAAomAh3AQAAAPcgd3d3c8WCKlWqqH79+nrooYfsCjnZ4u/vn8MjtBYdHW1oO/o/8iWpePHiKly4sBISEtLtNz15cYxZ5erqan4/K1asqHr16qlNmzaqX79+lvpz5FhTU1MVERFhWDZnzpws7ddS2kBQesscfZArZe3csZflayFJ5cuXz7X95YfHH3/cEO5at26dYmNj0324unTpUkO7e/fuGYZ1rl27Zmjv2rVLu3btysaIb7P3WrdH2ukFc6P/rHA0fOrm5mZopze9Zl5f45b7sqywkVtGjBhheA99fX01derUAjelak58V0q3w4Jpw1223qv05NX3pY+Pj3x8fAyhmvy+DnNTjRo19Nprr2ny5MnmZSaTSdu3bzdXvAsKCtJ9992nxo0bq1mzZlkKkmSV5Wvv7+9vNZWkPSzDP468p47uz/Jz0JGKQ5ZT5WU0RbHl99r69eu1fv16u/eVHkdeG2e+j80OR4/L8r24du2aw1VxbbH1XiQmJlpVE8zKZ3Ju3rdmlzPcs+XW/U9e3tMXLlxYPXv21OzZs83LFi1apDFjxthc3zJAR9UuAACAewPhLgAAAOAu1qRJE0MII7dkZfoNR1n+T/6sVtHy8/MzhLvsfWCdF8eYmbJly2rjxo25vh9b1VDSEx0dbaiAkJNu3bpltcxy6pSsnAdZedhsL8vzycXFpcBVfMtMzZo1VbNmTR09elTS7fdp9erV6t27t9W64eHh2rZtm7nt6uqq7t27Z9h/boUzcnK6tsDAQKvpvBypLpMbcqu6VV5f45bXUJEiRXJl35Ysz7s74ZiCJie/KzPqNyN5+X0ZHBxsqIyT39dhbhs8eLBKly6tiRMnWoUqpNthhI0bN5rvFcqXL6/HH39cTzzxRK5/F1l+P2f1PLAcpyPnXnY/B3PzczQ32PoMTY8z3MfmBkePKy/vMWzty9nuW7PLGe7Zcuu6zet7+n79+mnu3LnmsNny5cv1xhtvWP277MCBAzp8+LC57e3tra5du+bauAAAAOA8XDNfBQAAAACcT079j/y8mO7rbpaUlJRrfdsTKHH298/Zx5dVPXr0MLQtq3Pd8csvvyglJcXcbt68eabV1nLznMpJltPXHj58ONdCUPnpXrnGLSt0/fHHHxo+fLgSExPzZP/Ozlk/yywrU4WGhjpUZawgeuyxx7R+/Xp99NFHatGiRYaB7AsXLuizzz7Tww8/rM2bN+fhKLlPSyu3Pkfuxu+c3FZQ7jHScub3uSC+nlmV259FZcuWVZs2bcztmJgYrVq1ymq9RYsWGdpdunS56/6QBAAAALZRuQsAAABAgeDv76+rV6+a2zExMVnqx3K7u3WamrwSEBBgtWzz5s0qVapUruzPsopPVs6DrJ479rB8PVJTUxUbG5tn1YfyyqOPPqpJkyaZH+rt3btXZ86cUeXKlQ3r/fLLL4a2ZSjMFstr8tVXX9VLL72UvQHngsaNG+uff/4xt2NiYnT06NE8nQYtL+T1NW65v7yaZm/w4MFq1qyZPv30U/Oy33//XUOGDNH06dPl6emZJ+PILsvrJzY2Nkv9WH5OOutnWKNGjazCpTt37tTDDz+cTyNyTEZT+WXEy8tLjz/+uB5//HElJSXpyJEj2rVrl3bv3q3du3dbBdwiIiL00ksv6auvvlKLFi1yYOTWLM+RrJ57lts567nnCMvPtUmTJlFpJ59YfkY2b95c8+bNy5N9SbfP76CgIIf6yeq1lFWOfC4VlHu2rMiPe/oBAwYYqjQvXLhQvXr1MrdjYmK0evVqwzZ9+/bNtfEAAADAuVC5CwAAAECBYPk/2C9evOhwH1evXjVMySgR7souDw8PqylxQkNDc21/lufBpUuXHO4jK+eOvWw9sDt//nyu7S+/BAYGql27doZly5YtM7T37dun06dPm9tFihSxK3Bh+Rrm5vmUHW3btrVatmTJknwYSe7K62vc8v2/cOFCru3L0gsvvKCxY8caqnNs3bpVzz33XJ4/XM+qnPiulKSwsLAM+3UWrVu3lpubm2FZXl6HlpVcHA1r5UTYuFChQqpfv74GDRqkGTNm6K+//tJ3332nLl26GMaXnJys9957T8nJydnepy22gplZOT7Lc+9uuE8LDAw0tJ31e+1ekJf3GB4eHvLy8jIsy8pnsqPbWH4upa2gag9HrtuCcs+WFflxT//ggw+qYsWK5vbhw4d14MABc3vZsmWGKSvr1aun2rVr5+qYAAAA4DwIdwEAAAAoEKpXr25oHzp0yOE+LLcpXLiw4X+gI2tq1qxpaO/cuTPX9hUSEmJoHzlyxOE+Dh8+nFPDseLn56fy5csblu3duzfX9pefHn/8cUN7+fLlhgeIltV0/vOf/6hw4cKZ9ms53eGuXbuyMcrcU7duXavPpV9//bXAhIAckZfXuOVDyn379uXplFQDBgzQxx9/bAgM7dy5U08//XSBmO4vJ74rY2NjrR5gW372OotixYqpVatWhmVbtmyxCgjlFsvg482bNx3aPjfCxm5ubmrcuLE+/fRTffbZZ4bfhYWFac+ePTm+T0mqUqWK3N3/b5IIk8mUpe9by3PWWc89R1h+hjrr99q9wPK9CAsL07///ptr+8uJ+1ZHt8nu55IjfzhRUO7ZsiI/7uldXFzUv39/w7K00zAuXrzY8Lt+/frl6ngAAADgXAh3AQAAACgQGjRoYGhv2rRJiYmJDvXx+++/G9p16tRRoUKFsj22e90DDzxgaK9ZsybX9nXfffcZ2gcOHDBM12mP9evX5+CIrDVp0sTQXrFiRa7sx7JajaOVGbKrRYsWKlGihLl95coVbdu2TZKUkJBgNW2MPVMySrerFqR14cKFXA3kZcczzzxjaN+4cUOTJk3Ksf6zOmVbTsvLa7xZs2aGdlRUlLZs2ZJr+7Ole/fumjx5suH74eDBgxo4cKCuXbuWp2NxlOV35aVLlxy+ftatW2c49woVKqS6devmyPhyg+V1mJKSovfeey/H+s/oOrScnsuRUFlKSkquBa3u6NSpk+rXr29Ydvz4cZvrpg1mSY5/p3h7e1sFWRz9vr1586b+/PNPwzLLc7ogsvxe27Vrl9N/ltytgoODFRwcbFiWm99pltffhg0bHNr+ypUrOnjwoEPbZOdzSZJhyunMFKR7tqzIq3v6tHr06CFvb29ze/Xq1bpx44b++ecfnTp1yrzc399fnTt3zvXxAAAAwHkQ7gIAAABQILRq1cowzUhUVJRWrVpl9/bh4eFWD2/atGmTU8O7pz3yyCOG9+b48eO59qCsevXqKlu2rLmdkpJi9VfsGTl79qz+/vvv3BiaWadOnQztAwcOmENPOcmyMkNeV4xyc3NT165dDcvuTM24bt06w7Q+1apVU7169ezqt3Tp0lbrTp06NZujzR1du3a1qpS0ePFibdy4Mdt9R0VF6Z133sl2PzkhL6/xkiVLWoU5vvrqqzwPunXs2FHTp0+Xp6enedmJEyc0YMCAXK3ykl3VqlUzfEZK0nfffWf39iaTyWr9pk2b2lV1L780bdrUqnrX1q1bHTru9Ny6dUuvvvpqur+vXLmyob179267+167dm2eVIMrV66coZ12Sq+0cuI7pXXr1ob2ihUrFB0dbff2S5YsMVQZcnNzU8uWLR0eh7OpX7++SpYsaW4nJSVpxowZ+Tiie9sjjzxiaM+ZM0dxcXG5si/LKZy3bdvm0NR+CxcudPj7z/JzyZEQ6eXLlx0KVBeke7asyKt7+rT8/Pz06KOPmtvx8fH65ZdfDBW8pNtB9LT3KAAAALj7Ee4CAAAAUCBUqFDB6uHtJ598ooiICLu2/+CDDwwPDD09PdWrV68cHeO9qmrVqurQoYNh2bhx43ThwoUs95neNGyurq7q2bOnYdns2bPtelCWmpqq8ePH53qFqxYtWqhWrVqGZSNHjszxKh1FixY1tE+fPp2j/dvDshrX+vXrFR0dbTUlo+UUjpkZOnSoob1p0yZ9++23WRuk0j+fssvNzU0fffSRVQXAV155xapSoCN27dqlHj16OBQUyU15eY1L0vPPP29o7969W1999VWW95VVrVu31qxZswwVNM6dO6f+/fs79HA+L7m6ulpN6bRs2TK7K7F8//33VtPiPfnkkzk2vtzy/vvvy8/Pz7Dsgw8+0IIFC7Lc58mTJ9W7d+8Mr2XLimYrV67UrVu3Mu07Ojpan3zyid1jMZlMWQ44njlzxtAuVqyYzfV8fHwMQYHY2FhduXLFoX317dvX8HkYFRWliRMn2rXt5cuXrUIhDz/8sEqVKuXQGJxRoUKFNHjwYMOyhQsXat26dVnuMy+nq73bPPvss4bP9WvXrmnEiBG58po2a9bMMAV8cnKyxo8fb9e+zp49q6+//trhfVqGrQ4dOqRjx47Zte3777+vpKQkh/ZXUO7ZsiKv7uktDRgwwNCeP3++1XdRnz59cnUMAAAAcD6EuwAAAAAUGC+++KJcXf/vnzHXrl3ToEGDMgx4paSk6IMPPtDatWsNy/v376/AwMBcG+u95rXXXjM8KIuMjNSAAQO0fft2h/o5ePCg3nrrrQwfyPft29fw3t26dUvPPfdchtV0kpOTNWbMGP31118OjSer3nrrLcO5euXKFfXr108nT560a/vo6GjNnDkzw3UsHzYtWrQozx+IVa5c2VBlKTExUXPnzjVUR3N3d9djjz3mUL9t2rRRixYtDMsmTJigzz77TMnJyXb3ExkZqa+++krPPfecQ/t3RN26dTV27FjDsqSkJA0fPlz//e9/7Q6gSlJoaKhGjhypJ554QhcvXszpoWZLXl7j7dq1s5oKacqUKZoyZYrd7/+OHTtypIJa06ZNNW/ePPn7+5uXXbp0SQMGDLD7es5rvXv3VvHixc1tk8mkYcOG6cCBAxlut2rVKn300UeGZXXr1rUKVjujMmXKaPLkyYbpak0mkz744AO98cYbDl1P165d04QJE9S9e/d0pzC8o3379oYwU3h4uD7++OMMt4mIiNALL7zg0JhiYmLUoUMHzZ8/36GKWosWLdLRo0fNbRcXFzVu3Njmuq6urqpRo4Zh2cKFC+3el3S78p5l6HfJkiX6/PPPM/x+unz5sp5++mnduHHDvMzd3d0qEFWQ9erVy1DpMTU1Va+//rq+++47h767L1++rE8//dRpKjsWREWLFrU6t37//XcNGTJEkZGRdveTmJio5cuXq3v37ul+17u4uOjFF180LNu6davef//9DP/YIDQ0VIMGDVJCQoLd47mjfPnyqlmzpmHZu+++m+FnR3JyssaOHZul782CdM+WFXlxT28pJCREjRo1MrdDQ0MNobtmzZpZVWgDAADA3c89vwcAAAAAAPZq2LChnn/+eUMFlyNHjqhTp04aPHiwOnbsqDJlykiS4uLi9Oeff2r27NlWVUiqV6+u1157LU/HfrerVKmS/ve//2nYsGHmh5Th4eF66qmn1KJFC3Xv3l3333+/SpUqZZ7eLSUlRZcuXdLx48e1e/dubdiwwVwNx/IBc1pBQUF699139eabb5qXXbhwQV26dNELL7ygLl26mKcli42N1ZYtWzRr1izzA+769etr//79ufI63PHAAw/opZde0hdffGEYY9euXdW1a1d17txZDRs2NE+DZTKZFBoaqgMHDmjDhg3atGmTbt68qSFDhqS7j7Zt2xqmJl2+fLlOnjypFi1aqHjx4lbVpB599FH5+vrm8JHersq1d+9ec3vWrFmGB9WtW7e2qjJmj08//VS9e/c2nxOpqan68ssvtWLFCvXt21cPPPCAQkJCrKrEnDhxQkeOHNGmTZu0c+dOJScnq1q1atk4wsz17t1bsbGxhgo1KSkp+u6777R8+XJ16NBBrVq1UoMGDRQUFGQec1JSks6fP689e/Zo3bp12rZtW65XlsuqvLzGXVxcNHnyZHXv3l1Xr141L585c6ZWr16tJ598Ui1atFD58uXND1xjY2N17Ngxbd++XWvXrtWJEyc0bNgwtWvXLtvHXr9+fc2fP1/PPvusrl+/Lkm6evWqnnjiCc2dO1d16tTJ9j5yUpEiRfTxxx/r+eefN79X0dHR6tevn/r3768ePXooJCRErq6uSkpK0r59+/TDDz9o9erVhn68vb31ySefGKbkdGatWrXSJ598orfeessQKFi5cqXWrVunhx56SK1atVLjxo1VvHhxeXh4SLp9noaFhWnv3r3auHGj/vjjDyUmJtq1z6CgIHXq1Em//vqredmiRYt0+fJlDR48WPXr15ebm5tMJpPOnj2r33//Xd98842ioqLk4uKi+vXra9++fXbtKzQ0VB9++KEmTZqkBx98UK1atVKdOnVUtWpVw5SKMTEx2rdvn3766SerYHu7du0UHByc7j7atm1rGM/MmTO1a9cuNW7cWEWLFjWE5ySpX79+Vn2MGDFCO3bs0Llz58zLZsyYoe3bt2vQoEF68MEH5eXlZT6m1atXa9asWVbBk1deecUqxFyQeXh4aMaMGerVq5c5QJSYmKj//ve/Wrhwofr166emTZuqcuXK5tfZZDLp+vXrOnHihA4ePKg//vhD+/btk8lkYmrxbBo8eLCOHDliuEb++OMPtW/fXj179lTbtm1Vr149w7UVHx+v06dP69ixY9q2bZs2b95s13SO3bt318qVK7V161bzsoULF+rAgQMaPHiwWrZsaQ5Ph4aGasWKFZo9e7a54vB9991n9+fEHQMGDNDo0aPN7UOHDqlPnz569dVX1bJlS/M1ePXqVW3ZskVz5841V4Bt0KCB4b7OHgXpns1ReXFPb8uAAQO0a9cum7+z9dkLAACAux/hLgAAAAAFyiuvvGJ+GHjHnWl/Jk6cKA8PDxUuXFgxMTE2tw8ODtb06dPND3WRcx566CFNmDBBY8eONVQa2Lp1q/mBlpubm/z8/JSYmGiYJtNRjz76qI4cOWKYriY2NlaTJ0/W5MmT0z0PAgICNGnSJD3yyCNZ3re9hg4dqpiYGMPUNCkpKVq6dKl52kIvLy95eHgoJibG4Sm3HnnkEU2fPl1nz541Lzty5IiOHDlic/2WLVvmSrirU6dO+vDDDxUfHy/JejodR6dkvCMgIEBz587VSy+9pBMnTpiXX7x4UZ9++qk+/fRTSbenEnN3d1dsbGy+BqOeffZZlSpVSqNHjzY87I2JidGSJUu0ZMkSSbeDS3emj4uNjc3wfbesvJHf8vIaL168uObMmaMXX3zRUJXv/Pnz+u9//yvpdqWhIkWKKCEhwXz+5ZYaNWrou+++0zPPPKPLly9Luv3d89RTT+mrr74yVNhwBi1bttSoUaP00Ucfma/J5ORkzZ8/X/Pnz5ebm5t8fX1148YNm1WDvLy89NlnnxmmEysIOnfurKJFi+r11183TJuVkJCgVatWGQKxvr6+cnNzU1xcXIbVZTK7DkeMGKE///zTUPFn06ZN2rRpk9zd3eXr66vY2FirfdwJSjoa2khKSjL3f4eHh4d8fHyUkJCQ7nVXtmxZvf/++xn23bt3b82fP98cYpSknTt3aufOnTbXtxUw8Pb21owZM/Tss8+arxVJ2rNnj/bs2SNJ8vPzU0JCQrohuscff9xqeta7QXBwsObOnathw4bp0qVL5uWnTp0yf6458h2BrHNxcdHEiRPl4uKiNWvWmJfHxcXp22+/Nd+7eXp6ytPTU3FxcQ5PV5jWpEmTNHDgQMMU2ocPH9Yrr7wiKf1rol27dnrooYcc/pzo2bOnfv31V8OUvKdOndLLL78sFxcX83en5TSyLVq00KBBg/TMM884tL+Cds/mqNy+p7elQ4cOKlGihMLDww3Lixcvrvbt22e7fwAAABQ8TMsIAAAAoEBxd3fX5MmTNXjwYLm7W/+9SmJiYrrBriZNmmjx4sUqX758bg/zntWtWzctWrRIISEhNn+fkpKiqKioDEMfvr6+GVYWueOdd97RkCFDDFOl3GHrPChevLjmzp2bZ2EFV1dXjRo1Sh988IFhSre04uPjFR0dbfMhUGbVcu5UAcnvCge+vr7q0KGDzd8VLVpUrVu3znLfwcHB+vHHH9WzZ0+rijF3xMXFKTo6Ot2HhC4uLumejzmtc+fOWrVqlTp37mzzvJRuh99u3LihGzdupPvwLyQkRF9++aWmT5+em8PNkry8xmvUqKGffvrJarqnO1JTUxUVFZVusCunK05VrlxZ33//veE7JDY2Vs8995y2bduWo/vKCU8++aQ+++wzBQQEWP0uJSVF0dHRNoNdZcuW1bfffltgKwM1bdpUq1atUt++fa0qGKYVGxur6OjodINdwcHBmjhxopYtW5bh/ooWLaq5c+cqKCjI6nfJycmKiooy7MPV1VWvvfaahg0bZucRZX4uJyYmKjIyMt3r7v7779fChQsN03XaEhQUpBkzZqh06dJ2j82WKlWqaPHixbrvvvts/j4mJsZmsKtQoUJ65ZVX9NFHH6X7GVrQ1a5dW0uWLNFDDz1k8/f2fEe4u7vn+3f/3cDLy0uff/65Ro4cmW74/datW4qKisow2FW5cmUVLlw4w30VLVpU8+fPV7169Wz+3tY10b59e02ePDlL32UuLi6aOnWqzf2ZTCZFR0dbBbs6dOigL774It37rcwUtHs2R+T2Pb0t7u7u6tOnj9Xynj17ZvjdBgAAgLvX3fmvZAAAAAB3NRcXF73++utauXKlHnvsMXOFA1vc3Nx0//33a/r06VqwYEGWpoeDY2rVqqXly5drxowZatGihTw9PTPdplixYurSpYs+/fRTbdu2Ld2wkKXhw4dr8eLFat68eboPgr29vTVgwACtWLEiX6ZP69WrlzZs2KChQ4faFSyrXLmyXnjhBa1bt86udZcuXarPP/9cXbt2VUhIiAICAvL8oU+PHj1sLu/atavNEKYjvLy89OGHH2rNmjXq27evSpYsmek2Hh4eatKkid544w2tX7/eXDEiL5QuXVqfffaZfvvtNz333HN2hwnLli2r/v3766efftKvv/6qtm3b5u5AsyEvr/E7ocz58+erTZs25qmk0uPt7a22bdtqypQpGjx4sF37cES5cuX0/fffq2rVquZl8fHxevHFF7V+/foc3192derUSevWrdMLL7xgnrY4PVWqVNHIkSO1Zs0a1a9fP49GmDsCAgL0/vvva8OGDXrllVcUEhJi18P1EiVKqHv37po3b57WrVunbt262bVd7dq19csvv6hXr14ZVgZt1qyZFi5cqBdffNGh4/Hz89PGjRs1ZswYtW3b1mZgz5Kbm5tatGihzz//XD/88INdn53S7SngVq9erY8//lidOnVS5cqVVaRIEYe/V0qVKqXFixdrypQpatCgQYZhLX9/f/Xo0UO//fabhg4d6tB+CqKgoCBNnz5dv/zyix577DEFBgZmuo23t7datWqld999V5s3bzZMTY3sefrpp/XHH3/o1VdftSs05+Lioho1aujZZ5/Vjz/+qN9++80wfWN6ihUrpsWLF2v06NEqV65cuutVrFhRH3/8sWbMmJHpd15GAgMDtWDBAr3++usZfmZUqlRJkyZN0rRp07K1P6ng3bM5Kjfv6W1p2bKloe3m5mYz8AUAAIB7g4vJ1p/oAQAAAEABkpycrAMHDig0NFQRERFKSkpSYGCgSpQooQYNGqhIkSL5PcR7WmJiog4ePKhLly4pKipKMTEx8vT0lK+vr8qUKaPKlStnGjqwx9WrV7Vnzx5duXJFcXFxKlKkiCpXrqyGDRtmWlEhL128eFGHDx9WRESEoqKizNOjBQcHq1q1anY/gL+XnTt3TsePH1dUVJSioqLk4uIiHx8fFS1aVJUqVVKlSpWcaurVa9eu6fjx47p48aKio6OVmJgoHx8fFSlSRMWLF1ft2rVtVv0pKPLqGr+zr/379+vixYvmCmHe3t4qVqyYKlWqpGrVqjnVe+9sTp06pRMnTigiIkKxsbEqUqSIihYtqjp16qhs2bL5PbxcFR0draNHj+rixYuKjIxUQkKCvL295efnp6JFi6pWrVo58vkbHx+vnTt3KiwsTNHR0SpUqJDKlCmj+++/P0c/30NDQ3Xu3DldunTJXPXHy8tLfn5+qlSpkkJCQnJlKt6sioqK0t69e3Xt2jVFRkbKw8NDgYGBqlChgurWrZvlakF3A5PJpBMnTujMmTOKjIzUjRs35ObmJh8fH5UoUUKVKlVShQoVsh2Whn2uX7+ugwcP6vr164qMjFRycrK8vb3l7++vihUrqkqVKjlybR06dEinTp0yT7tXokQJ1apVS9WrVzest3TpUo0cOdLc7t69uyZMmODQvlJSUnTw4EGdPHnSPIVssWLFVKdOHav95bSCds/miNy+p584caJhCvp27dpp5syZ2R02AAAACijCXQAAAAAAAAAAAE4mJ8JdKHgSEhLUunVrcxhPkmbNmpWt6c4BAABQsDEtIwAAAAAAAAAAAOAEVq5caQh2lS9f3mqaRgAAANxbCHcBAAAAAAAAAAAA+SwxMVFfffWVYdmAAQPk6srjPAAAgHsZd4MAAAAAAAAAAABAPjKZTPrf//6n8+fPm5cFBQWpV69e+TgqAAAAOAP3/B4AAAAAAAAAAAAAcC/ZsGGDwsPDlZqaqvDwcG3cuFEnTpwwrDNkyBD5+Pjk0wgBAADgLAh3AQAAAAAAAAAAAHlo3rx5+ueff9L9fYMGDTRgwIA8HBEAAACcFdMyAgAAAAAAAAAAAE4iJCRE06dPl5ubW34PBQAAAE6Ayl0AAAAAAAAAAABAPnF1dZWfn59CQkLUsWNH9erVSx4eHvk9LAAAADgJF5PJZMrvQQAAAAAAAAAAAAAAAAAAjJiWEQAAAAAAAAAAAAAAAACcEOEuAAAAAAAAAAAAAAAAAHBChLsAAAAAAAAAAAAAAAAAwAkR7gIAAAAAAAAAAAAAAAAAJ0S4CwAAAAAAAAAAAAAAAACcEOEuAAAAAAAAAAAAAAAAAHBC7vk9ABRckZGR+T0EZJGLi4sCAgIkSVFRUTKZTPk7IOAexHUI5D+uQyD/cR0C+Y/rEMh/XIdA/uM6BPIf1yGQ/7gOgfzHdXj3CAwMzNH+qNwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAAIATItwFAAAAAAAAAAAAAAAAAE6IcBcAAAAAAAAAAAAAAAAAOCHCXQAAAAAAAAAAAAAAAADghAh3AQAAAAAAAAAAAAAAoMBYuXKlmjVrZv7v0qVL+T0k5IFu3bqZ3/Px48fn93DyjHt+DwAAAAAAAAAAAAAAAADZc+nSJfXo0SPb/VSrVk0LFizIgREByAmEuwAAAAAAAAAAAAAAuMfVrn89v4dQIG3dxIRpWbV7927t2bPH3H7++efzcTR3n9mzZ5t/btiwoe6///58HA2yg3AXAAAAAAAAAAAAAADAXcjNzS1PtsmKPXv2aO7cueY24a6clfa1lUS4qwAj3AUAAAAAAAAAAAAAAHCXadCggWbOnJnfw8gVXbp0UZcuXfJ7GECeoD4gAAAAAAAAAAAAAAAAADghwl0AAAAAAAAAAAAAAAAA4IQIdwEAAAAAAAAAAAAAAACAE3LP7wEAAAAAAAAAAAAAAACg4Lhx44aOHTum0NBQxcXFKSUlRZ6engoKClLZsmVVtWpVeXp65vcwM5WSkqL9+/fr4sWLioiIkKenp0JCQlSvXj25uqZfLyk2NlZ79uxRWFiYkpKSFBgYqLp166pSpUpZHse5c+d09epVhYeHKyIiQoULF1aRIkVUpUoVVatWTW5ublk9zByRmpqqo0eP6sKFC4qMjFRKSooCAwNVvnx51a5dO1vjS0xM1O7du3Xp0iXFxcWpaNGiKleunOrVqycXF5ccPIqCiXAXAAAAAAAAAAAAAAAAMnXs2DHNnj1b27dvV0pKSrrrubm5KSQkRF26dFGPHj3Myy9dumRop9WsWbN0+1u6dKnKlCljbq9cuVIffPBBur9Pa8iQIdq7d68kqUGDBpo5c6aSkpK0YMECLV26VNeuXbPapnTp0nrjjTfUokULw/Lo6GjNmDFDv/32mxITE622q1evnkaMGKHKlSuneyx3xMTEaPPmzdq0aZP27t2ruLi4dNf19fXVY489pgEDBqho0aLprjd+/HitXr3aavncuXM1d+5cm9t07txZY8eOTbfPiIgIzZs3T2vXrlV0dHS64+vWrZsGDhwof3//dPuydOvWLX399ddasmSJzeMvVaqUnnjiCfXs2dPuPu9GTMsIAAAAAAAAAAAAAACADP3888969tlntW3btgyDXdLtSlRHjhzR4sWL82h09ouLi9PQoUM1a9Ysm8EuSfr333/11ltvaeXKleZlZ8+e1cCBA7V8+XKbwS5JOnDggAYPHqxjx45lOo45c+bogw8+0NatWzMMdkm3K4X98MMPGjhwoPbv359p3zll/fr16tmzp3788cd0g113xvfdd99pwIABOnr0qF19X79+Xc8884zmz5+f7vFfvnxZn3zyiUaOHKnk5OQsHcPdgMpdAAAAAAAAAAAAAAAASNfu3bv1ySefGJaVKVNG9erVU4kSJeTh4aH4+Hhdu3ZNp0+f1pkzZ5SammrVj4uLi3n6vtTUVJlMJvPvMprWLyen5hs9erQOHDggSapQoYIaNmyowMBA3bhxQ9u3b1dYWJgkyWQyaeLEiapbt658fX31yiuv6OrVq3J1dVXt2rVVq1Yt+fj46MqVK9q6das5/BQTE6P33ntPCxYskIeHh11j8vf3V9WqVVW1alX5+/vLZDIpNjZWoaGhhqpeEREReuONNzR//nyblcrc3NzMr2PaAJ6Li0u600ym97r/9NNPmjx5suE9Kl26tOrXr68SJUrIzc1N4eHh2rVrl65cuSJJunbtml566SXNmTNHVapUSfd44+LiNGzYMJ09e9Ywxvr166tGjRoqXLiw/v33X/3111+KjY3VH3/8oZkzZ6bb392OcBcAAAAAAAAAAAAAAADS9fXXX5t/9vT01JgxY9S+fft014+MjNTmzZu1c+dOw/LSpUtr27ZtkqTZs2cbpgq8szw3HTx4UMnJyfL19dW7776rtm3bGn6fkpKiL7/8UgsWLJAkJSUl6euvv1ZcXJyuXr2qKlWq6L333lP16tUN28XExGjUqFHm4z1//rx+++03de3aNd2xBAUF6YknntBDDz2kkJAQubq6KiAgQJIUFRVlDlUlJibq559/Nk8nGRsbq0mTJmnKlClWfb777rt69913JRmnuXz22Wf1/PPP2/067d27V1OmTDGPoXTp0nrzzTf1wAMPWAXtUlJStGLFCn322WdKSEhQfHy8Ro0ape+++06FChWy2f+MGTMMwa7y5ctr/PjxqlGjhmG9+Ph4TZkyRcuXL9cPP/wgd/d7M+Z0bx41AAAAAAAAAAAAAADAXWzv3r168MEHHd5u3rx5qlatmrmdnJysffv2mdtPPvlkhsEuSQoMDFS3bt3UrVs3h/efm5KTk+Xu7q7PP/9ctWvXtvq9m5ubhg4dqn379ungwYOSpHXr1ik1NVVlypTRzJkzVaRIEavt/Pz8NH78ePXs2dNcZWvNmjUZhrueeuopu8bs4eGh/v37q2TJkubg1o4dO3Tu3DlVrFjRrj4ckZKSog8++MBc+atChQr68ssvFRgYaHN9Nzc3devWTSVLltTrr78uk8mk8+fPa82aNXr00Uet1j9//ryWLl1qbhctWlRffPGFSpQoYbWul5eXRo4cKZPJpF9//VVJSUk5dJQFi+2aawAAAAAAAAAAAAAAACjQUlJSHP4v7TR80u0qUmmn+KtZs2ZeH0aO6tOnj81gV1ppQ2l3ppd88803bQa77ggMDFTr1q3N7aNHjxpet+xq3769KleuLOn2lJG5Vels48aNunjxork9ZsyYdINdaTVv3twQ+ksb4Errl19+MZxjw4YNsxnsSmv48OEqVqxYpmO4WxHuAgAAAAAAAAAAAAAAgE1eXl6G9okTJ/JpJDmjR48ema5jGf4qVaqUmjdvnul2derUMf9869Yt/fvvv44PMANVqlQx/3zkyJEc7fuO1atXm3+uXbu24Zgy89BDD5l/Pn78uLmKWVqbN282/xwQEKCHH3440369vb3VpUsXu8dxt2FaRgAAAAAAAAAAAAAAgLtMgwYNNHPmzGz34+PjowoVKuj8+fOSpK+//lplypRR+/bt5epasGoKFS9eXGXLls10PctKUvXq1ZOLi4vD28XGxto1rgMHDmjz5s06e/aszp8/r5iYGN28edOqitqdKmKSFB4eblffjkhJSdGBAwfM7fvuu8+h7YODg80/p6am6uTJk4Y+IiIidOnSJXO7WbNmcne3L7rUsmVLzZs3z6Hx3C0IdwEAAAAAAAAAAAAAACBd/fr104QJEyRJCQkJGjNmjKZNm6YWLVqoYcOGqlevXqZT6zmD4sWL27WeZbWyrG538+bNDNc/cOCAJk2apFOnTtnVf1o3btxweJvMXLx40VBta+HChVq0aFGW+7Mc47lz5wztatWq2d1XlSpV5Orqagi43SsIdwEAAAAAAAAAAAAAACBd3bp106lTp/Tzzz+bl4WHh2vp0qVaunSpJKl06dJq2LChWrdurebNm6tQoUL5Ndx0FS5c2K71LKt0eXp6Zml/lpW30tq4caPGjBmjlJSULPWdmJiYpe0yEhUVZWhnN0hlWbksJibG0A4MDLS7L09PT/n4+Fj1cS8g3AUAAAAAAAAAAAAAAIAMvfnmm2rRooW+/fZb7du3zyq49O+//2rVqlVatWqVihcvrkGDBqlbt275M1gn9++//+r99983BLtq166txx57THXr1pWvr698fX1VuHBhubm5mdcZP368Vq9eLSnj4FhW2TuNpL0sw2GWlcwcDc15enoS7gIAAAAAAAAAAAAAAABsadasmZo1a6YrV65o586d2r9/vw4dOqRz584ZwkZXr17VhAkTdPDgQY0ZMyYfR+ycFixYoISEBHP7lVde0YABAxQQECDpdgUtW+Gt+Pj4XB2XZWWzkSNHqmvXrjnWv7e3t6F969Yth7Z3dP27BeEuAAAAAAAAAAAAAAAA2K1kyZLq0qWLunTpIkmKjIzU9u3btWrVKu3atcu83qpVq9SoUSN16tQpv4bqlLZu3Wr+uWHDhurfv79d20VEROTWkCTJHC674+LFiznav5+fn6EdGRlp97YJCQmKi4vL0fEUFK75PQAAAAAAAAAAAAAAAAAUXIGBgerUqZO++OILjRo1yvC7X3/9NZ9G5Zxu3bql8PBwc7t58+Z2bZeSkqITJ07k1rAkSWXLlpWHh4e5vXfv3hztv2LFiob2yZMn7d729OnTVtM83iuo3AWko0Wbu/1D4boO7y+a34MAAAAAAAAAAAAAANxFHnvsMS1dulTHjh2TlH6Ax93dGFlJSUmRm5tbro8vv8XExBjaltWs0vPXX385NC2jm5ubUlJSJMnuUJSnp6fq1KmjPXv2SJIOHz6ssLAwlStXzu79ZiQoKEhlypTRpUuXJEk7duxQcnKy1blgy59//pkjYyiIqNwFAAAAAAAAAAAAAACAHFO2bFnzz0lJSTbX8fb2NrQtQ093K8vj/vfffzPdJjU1Vd9++61D+/Hx8TH/7Mhr26FDB8N+v/zyS4f2m5lWrVqZf46MjNT69esz3ebmzZtauXJljo6jICHcBQAAAAAAAAAAAAAAAJuuX7+uy5cv271+UlKSDh8+bG6XLl3a5nqWy48cOZK1ARYwPj4+KlmypLm9du1a3bp1K8NtZs2apUOHDjm0n1KlSpl/duS17dKli2Hb9evXa8GCBQ7tOzY2VkePHrX5u+7du8vFxcXcnj59uq5evZphf9OmTct0nbsZ4S4AAAAAAAAAAAAAAADYdO7cOT3++ON69913tXnz5gyDSJGRkRo9erQhDNamTRub69auXVuurv8XW5k2bZr27duXbqWvu0na6lWXL1/WyJEjFR0dbbVebGysJk6cqHnz5kmSvLy87N5H3bp1zT8fOXJEc+bM0bVr1zLdzt3dXWPGjDFMkTl9+nSNHTtWFy9ezHDbQ4cOacqUKerWrZvWrFljc50KFSqoe/fu5vbVq1c1bNgwHT9+3Grd+Ph4TZw4UcuWLZOLi4sKFSqU6fjvRplPWgkAAAAAAAAAAAAAAIACZe/evXrwwQeztO3PP/9sqKyVkpKiDRs2aMOGDSpcuLCqVKmiKlWqKCAgQIULF1ZsbKzOnTunvXv3KiEhwbxdqVKl9MQTT9jcR9GiRdWyZUtt3rxZknT27Fm9+OKLcnFxUeHChQ3VnRYuXGioJlXQDRw4UKtWrdLNmzclSX///be6deumNm3aqEKFCoqNjdWFCxf0zz//KD4+XpLUoEEDlSxZMt3QlKVHH31Uy5YtU2pqqiRpzpw5mjNnjtzd3Q0hqY4dO+qdd94xbHv//ffrrbfe0qRJk8zb//7771q/fr2qV6+umjVrKiAgQKmpqYqNjVVYWJiOHTtmM6Bmy9ChQ7Vnzx6dO3dOknT+/Hk988wzql+/vkJCQuTp6alLly7p77//Nk8p2b9/f23YsMGhKnJ3C8JdAAAAAAAAAAAAAAAAd6GUlJQsbWcymdL9XUJCgo4cOZLpVH/BwcH67LPP5Ovrm+46b731ls6fP28O+dzZt2V1sDsBo7tFiRIl9MEHH2jkyJHmMNzNmze1evVqm+vXrVtXEydO1JQpU+zeR40aNTRs2DB98cUXhtcvOTlZycnJ5nbaMF5a3bp1U+nSpTVu3DhFRkZKuv0+HDt2TMeOHct0/xlV2fLx8dH06dM1dOhQ83ufmpqqvXv3au/evVbrt27dWkOGDNGGDRsy3e/diHAXAAAAAAAAAAAAAAD3uMP7i0qSoqKiMgz24N5Tq1YtjR07Vtu2bdOePXvMQZ/0lCtXTl27dlXv3r1VuHDhDNctVqyYvv32W61du1Zbt27VqVOnFBUVpfj4+Lv+PHzggQc0a9YsTZkyxWagSZLKlCmjbt26qV+/flmakrB///5q3LixVq1apQMHDujixYu6efOm3VNfNm3aVD///LOWLl2q5cuXKywsLMP1S5UqpcaNG6tDhw5q1KhRhusWLVpU8+bN09y5c7V06VLFxcVZrVOyZEn1799fffr0sWu8dysX091+NSDXZPaBXdC1aHN3JX9tOby/KDdnQD5xcXFRQECAJP6RBOQXrkMg/3EdAvmP6xDIf1yHQP7jOgTyH9chkP+4DuGIixcv6vz58/r3338VFxenlJQUeXt7q3jx4qpatarKly+f30MscMLCwnTw4EHFxcXJ1dVVPj4+Cg4OVq1atfJ7aAaXL1/WkSNHFBkZqZiYGLm5ucnHx0dlypRRxYoVszx1ZkJCgnbv3q1Lly7p5s2bCgoKUrly5VSvXj25urrm8FHkvsDAwBztj8pdAAAAAAAAAAAAAAAAsEvZsmVVtmzZ/B7GXaVcuXIKDg52+pBlqVKlshzgykjhwoX1wAMP5Hi/d4uCF28DAAAAAAAAAAAAAAAAgHsA4S4AAAAAAAAAAAAAAAAAcEJMywjcw5LGlJJPfg8iF8W+fjS/hwAAAAAAAAAAAAAAAJBlVO4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQu75PQAAAAAAAAAAAAAAAADknlu3buno0aMKDQ1VdHS0kpKS5O3trRIlSqhatWoKDg7OUr/NmjUz/zxo0CA9//zzOTVk3EM4jzJGuAsAAAAAAAAAAAAAAOAu9Ndff2nJkiXasWOHkpOT012vVKlS6tixo3r37q2goKA8HCGAzBDuAgAAAAAAAAAAAADgHpc0ppQkySefx1HQxL5+NL+HYFNYWJg+/PBD7d271671L1++rHnz5mnx4sUaPHiw+vTpIxcXl1weJQB7EO4CAAAAAAAAAAAAAAC4S+zcuVOjRo1STEyMYXmRIkV0//33q0SJEvLy8tL169d19uxZHT58WCaTSZIUHx+vKVOm6MCBAxo3bpw8PDzy4xAApEG4CwAAAAAAAAAAAAAA4C6wf/9+vfnmm0pISDAvK1GihF599VW1bt1a7u7WMZE7VbuWL19uDnlt3LhRycnJmjhxIhW8gHzmmt8DAAAAAAAAAAAAAAAAQPbExMRo7NixhmBXkyZNtHDhQrVv395msEuSSpUqpREjRujTTz81VOrasmWLFi5cmOvjBpAxwl0AAAAAAAAAAAAAAAAF3P/+9z9duXLF3K5bt64mTZokHx8fu7Z/4IEH9MEHHxgqdX355Zc6ffp0jo8VgP2YljEHREVFac+ePbp8+bJiY2NVokQJlStXTg0aNJCbm1t+Dw8AAAAAAAAAAAAAANzFTp8+rd9//93c9vDw0NixY+Xp6elQP61atdKjjz6qX3/9VZKUmJiouXPn6qOPPsrR8QKwH+GubDh79qw+/fRTbdq0SUlJSVa/L168uPr06aPBgwcbShfmpIEDB+qff/7J0rbffPONHnjggRweEQAAAAAAAAAAAAAAyEuLFi0ytPv27avg4OAs9TV06FCtW7dO8fHxkqTNmzfr8uXLKlWqlEP9xMXFae/evbpy5Yri4uIUFBSk6tWrq3r16lkal8lk0pkzZ3Tq1ClFREQoPj5ehQoVko+Pj0qVKqUKFSqobNmyWeo7OTlZhw4dUlhYmKKiouTi4qKAgABVqVJFISEhhmpm2REXF6f9+/crPDxcUVFR8vHxUZs2bVS8ePEc6T8rcvPY4+LitHv3bl2+fFkJCQkqXry4KlasqBo1auTgEdz9CHdl0fLlyzVu3DjdvHkz3XWuXr2qL774Qhs3btS0adNUrly5PBwhAAAAAAAAAAAAAAC42926dctQtcvFxUXdunXLcn/+/v5q27atVq9eLUlKSUnRihUr9Pzzz9u1fXR0tKZOnar169crISHB6vfly5fXSy+9pDZt2tjVX2JiohYuXKhly5bp8uXLGa4bGBioBx54QM8884xdGY1Lly5pzpw52rRpU7r5j8DAQPXt21d9+vTJtBLapUuX1KNHD3N79OjR6tKli8LDwzVt2jRt2bLF6jUpUaKEPDw89Nprr5mXvfnmm+rZs2em40/r3Xff1YYNGyTdrty2YsUK+fv7ZzjWnDz2tG7cuKEZM2bot99+s3kOVKpUSYMGDdJDDz1kd5/3Mtf8HkBBtHnzZo0YMcJwclesWNFcpatTp06Gk/rIkSMaPHiwYmNjc31sbm5udv+XU8lSAAAAAAAAAAAAAACQP44cOWII0NSpU0dlypTJVp+PPPKIob1v3z67tjt16pSeeuoprVq1ymaoR5IuXLigESNGaOLEiTKZTBn2d/36dQ0aNEgzZ87MNNglSZGRkVq1apWOHj2a6bqLFi1Snz59tHr16gwL+0RGRmrmzJl66qmnFBYWlmm/lnbs2KEnnnhC69atS/c1adq0qUqUKGFur1y50qF9xMTE6M8//zS3W7ZsmWGwKzeP/dy5cxowYIB++eWXdI/37NmzGj16tCZPnmxXn/c6Knc5KDw8XK+99ppSU1Ml3U68vvPOO3rqqafk6vp/WbmIiAi9+uqr5ikTT506pbFjx+bqidmkSRMtWLAg1/oHAAAAAAAAAAAAAADO5cCBA4Z23bp1s91nnTp15OLiYg5fHT58WMnJyXJ3Tz9mEhcXpxEjRphDWJUqVVLDhg1VpEgRRUREaMeOHYaA1rJly1S4cGENHz483T7HjBmjkydPmtseHh6qV6+eKlWqpCJFiiglJUWxsbG6cOGCjh8/rujoaLuOb9q0afr+++8NyypUqKC6deuqaNGikqR///1XO3fuVGRkpCTp/PnzGjx4sL799lsVK1bMrv2EhoZqypQpio2NlYuLi2rWrKnatWvLz89PERER2r9/vyTJ1dVVnTt31rx58yRJx44d06lTp1S1alW79vP7778rMTHR3O7SpUu+HHt4eLiGDRuma9eumZe5ubmpUaNGqlKlitzd3XX+/Hnt2LFDt27d0o8//qjy5cvbdYz3MsJdDpo5c6bi4uLM7ZdfflnPPPOM1XpBQUGaM2eOunfvrtOnT0uSVq9ereeee061atXKs/ECAAAAAAAAAAAAAIC7V9rwkySFhIRku08fHx+VLVvWXK3p1q1bCgsLU8WKFdPdZunSpUpMTJSvr69GjRqldu3aGX5vMpm0ZMkSTZkyRcnJyZJuV5Bq2bKl7r//fqv+9u7dqz179pjbDzzwgEaPHq2goCCb+09NTdWRI0e0YsUKFS5cON1xrl271hBuqlatmt58803Vr1/fat3ExET98MMPmj17tlJSUnT9+nW99957mj59err9p/Xdd98pJSVFVatW1ZgxY2y+N0lJSZJuB7LuhLuk29W7Mgq+pbVq1Srzz8WLF1fTpk1trpfbxz5x4kRDsKt27doaN26cgoODDetFRkbq448/1pYtWzR16lS7jvFexrSMDrh27Zp++uknc7t8+fJ64YUX0l2/cOHCGjNmjLltMpk0c+bMXB0jAAAAAAAAAAAAAAC4d1hWqypZsmSO9Jt2mkBJioqKynD9xMREubm56ZNPPrEKdkm3Z0br2bOnRo8ebVie3gxoO3fuNP/s6+urDz74IN1gl3S7+lWdOnU0cuRItWrVyuY6sbGxmjRpkrldv359zZ4922a4SbpdKezpp5/WW2+9ZV62e/du7dq1K91xpJWSkqLg4GDNmDEj3dBdoUKFJEnBwcFq1KiRefnatWvNIbiMnD17VkeOHDG3O3fubJh57o7cPvYdO3Zo27Zt5nblypU1depUq2CXJAUGBuqjjz5Ss2bNDBXHYBvhLgds2LDBnJiUpN69e5svsvQ0b95clStXNrc3b96c4XylAAAAAAAAAAAAAAAA9rpx44ah7ePjkyP9+vn5ZbgfW3r16qX77rsvw3U6duyoBx980Nw+ffq0eXrCtCIiIsw/V6hQQd7e3pnuPzNLly41z9ZWuHBhjRs3Tp6enplu161bN9WpU8fQj73efPNNFSlSxK51e/ToYf45MjJSf/31V6bbrFy50tD+z3/+Y3O93D72ZcuWGdpvv/12hueiu7u7Ro4cmWGVNdxGuMsBGzduNLQ7duxo13aPPPKI+eeEhARDUhEAAAAAAAAAAAAAACCrLAvMeHl55Ui/lsEfewrZ9OrVy66++/TpY2hv2rTJap20x3HhwgXdunXLrr4zsnr1avPPLVu2VOnSpe3etn379uaf9+zZI5PJlOk25cqVS3eKRFs6duxoCLFZBrcspaSkaM2aNeb2fffdp/Lly9tcNzePPSkpyRBEq169eqYhP+l2lbk2bdrYPY57FeEuB+zevdv8c7FixWyWjrOlQYMGhnba0oEAAAAAAAAAAAAAAABZZVnRKj4+Pkf6tQxTZVY5q3LlyipbtqxdfTdq1MjQ3+HDh63WqVWrlvnnmJgYjRo1SuHh4Xb1b0tkZKTOnTtnbtsTPkorbUYkKipKV69ezXQby7xIZnx8fAyFhv766y9FRkamu/7ff/+t69evm9tdunSxuV5uH/uJEycM0yumrcyWmZYtWzo0lnuRe34PoKC4cuWKYmJizO2aNWvavW3aDxzpdklBAAAAAAAAAAAAAACA7LKc8u/O1HvZFRsbm+F+LFWtWtXuvl1dXVWlShUdPHhQkgzBoztat26t0qVL699//5V0O+jUvXt3NWzYUM2aNVP9+vUVEhKiQoUK2bXPEydOGNqTJ0/WZ599ZveYLatVRUdHq0SJEhluU6FCBbv7v+Pxxx83T32YnJysNWvWqF+/fjbXXbVqlflnb29vtWvXzuZ6uX3slu9ftWrV7O67evXqdq97ryLcZaczZ84Y2mXKlLF722LFiqlQoUJKSkqSJJ09ezZHx3bHpUuXNGLECB08eFBXr15VUlKSAgMDVbJkSTVq1Eht2rTR/fffnyv7BgAAAAAAAAAAAAAAec/f39/QtqeilD0sq2RZ7sdSUFCQQ/2nXT82NlYmk0kuLi7mZR4eHpo0aZJef/118zGlpKRo586d5hnTChcurNq1a6tJkyZ6+OGHM6wcFhUVZWinpqY6NF5LluE3W3x9fR3ut1GjRgoODlZoaKik21Mz2gp3RUdHa+vWreZ2u3bt0q2ultvHnrZYkiQFBgba3Zej5829iGkZ7XTlyhVDu1SpUnZv6+LiopIlS6bbV04JCwvTsmXLdOrUKUVHR+vmzZu6ePGi9uzZo1mzZql///7q27evOfkKAAAAAAAAAAAAAAAKNsuKWceOHct2n3FxcQoLCzO3PT09DVPz2eLl5eXQPjw9Pc0/p6amWk0DKd2uAPXdd9/piSeeUEBAgNXvExIStGfPHn355Zfq2bOnRowYYa70ZckygJRd9gSk3N2zVnMp7fSKp0+ftvmerl271lxkyHIbS7l97Ddv3jS0HTkX0p4HsI3KXXayPBEzm0vWko+Pj/nn5ORkJSQkqHDhwjkyNkfs3btX/fr103vvvadevXplq6+0iVnAGXGOwpmlPT85V4H8wXUI5D+uQyD/cR0C+Y/rEMh/XIdA/uM6BPIf117WOcNrV79+fUP70KFD2R7X0aNHDVPx1a5dO9PpD2/duuXQftOGuVxdXeXl5WVz+4CAAL388ssaMmSI9u/fr7179+rgwYM6ePCgYQpKk8mkTZs2affu3ZoxY4bVdH+WgaNp06apSZMmdo/XHpbjd3Fxsfs1Sbvef/7zH3311VfmENWqVatUs2ZNw/ppp2QsV66cGjRokG7fuX3slhkaR86FhIQEQ9uR1+xeQbjLTpbhLkeDWZbrx8XF5Vi4KyAgQO3atVPLli0VEhKikiVLytPTUzdu3NDJkye1adMm/fjjj+ayeElJSRo7dqwCAgL08MMPZ2u/d7fr+T0AZNPdf47ibpFZCVsAuY/rEMh/XIdA/uM6BPIf1yGQ/7gOgfzHdQjkn6TMV4ENzvBM8oEHHlDhwoXNIZkDBw4oLi4uwykKM7Nx40ZDu3nz5pkea2xsrEOvx40bN8w/+/n52TWVX/v27dW+fXtJt6doPHTokH7//XctWbJEkZGRkm5XqRo7dqxWrVolNzc387aWr0dERESOv3+W0xV6e3tnaR/VqlXTAw88YJ52cd26dRo7dqw8PDwkScePH9fx48fN6/fq1SvD/eT2sVvOfpeQkGB3/3fetzs8PT2d4rpyJkzLaCfLpGBmiVRLdy6w9PrLqpdffllbtmzRxx9/rM6dO6tKlSry9fWVu7u7goKC1LRpU73zzjtau3atIXWZmpqqESNGWF0kAAAAAAAAAAAAAACg4PDy8tJ//vMfc9tkMunHH3/Mcn/R0dFau3atue3m5qYePXpkup0j00GmpqYawklVqlRxbJD/f1z169fXW2+9pd9//91Qqevs2bPauXOnYX3L6Sstf+9sHn/8cfPPUVFRhsDd0qVLzT+7urqqW7duGfaV28du+f45ci7kxDSidzsqd9nJsspW2nlL7ZGYmJhhf1llb5m8YsWKadasWerfv7+OHDki6XZidPbs2Xr77beztO+oqKgsbQfkFc5RODMXFxfzX6BFR0cbytoCyBtch0D+4zoE8h/XIZD/uA6B/Md1COQ/rkMg/7m4uMg789Vgg7M8k+zRo4ch8PPNN9+oQ4cOWareNWHCBMN0h61bt5aPj0+mx3rq1CkdOXJEZcqUyXQfO3fuNMygVqNGjWy/loMHD9Ybb7xhbu/du1c1atQwt/38/FSmTBldunRJkrRp0yaFhYXJ19c3W/tNK201Mun2LHH2Hpfl92GjRo1UpEgRc5+LFy9Ws2bNlJycrOXLl5u3a9KkiTw9PTPcT24fe+nSpeXh4WHOxmzcuFFPP/20XduuWbPG0L5165bTXFdZldOVxwh32clyflBHK29Zru/j45PtMTnKy8tL7733nvr06WNetnr16iyHu7ixhrPjHEVBYTKZOF+BfMZ1COQ/rkMg/3EdAvmP6xDIf1yHQP7jOgRQ0DjLZ1bVqlXVvn17bdiwQdLtjMK4ceM0depUeXp62t3Ptm3bDMEhDw8PPfvss3Ydp8lk0uLFizV8+PBM1120aJGh3bp162y/lpahsqSkJKs+H374YX377beSbhfEmTdvnoYOHZqt/aZlub+sfq+ZTCYVKlRIHTp00M8//yxJ2rFjh65evaojR44YZmnr0qWLXfvIzWN3d3dX8+bNtXnzZkm3p43ct2+f6tevn+F24eHh2rRpk2EZ9wLWmJbRTpbhrrQpVXukXd/d3T3HKnc56r777jOU2/v333917ty5fBkLAAAAAAAAAAAAAADIGW+//baKFy9ubh84cEAjRowwVMjKyPbt2zVq1Cilpqaal7344otWU/pl5Oeff9bBgwczXGfdunXaunWruV2lShWbIaBjx44pJSXF7n3v27fP0C5durTVOv379zfkP7777jutW7fO7n1I0vXr13X69GmHtsmqLl26mH9OSUnRb7/9ppUrV5qXFSlSRK1atbKrr9w+dsupOydNmpRhtiYlJUUTJ07UrVu3HBrDvYhwl51KlixpaF+5csXubU0mk2F9y77y2n333Wdo3ym7BwAAAAAAAAAAAAAACiZ/f3+NHz/eUGxm+/bt6t+/vzZu3Kjk5GSb24WHh2vixIl67bXXDLOStWrVSv369bN7/x4eHkpOTtYbb7xhVY1Jup2dWLZsmcaPH29Y/tprr9ns7/PPP1evXr00b948XbhwIcN9b9q0SdOmTTO3CxcurObNm1ut5+/vr7feesswprFjx+qzzz7T9evX0+0/JSVFu3bt0kcffaQePXpo586dGY4np9SoUcMQrlu6dKn++usvc7tDhw7y8PCwq6/cPvamTZvqgQceMLdPnz6t4cOH6+LFi1brRkVFadSoUdq2bZvd47+XMS2jnapUqWJo2zr50nPt2jUlJSWZ25UrV86xcWVF0aJFDe205foAAAAAAAAAAAAAAEDB1KBBA02aNEmjRo0yV026fPmyRo0apSJFiqhRo0YqUaKEvLy8dP36dZ09e1aHDh2ymgavbdu2ev/99+Xi4mL3vnv06KGtW7cqLCxMI0aMUOXKldWwYUMVKVJEERER2rFjh/7991/DNn379lWjRo3S7fPSpUv68ssv9eWXX6pkyZIKCQlR6dKl5evrq5SUFF29elX79+9XWFiYYbshQ4bIx8fHZp+dOnVSaGiovv76a0n/N53kkiVLVKtWLVWvXl3+/v5KSkpSTEyMzp07pxMnTjg8w1tO6dKli6ZMmSJJVq9f2spe9sjtYx8xYoSeffZZXbt2TZJ08OBB9enTR40aNVKVKlXk5uam0NBQ/f333+aKXa+88oo++eQTh47jXkO4y04lSpSQn5+fYmJiJElHjx61e9sjR44Y2vkd7oqPjze082uKSAAAAAAAAAAAAAAAkLOaNm2qb775Rh9++KH2799vXn7jxg1t3Lgxw209PT01ePBg9e3b16FglyT5+PhowoQJev311xUeHq4zZ87ozJkz6a7fvXt3vfrqq3b3f+XKlUxnWXN1ddWzzz6rvn37ZrjeCy+8oODgYE2aNMmcoUhOTtaBAwd04MCBTMdSqFAhu8edXR07dtT06dMNRYUkqWrVqqpRo4bD/eXmsZcoUULTpk3Tyy+/bA54JScna/v27dq+fbvV+j179lTPnj0Jd2WCcJcD7r//fnPpwOvXr+vChQsqX758ptvt2bPH0G7cuHFuDM9uoaGhhnZQUFA+jQQAAAAAAAAAAAAA4AwK/feypNvTpVlWcULBU758eX311Vfatm2blixZon/++SfdaRklqWTJkurYsaN69+5tNRuYI6pWrar58+drypQp+uOPPwzTPN4RHBysl156SW3bts2wr9dee00bNmzQjh07dPLkSaWkpKS7roeHh5o3b65nnnnG7sBTp06d1Lx5cy1cuFCrV6/W1atXM1w/ODhYzZo10yOPPKI6derYtY+cEBAQoAcffNBqqktHq3allZvHXqlSJf3www+aPn261qxZY/McqFChgp599lk98sgjWT6Ge4mLiU9lu/34448aM2aMuf3GG2/ohRdeyHS7jh076uzZs5JuV8navn27vL29c22cGYmPj1eLFi0UGxsrSXJ3d9f27dvl5+fncF93+3SOLdqk5vcQct2+x2rn9xByVezr9lfYA/Kai4uLAgICJPGPJCC/cB0C+Y/rEMh/XIdA/uM6BPIf1yGQ/7gOgfzHdXj3i4+P19GjR3XhwgXduHFDycnJ8vLyUokSJVStWjW7Cts4KiYmRnv37lV4eLhu3rypwMBAVatWLUvVpuLj43X69GmFhYUpIiJCt27dUqFCheTn56eKFSuqWrVq6U7DaK/z58/rxIkTio6OVkxMjDw8POTj46OyZcuqcuXK2Qq92SM/r8PcOva4uDjt2rVLly9fVkJCgooXL66KFSuqZs2aOXwEziUwMDBH+6NylwPatWun8ePHm0vd/fTTT3rmmWcyLDn3999/m4NdktS6det8C3ZJ0rfffmsOdklS/fr1sxTsAgAAAAAAAAAAAAAABYOXl5caNmyohg0b5tk+/fz81KpVqxzpy8vLS3Xq1MnVilkVKlRQhQoVcq1/Z5Zbx+7j46PWrVvneL/3Gtf8HkBBUqxYMfXu3dvcvnDhgmbNmpXu+gkJCfrggw/MbRcXFw0ZMiTd9cPCwhQSEmL+r127dhmO5/jx4w6MXtq6dau++OILw7Knn37aoT4AAAAAAAAAAAAAAAAA5A3CXQ4aPHiwoZTftGnT9M033yg11TiFX0REhJ577jmdOnXKvKxz586qVatWjo3liSee0AsvvKB169bZnKP0jhs3bmjq1KkaPHiwueqYJDVp0kQdOnTIsfEAAAAAAAAAAAAAAAAAyDlMy+igkiVLavLkyRoyZIhSU1NlMpk0YcIELVq0SM2aNVNAQIDOnz+vP/74Q7du3TJvV7VqVY0fPz5Hx2IymbR582Zt3rxZXl5eCgkJUdWqVRUQECBPT0/FxMTo1KlT2rNnj+Lj4w3bVqpUSdOmTcvR8QAAAAAAAAAAAAAAAADIOYS7sqBNmzb6+OOPNW7cOHNo6ty5czp37pzN9WvWrKkvvvhCvr6+uTam+Ph47du3T/v27ct03UceeUTjx49XQEBAro0HAAAAAAAAAAAAAAAAQPYwLWMWdevWTUuXLtVDDz2kQoUK2VynePHiGjp0qH788UeVK1cux8cwePBgNW3aVN7e3pmu6+Hhofbt22vevHmaOnUqwS4AAAAAAAAAAAAAAADAyVG5KxsqV66s6dOnKzIyUnv27NHly5cVFxenYsWKKTg4WA0bNpSbm5vd/ZUrV07Hjx+3e/3nn39ezz//vFJTU3X+/HmdP39ely9fVkxMjJKSkuTt7S1/f39VqlRJtWrVkoeHR1YOEwAAAAAAAAAAAAAAAEA+INyVAwIDA9W+fft827+rq6sqVaqkSpUq5dsYAAAAAAAAAAAAAAAAAOQspmUEAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAAAAAAAAAAAAAAAABwQoS7AAAAAAAAAAAAAAAAAMAJEe4CAAAAAAAAAAAAAAAAACdEuAsAAAAAAAAAAAAAAAAAnBDhLgAA/h97fx5lV1Xnjf/vU1WphMwkgUhMMISkGWQenLDFJoKiPjaICoIMKg0y+sV2gCVqOyA+itA0yLSgUaBXq8jQD4LQCEgr0kxhNAwCgSRkICShMpC5zu+P/HI7RRLIcOvcW/TrtVYWe9+7z2d/rquOf73X3gAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCbU1uoG3gldffTUTJkzIjBkzsmDBgmy55ZYZOXJkdt9997S2tja6PQAAAAAAAAAAoAcS7toEkyZNyk9/+tP84Q9/yLJly9b4fosttsihhx6a448/Pu3t7Q3ocKUrr7wyP/rRj7p89q53vStXX311gzoCAAAAAAAAAADejGsZN9J//Md/5JOf/GRuv/32tQa7kmTWrFm58MILc+ihh2bq1KkVd7jS1KlT8y//8i8N2RsAAAAAAAAAANh4Tu7aCHfffXdOP/30dHZ21j4bPXp03v3ud2fw4MGZPHly7rrrrixevDhJMnHixBx//PH51a9+lf79+1fa63e+85289tprle4JAAAAAAAAAABsOuGuDfTyyy/ntNNOqwW7iqLIN77xjRx99NFpafmfg9DmzJmTL3/5y7n//vuTJM8++2y+/e1v59xzz62s1xtvvDF/+tOfkqy8InLWrFmV7Q0AAAAAAAAAAGwa1zJuoIsvvjgLFy6szU855ZR8/vOf7xLsSpIhQ4bk8ssvz7bbblv77JZbbsnEiRMr6XPOnDn50Y9+lGRlAO2MM86oZF8AAAAAAAAAAKA+hLs2wCuvvJJrr722Nt96661z3HHHrXN97969861vfas2L8syF198cbf2uMoPf/jDzJ07N0ly6KGHZtddd61kXwAAAAAAAAAAoD6EuzbAHXfckWXLltXmn/nMZ9KrV683fOa9731vxowZU5vffffdee2117qtxyT54x//mJtuuinJyusY//Ef/7Fb9wMAAAAAAAAAAOpPuGsD3HnnnV3mH/nIR9bruQ9/+MO18ZIlS3LPPffUta/Vvfbaa/nOd75Tm59xxhkZOHBgt+0HAAAAAAAAAAB0D+GuDfDQQw/VxsOGDcuoUaPW67ndd9+9y/yBBx6oa1+r++d//ue89NJLSZL3v//9+djHPtZtewEAAAAAAAAAAN1HuGs9zZw5M/Pnz6/Nd9hhh/V+dscdd+wyf+655+rW1+oee+yxXHPNNUmS3r17dznBCwAAAAAAAAAA6FmEu9bT888/32U+YsSI9X522LBh6dWrV20+adKkuvW1yvLly/Otb30rK1asSJKccMIJ2Xrrreu+DwAAAAAAAAAAUA3hrvU0c+bMLvO3ve1t6/1sURQZPnz4OmvVw+WXX56nnnoqSbLtttvmi1/8Yt33AAAAAAAAAAAAqtPW6AZ6itdee63LvG/fvhv0fL9+/Wrj5cuXZ8mSJendu3ddenvhhRdy0UUXJVkZJPvud7+b9vb2utR+I0VRdPsesCn8jdLMVv/79LcKjeE9hMbzHkLjeQ+h8byH0HjeQ2g87yE0nvcQGs97yLoId62n14e7NjSY9fr1CxcurEu4qyzLfOtb38qSJUuSJJ/85Cez9957b3Ld9TF48OBK9mmc2Y1ugE301v8b5a1i0KBBjW4B/tfzHkLjeQ+h8byH0HjeQ2g87yE0nvcQGs97CI3nPWR1rmVcT6vCU6v06tVrg55//Ular6+3sX7zm9/k/vvvT5Jsvvnm+drXvlaXugAAAAAAAAAAQGM5uWs9vf6UrWXLlm3Q80uXLn3Dehtj1qxZ+fGPf1ybf+Mb38jmm2++yXXX16uvvlrZXrAx/I3SzIqiqCXuOzo6UpZlgzuC/328h9B43kNoPO8hNJ73EBrPewiN5z2ExvMeQuN5D9866n3LmHDXeurbt2+X+YaevPX69f369dvknr7//e9n3rx5SZJ3vetdOfjggze55obwfyQ0O3+j9BRlWfp7hQbzHkLjeQ+h8byH0HjeQ2g87yE0nvcQGs97CI3nPWR1rmVcT68Pdy1cuHCDnl99fVtb2yaf3HXHHXfktttuS7Lyisjvfve7m1QPAAAAAAAAAABoLsJd62n48OFd5jNnzlzvZ8uy7LL+9bU2xo9+9KPa+LjjjsuYMWM2uSYAAAAAAAAAANA8XMu4nrbddtsu85deemm9n33llVeybNmy2rweQay5c+fWxpdcckkuueSSDXr+/vvvz4477lib77333vnFL36xyX0BAAAAAAAAAAD1Idy1nrbccssMGDAg8+fPT5I8+eST6/3sxIkTu8zrfcrWihUrNvm5zs7OerUDAAAAAAAAAADUgWsZN8Cee+5ZG8+ePTuTJ09er+cmTJjQZb733nvXtS8AAAAAAAAAAOCtx8ldG2D8+PH5wx/+UJvfeuutOe644970udtuu6027t27d/bZZ59N7uXBBx/coPVTp07N+PHja/N3vetdufrqqze5DwAAAAAAAAAAoHs4uWsD7LfffunVq1dtfu2112bZsmVv+My9996bSZMm1eb77rtv+vbt2209AgAAAAAAAAAAbw3CXRtg2LBh+cxnPlObT548OZdddtk61y9ZsiQ/+MEPavOiKHLCCSesc/3UqVOz3Xbb1f7tt99+9WkcAAAAAAAAAADocYS7NtDxxx+ffv361eYXXHBBrrzyynR2dnZZN2fOnBx77LF59tlna5999KMfzY477lhZrwAAAAAAAAAAQM/V1ugGXnvttTz66KOZOHFiZs+enQULFrzpVYevVxRFfvjDH3ZTh10NHz485557bk444YR0dnamLMv86Ec/yi9/+cu85z3vyeDBg/Piiy/mrrvuyuLFi2vPjR07Nt/73vcq6REAAAAAAAAAAOj5GhbumjVrVs4///zcfPPNXUJQG6osy0rDXUnywQ9+MGeffXb+6Z/+KYsWLUqSvPDCC3nhhRfWun6HHXbIhRdemP79+1fWIwAAAAAAAAAA0LM15FrG++67Lx//+Mdz3XXXZdGiRSnLshFtbJKDDjoo119/fT70oQ+lV69ea12zxRZb5KSTTsqvf/3rjBw5suIOAQAAAAAAAACAnqzyk7uef/75nHjiiVm4cGGSlVcqlmXZIwNeY8aMyc9+9rPMnTs3EyZMyIwZM7Jw4cIMGzYso0aNyh577JHW1tb1rjdy5Mg8/fTT3dJrd9YGAAAAAAAAAADqr/Jw1znnnJOFCxemKIokSUtLSz70oQ/l7/7u7zJmzJgMGjQobW0Nuy1yo2y++eYZP358o9sAAAAAAAAAAADeQipNUc2ZMyd33XVX7bSuoUOH5tJLL81OO+1UZRsAAAAAAAAAAABNr9Jw14MPPli7frEoivz4xz8W7AIAAAAAAAAAAFiLlio3mzlzZpKVwa5Ro0Zln332qXJ7AAAAAAAAAACAHqPScNeiRYtq4+23377KrQEAAAAAAAAAAHqUSsNdW2yxRW3cq1evKrcGAAAAAAAAAADoUSoNd40aNao2nj17dpVbAwAAAAAAAAAA9CiVhrv22GOPDBs2LGVZ5rHHHsvy5cur3B4AAAAAAAAAAKDHqDTc1dLSkk996lNJkkWLFuXGG2+scnsAAAAAAAAAAIAeo9JwV5KceOKJ+Zu/+ZuUZZmf/vSnmTp1atUtAAAAAAAAAAAANL3Kw13t7e254IILMnLkyMydOzeHH3547r333qrbAAAAAAAAAAAAaGptVW/4wAMPJEm++tWv5rvf/W5efvnlfOELX8iuu+6afffdN2PHjs3AgQPT0rJhubO99967O9oFAAAAAAAAAABoiMrDXUceeWSKoqjNi6JIWZZ59NFH8+ijj25UzaIoMnHixHq1CAAAAAAAAAAA0HCVh7tWKcuyFvJa9d+yLBvVDgAAAAAAAAAAQFNpSLhrVYhLmAsAAAAAAAAAAGDtKg93nXzyyVVvCQAAAAAAAAAA0OMIdwEAAAAAAAAAADShlkY3AAAAAAAAAAAAwJqEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQm2NbmB1s2bNyuOPP57Zs2eno6MjRVFk4MCBGTp0aHbeeedsscUWjW4RAAAAAAAAAACgEg0Pd82dOzf//u//nhtuuCFTp059w7UjR47MwQcfnMMOOyxDhgypqEMAAAAAAAAAAIDqNfRaxmuvvTb77bdfLrjggkyZMiVlWb7hvylTpuSCCy7I+PHj8+tf/7qRrQMAAAAAAAAAAHSrhp3c9e1vfzvXXnttyrJMkhRFkSS1+eut/v2iRYvyne98J4899lh+8IMfVNMwAAAAAAAAAABAhRoS7rrwwgtrJ28VRVE7mWvIkCHZZZddMmbMmAwYMCBJMn/+/EyaNCmPPfZYZs+e3SXkdd1112XLLbfMqaee2oifAQAAAAAAAAAA0G0qD3c999xzufjii7uEtHbYYYf8f//f/5e//du/TUvL2m+K7OzszB//+Mecf/75mThxYi0Udumll+ZjH/tYtt122yp/BgAAAAAAAAAAQLdae5KqG11wwQVZsWJF7frFz33uc7nuuuuy7777rjPYlSQtLS3Zd99985vf/CZHHnlkyrJMURTp7OzMBRdcUFX7AAAAAAAAAAAAlag03LV06dLcfffdKYoiRVFk//33z5lnnvmGoa7Xa2lpyTe/+c0ccMABtesc77777ixdurQbOwcAAAAAAAAAAKhWpeGuhx9+OIsWLaqdunXGGWdsdK0zzjijdrXj4sWLM2HChHq1CQAAAAAAAAAA0HCVhrteeumlJElRFNlhhx2y1VZbbXStrbbaKu985ztr82nTpm1yfwAAAAAAAAAAAM2i0nDXnDlzauNRo0Ztcr2RI0eutTYAAAAAAAAAAEBPV2m4q7W1tTZesWLFJtfr7Oxca20AAAAAAAAAAICertJw1+abb14bv/DCC5tcb/Uaq9cGAAAAAAAAAADo6SoNd2299dZJkrIs8+yzz+a5557b6FrPPfdcnnnmmTVqAwAAAAAAAAAAvBVUGu7addddM2DAgBRFkST5wQ9+kLIsN7hOWZY566yzavP+/ftn1113rVufAAAAAAAAAAAAjVZpuKu1tTX7779/LdD13//93/nHf/zHLF68eL1rLFmyJF/72tfy5z//OUVRpCiK7L///mltbe2utgEAAAAAAAAAACpXabgrSU4++eS0t7cnWXkC1+9+97t87GMfy7XXXpuFCxeu87mFCxfmN7/5TT7+8Y/n5ptvTlEUKcsyvXr1ykknnVRV+wAAAAAAAAAAAJVoq3rDESNG5Bvf+Ea+//3v1wJaL730Ur797W/nu9/9bsaNG5fRo0dnwIABSZIFCxbkhRdeyDPPPJMVK1bUTv1adWrXN77xjbz97W+v+mcAAAAAAAAAAAB0q8rDXUlyxBFHZO7cubnwwgtTFEWSlad4LV++PE8++WSeeuqpLutXBbqS1AJhZVnmxBNPzBFHHFFp7wAAAAAAAAAAAFWo/FrGVU4++eRceumlGTZs2Bqncb3e6p+XZZlhw4bl4osvzqmnnlppzwAAAAAAAAAAAFVpyMldq+y777654447ctNNN+XGG2/M448/nsWLF691bZ8+fbLzzjvnoIMOyv/5P/8n7e3tFXcLAAAAAAAAAABQnYaGu5Kkvb09hxxySA455JAsX748zz77bGbPnp2Ojo4kyaBBgzJ06NCMHTs2bW0NbxcAAAAAAAAAAKASTZWWamtry/bbb9/oNgAAAAAAAAAAABqupdENAAAAAAAAAAAAsCbhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACaUFs9i1144YVrfHbyySe/6Zp6eP0+AAAAAAAAAAAAPVndw11FUXT5bG3hrtevqQfhLgAAAAAAAAAA4K2k265lLMuyu0o3ZB8AAAAAAAAAAIAq1fXkrmT9wlYCWQAAAAAAAAAAAG+sruGuq666qi5rAAAAAAAAAAAA/rera7jrXe96V13WAAAAAAAAAAAA/G/X0ugGAAAAAAAAAAAAWJNwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCbVVvOH78+CRJURT5t3/7twwfPnyj6sycOTOHH354rdbvf//7uvUIAAAAAAAAAADQaJWHu1566aUkKwNZK1as2Og6y5cv71ILAAAAAAAAAADgrcS1jAAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJ9dhw1/Lly2vjtrbKb5cEAAAAAAAAAADoVj023PXKK6/Uxv369WtgJwAAAAAAAAAAAPXXY8Ndf/rTn5IkRVHkbW97W4O7AQAAAAAAAAAAqK9uuc9w2rRp67Vu5syZG1R36dKlmTVrVv70pz/lyiuvrH2+ww47bFAdAAAAAAAAAACAZtct4a799tsvRVG84ZqyLHP44Ydv9B5lWdbG+++//0bXAQAAAAAAAAAAaEbdEu5aZfUA1sZ8vy5FUaQoipRlmd122y1/93d/t1F1AAAAAAAAAAAAmlVLoxvYGKtCYQcccEAuueSSNz0lDAAAAAAAAAAAoKfplpO7Dj744HV+d8MNNyRZefrW/vvvn379+q133fb29gwcODDbbrtt9t5777z97W/f5F4BAAAAAAAAAACaUbeEu84+++x1fnfDDTfUTto6/fTTM2LEiO5oAQAAAAAAAAAAoEdryLWMq65VBAAAAAAAAAAAYO265eSuN7L6qV6bb7551dsDAAAAAAAAAAD0CJWHuw4++OCqtwQAAAAAAAAAAOhxGnItIwAAAAAAAAAAAG9MuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0obZGN5AkDz/8cB5++OE899xzmTdvXubPn5/Ozs71fr4oivziF7/oxg4BAAAAAAAAAACq1dBw169+9atcccUVmTJlykbXKMsyRVHUsSsAAAAAAAAAAIDGa0i4a9GiRfnKV76SP/zhDynLMklqAa1V89U/W92bfQ8AAAAAAAAAAPBW0JBw15lnnpm77rorycqAVlmWa4S8kq5BrlVWD4Gt7XsAAAAAAAAAAIC3gsrDXX/4wx9y880310Ja/fv3z4knnpgDDjggK1asyAEHHJBkZYjrqaeeyoIFC/Lyyy/n4Ycfzg033JAHH3wwRVFk6NCh+b//9//m/e9/f9U/AQAAAAAAAAAAoNu1VL3hFVdckWTlyVv9+vXL1Vdfnc9//vN5+9vfntbW1jXW9+/fP2PGjMkhhxySa665JhdeeGEGDhyYOXPm5Etf+lJuv/32qn8CAAAAAAAAAABAt6s03LVgwYI89NBDKYoiRVHkpJNOyvbbb79BNT70oQ/l8ssvT58+fbJ8+fJ8/etfz5QpU7qpYwAAAAAAAAAAgMaoNNz16KOPprOzM2VZpq2tLZ/61Kc2qs7OO++cE088MUmyePHiXHzxxfVsEwAAAAAAAAAAoOEqDXdNmzYtSVIURcaNG5cBAwa84frly5ev87sjjjgi7e3tKcsyt99+e5YuXVrXXgEAAAAAAAAAABqp0nDXvHnzauORI0eu8X1bW1uX+ZIlS9ZZq2/fvtlll12SrLzuccKECXXqEgAAAAAAAAAAoPEqDXetWLGiNt5ss83W+L5fv35d5nPmzHnDeltuuWVtPGPGjE3sDgAAAAAAAAAAoHlUGu5aPbz12muvrfF9375909LyPy29WWCrLMvaePbs2XXoEAAAAAAAAAAAoDlUGu4aPnx4bTx37tw1m2lpyahRo2rzJ5544g3rTZo0qTYuiqIOHQIAAAAAAAAAADSHSsNd22yzTZKVJ249++yza12z3Xbb1ca33XbbOms999xzefrpp2uhrqFDh9axUwAAAAAAAAAAgMaqNNw1ZsyYDBw4MEnS0dGRl156aY01++67b5KVAbBHH300//Ef/7HGmsWLF+eb3/xmyrKsXc242267dV/jAAAAAAAAAAAAFas03FUURfbaa6/a/O67715jzf7775++ffumKIqUZZkzzjgjZ5xxRm677bb8+c9/zjXXXJODDjoojz76aIqiSFEU2XHHHfOOd7yjyp8CAAAAAAAAAADQrdqq3nD8+PG58847kyS33HJLDj/88C7fDxw4MF/60pdy7rnnpiiKdHZ25sYbb8yNN95YW1OWZS381dLSktNOO63KnwAAAAAAAAAAANDtKj25K1l5Mte4ceMyduzYdHR0ZNq0aWusOfbYY3PAAQfUQlxJalcwrh7sSpJTTz0173//+yv9DQAAAAAAAAAAAN2t8pO7Bg4cmJtuuukN17S0tOS8887LlVdemUsvvTTz58/v8n1ZlhkxYkS+9rWv5cADD+zOdgEAAAAAAAAAABqi8nDX+mptbc2xxx6bo48+Og888EBeeOGFzJ8/PwMHDsz222+fXXfdNS0tlR88BgAAAAAAAAAAUImmDXet0qtXr7zvfe/L+973vka3AgAAAAAAAAAAUBlHXwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmlBbPYtNmzatnuU2yIgRIxq2NwAAAAAAAAAAQL3VNdy13377pSiKepZcL0VRZOLEiZXvCwAAAAAAAAAA0F3qGu5apSzL7igLAAAAAAAAAADwv0ZLoxsAAAAAAAAAAABgTXU9uevggw+uZzkAAAAAAAAAAID/teoa7jr77LPrWQ4AAAAAAAAAAOB/LdcyAgAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaEJtVW941FFH1b1mURT5xS9+Ufe6AAAAAAAAAAAAjVJ5uOv+++9PURR1q1eWZV3rAQAAAAAAAAAANIPKw12bqizL2lioCwAAAAAAAAAAeKtqSLhr9YDWhloV6CrLcpPqAAAAAAAAAAAANLPKw11PPfXUBq3v7OxMR0dHnn322dx111259tprM3/+/AwaNCjnnHNO/vZv/7abOgUAAAAAAAAAAGiclkY38GZaWlqy+eabZ++9987Xv/71/O53v8tee+2Vjo6OnHDCCfn973/f6BYBAAAAAAAAAADqrunDXa83bNiwXHbZZRk3blyWL1+er33ta5kyZUqj2wIAAAAAAAAAAKirHhfuSpK+ffvm9NNPT5IsXrw4//Iv/9LgjgAAAAAAAAAAAOqrR4a7kmSfffbJsGHDUpZlbr/99ixYsKDRLQEAAAAAAAAAANRNjw13Jck73/nOJMmSJUvy0EMPNbgbAAAAAAAAAACA+unR4a6BAwfWxtOnT29gJwAAAAAAAAAAAPXVo8Nd8+fPr43nzZvXwE4AAAAAAAAAAADqq8eGu1asWJFHHnmkNh8wYEDjmgEAAAAAAAAAAKizHhvu+rd/+7e8+uqrtfno0aMb1gsAAAAAAAAAAEC99bhwV1mWueqqq/LjH/84RVEkSfr06ZM999yzwZ0BAAAAAAAAAADUT1vVG954440b/Mzy5cszf/78PPvss/mv//qvvPLKKynLMklSFEUOPfTQtLe317lTAAAAAAAAAACAxqk83HX66afXTtzaGKuHusqyzJgxY3LSSSfVqz0AAAAAAAAAAICm0LBrGcuy3KB/q6wKhpVlmd122y1XXHFFBgwY0KifAQAAAAAAAAAA0C0qP7krSZew1oY+09ramt122y2f/vSn84lPfCItLQ3LpwEAAAAAAAAAAHSbysNdZ5999gY/09ramv79+2fo0KHZbrvt0qdPn27oDAAAAAAAAAAAoHlUHu46+OCDq94SAAAAAAAAAACgx3GnIQAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCbU1uoFVnnzyyTz00EN5/PHHM3v27HR0dKQoigwcODBDhw7NzjvvnD333DM77LBDo1sFAAAAAAAAAADodg0Pd1133XW56qqr8swzz3T5vCzLJElRFEmS//f//l+SZNy4cTn66KNzyCGHVNsoAAAAAAAAAABAhRp2LeNLL72UI488MmeeeWaeeeaZlGVZC3QlK0Ndq4JdSWrfP/PMMznzzDNz5JFH5qWXXmpE6wAAAAAAAAAAAN2uIeGuyZMn5/DDD8+DDz64xgldq0Jcr/+3ak1RFCnLMg888ECOOOKITJkypRE/AQAAAAAAAAAAoFtVfi3jkiVL8sUvfjEzZ87sEtYaOnRoDjzwwOyyyy4ZPXp0+vfvnyRZsGBBXnjhhTz22GP53e9+l9mzZ9eemTFjRr74xS/mpptuSu/evav+KQAAAAAAAAAAAN2m8nDXRRddlClTptQCWptttlm+/OUv58gjj0xra+tan9lll13yiU98ImeccUauvvrqnH/++Vm8eHHKssyUKVNy0UUX5bTTTqv4lwAAAAAAAAAAAHSfSq9lXLFiRX71q1/Vgl39+/fPz3/+8xxzzDHrDHatrrW1Ncccc0yuvPLK9O3bt1bnV7/6VVasWFHBLwAAAAAAAAAAAKhGpeGuBx98MK+++mqSpCiKfPWrX82uu+66wXV22223fPWrX01ZlkmSjo6OPPjgg/VsFQAAAAAAAAAAoKEqDXdNnjw5SVKWZQYMGJBPfepTG13rU5/6VAYOHLhGbQAAAAAAAAAAgLeCSsNdc+fOTbLy1K6dd945bW1tG12rV69e2XnnndeoDQAAAAAAAAAA8FZQabhr8ODBtfHmm29e13qrjwEAAAAAAAAAAHq6SsNdw4cPr43rcdJWR0fHWmsDAAAAAAAAAAD0dJWGu/bYY4/07t07ZVnm8ccfz/Llyze61rJly/LYY48lSdrb27PHHnvUq00AAAAAAAAAAICGqzTcNWDAgOy3335Jkvnz5+e6667b6FrXXXdd5s2bl6Io8sEPfjADBgyoV5sAAAAAAAAAAAANV2m4K0lOPfXU9OnTJ0nyk5/8pHb61oZ47LHHcs4556QoirS3t+fUU0+td5sAAAAAAAAAAAANVXm4a5tttsk555yTtra2LFiwIMccc0yuueaadHZ2vumznZ2dufrqq3PMMcdkwYIFaW1tzU9+8pNsu+22FXQOAAAAAAAAAABQnbaqN5w2bVp23HHHnH322fn+97+fjo6OnHXWWbnkkkty4IEHZtddd83o0aPTv3//FEWR+fPn54UXXsgjjzySW2+9NbNnz05Zlhk0aFDOPPPM7LTTTpk2bdp67T1ixIhu/nUAAAAAAAAAAAD1UXm4a7/99ktRFLV5URQpyzKvvPJKrrnmmlxzzTXrfLYsy9oz8+bNy9e//vX13rcoikycOHHjGwcAAAAAAAAAAKhQ5eGuVcqyrIW8Vv13VXhrXVYPha3PegAAAAAAAAAAgJ6qYeGuZMPDWcJcAAAAAAAAAADA/xaVh7sOPvjgqrcEAAAAAAAAAADocSoPd5199tlVbwkAAAAAAAAAANDjtDS6AQAAAAAAAAAAANYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAE2prdAOr6+zszF//+tfMmTMnr776aoqiyKBBgzJkyJCMHTs2ra2tjW4RAAAAAAAAAACgEg0Pdy1fvjw333xzbrjhhjz66KNZvHjxWtf16dMnu+66aw4++OB87GMfS1tbw1sHAAAAAAAAAADoNg1NSN1zzz355je/mZkzZyZJyrJc59pFixblvvvuy3333ZfzzjsvP/jBD/L+97+/qlYBAAAAAAAAAAAq1dKojS+99NL8wz/8Q2bMmFELdRVFkaIo1li7+udlWWbGjBk57rjjctFFF1XaMwAAAAAAAAAAQFUacnLXr3/965x33nlJ0iW01dramjFjxmTMmDEZMGBAkmT+/PmZNGlSnnvuuaxYsaK2vrOzMxdccEGGDh2aQw89tBE/AwAAAAAAAAAAoNtUHu6aMWNGzjrrrC6hruHDh+e4447LJz7xiVqo6/Xmz5+fm266KZdddllmzJiRoihSlmV++MMf5gMf+EC22mqrKn8GAAAAAAAAAABAt6r8WsYLL7wwS5Ysqc3Hjx+fm2++OUccccQ6g11JMmDAgBx++OG55ZZbcsABB6QsyxRFkaVLl7qeEQAAAAAAAAAAeMupNNy1YsWK3HbbbbVTu/baa69ccMEF6d+//3rX6Nu3b/75n/85e++9d8qyTFmWufXWW9PZ2dldbQMAAAAAAAAAAFSu0nDXY489lvnz56csyyTJd77znbS0bHgLLS0t+c53vlObL1iwII888ki92gQAAAAAAAAAAGi4SsNdL774YpKkKIqMHTs2Y8eO3ehaY8eOzbhx42rzyZMnb3J/AAAAAAAAAAAAzaLScNfcuXNr49GjR29yvW222WattQEAAAAAAAAAAHq6SsNdK1asqI1bW1s3ud7qVzquXhsAAAAAAAAAAKCnqzTcNWTIkNp4ypQpm1xv6tSpa60NAAAAAAAAAADQ01Ua7hoxYkSSpCzLPPnkk5k+ffpG15oxY0b+8pe/rFEbAAAAAAAAAADgraDScNcee+yRPn36pCiKlGWZH//4xxtd6yc/+UnKskyS9OnTJ3vssUe92gQAAAAAAAAAAGi4SsNd7e3t+cAHPpCyLFOWZW699daNCnj99Kc/zc0335yiKFIURf72b/827e3t3dAxAAAAAAAAAABAY1Qa7kqSU089NS0tLbXTu6688socdthhuffee9/02XvvvTeHHXZYLr/88trzLS0tOeWUUyroHAAAAAAAAAAAoDptVW84duzY/MM//EMuvfTSWkDrkUceyRe+8IUMGzYsu+66a0aPHp0BAwakKIrMnz8/L7zwQh555JG88sorSZKyLGundn3xi1/MuHHjqv4ZAAAAAAAAAAAA3arycFeSnHbaaXn55Zdzww03pCiKJCsDW7Nmzcodd9yx1mfKskySWqirLMscdNBB+cpXvlJZ3wAAAAAAAAAAAFVpSLgrSc4+++zstNNO+clPfpLFixfXQl6rrB7mWv2/ZVmmd+/e+frXv54jjjii2qYBAAAAAAAAAAAq0rBwV5IcccQR+chHPpJ/+7d/y4033php06atsWZVyCtJRowYkYMOOiiHH354hg0bVmWrAAAAAAAAAAAAlWpouCtJhg4dmlNPPTWnnnpqZs6cmccffzxz5sxJR0dHyrLM4MGDM2TIkOy8884ZPnx4o9sFAAAAAAAAAACoRMPDXasbPny4ABcAAAAAAAAAAEAqDHfNnj07zz33XObOnZsk2XzzzTNmzBjXKwIAAAAAAAAAAKxFt4a7yrLM9ddfn6uvvjpPP/30WteMGzcuRx55ZA455JC0tLR0ZzsAAAAAAAAAAAA9RreFu1599dV86UtfyqOPPppkZdBrbZ555pl8+9vfzrXXXptLLrkkQ4YM6a6WAAAAAAAAAAAAeoxuOSpr6dKlOfLII/Poo4/WQl1FUazzX1mWeeyxx3L00UdnyZIl3dESAAAAAAAAAABAj9It4a7zzjsvf/3rX5OsDHUlK0/uWtu/1dc8++yzOe+887qjJQAAAAAAAAAAgB6l7tcyzp8/P7/85S+7hLre/va35wtf+EL22WefbLXVVkmS6dOn55577snPf/7zTJkypXaC1y9/+cucdNJJGTBgQL1b6zavvvpqJkyYkBkzZmTBggXZcsstM3LkyOy+++5pbW2trI+pU6fmxRdfzPTp09PR0ZElS5Zks802y6BBgzJ27Nhsv/32aW9vr6wfAAAAAAAAAABg49U93HXLLbdk0aJFtXDXPvvsk3/5l39Jv379uqwbPXp0Ro8enU9+8pM55ZRT8qc//SlJsmTJktx888057LDD6t1a3U2aNCk//elP84c//CHLli1b4/stttgihx56aI4//vhuCVUtXbo0F198cSZMmJAnnngiCxYseMP1m222WQ488MB88YtfzNixY+veDwAAAAAAAAAAUD91v5ZxwoQJSVae2DVkyJCcf/75awS7VrfZZpvln//5nzNs2LBaIGxVjWb2H//xH/nkJz+Z22+/fa3BriSZNWtWLrzwwhx66KGZOnVq3XtYsGBBLrroovz3f//3mwa7kmTRokW5/vrrc9BBB+XSSy+tez8AAAAAAAAAAED91P3krokTJyZJiqLIpz/96fTv3/9Nn+nfv38+/elP5+KLL05RFHnyySfr3VZd3X333Tn99NPT2dlZ+2z06NF597vfncGDB2fy5Mm56667snjx4iQr/zc5/vjj86tf/Wq9/vfYWIMGDcp2222XbbbZJoMGDUp7e3vmzZuXv/71r3nwwQdrIbRly5bl3HPPzcKFC/OVr3yl2/oBAAAAAAAAAAA2Xt3DXXPmzKmN3/3ud6/3c+9617ty8cUXpyzLLjWazcsvv5zTTjutFuwqiiLf+MY3cvTRR6el5X8OQpszZ06+/OUv5/7770+SPPvss/n2t7+dc889t269FEWRd77znfnIRz6SD3zgA9luu+1qp5+93pw5c/KTn/wk119/fe2zyy67LB/4wAey11571a0nAAAAAAAAAACgPup+LeP8+fNr4+HDh6/3c6uvXb1Gs7n44ouzcOHC2vyUU07J5z//+S7BriQZMmRILr/88my77ba1z2655ZbayWb1sPnmm+f666/Pcccdl+23336dwa5V/Zx99tk55JBDap+VZZmf//zndesHAAAAAAAAAACon7qHu5YuXVob9+nTZ72f6927d2286vrAZvPKK6/k2muvrc233nrrHHfccetc37t373zrW9+qzcuyzMUXX9ytPb6Zr371q2ltba3N//SnPzWwGwAAAAAAAAAAYF3qHu56K7vjjju6BM8+85nPpFevXm/4zHvf+96MGTOmNr/77rvz2muvdVuPb2bIkCFd+lm0aFHmzp3bsH4AAAAAAAAAAIC1E+7aAHfeeWeX+Uc+8pH1eu7DH/5wbbxkyZLcc889de1rQ/Xv37/LvCzLBnUCAAAAAAAAAACsi3DXBnjooYdq42HDhmXUqFHr9dzuu+/eZf7AAw/Uta8NNW3atNq4f//+GTx4cOOaAQAAAAAAAAAA1qpbw11FUXRn+UrNnDkz8+fPr8132GGH9X52xx137DJ/7rnn6tbXhrr//vszc+bM2nzfffdNS4uMHwAAAAAAAAAANJu27ii6KtT12c9+Nq2trev1zIoVK7rMx48fv0H7/f73v1//BjfC888/32U+YsSI9X522LBh6dWrV5YtW5YkmTRpUl17W1/Tp0/PN7/5zdq8V69eOeGEExrSCwAAAAAAAAAA8Ma6JdyVJGVZZsaMGRv97EsvvbTe66s4IWz1066S5G1ve9t6P1sURYYPH56pU6eutVZ3WrhwYZ5//vnceeedufrqq2unj7W1teVHP/pRxo0bV1kvAAAAAAAAAADA+uu2cFdVVzKWZVnJPq+99lqXed++fTfo+X79+tXGy5cvz5IlS9K7d++69LbK0qVLs9tuu9XmZVmms7NzjXV77LFHzjjjjOyyyy513R8AAAAAAAAAAKifbgl3VRW4qtLrw10bGsx6/fqFCxfWPdxVluUa11u+3sc//vGcfPLJ2WabbTZ5v6oCfLCx/I3SzFb/+/S3Co3hPYTG8x5C43kPofG8h9B43kNoPO8hNJ73EBrPe8i61D3cddVVV9W7ZFNYsmRJl3mvXr026Pn29vY3rFeV3/72t7nlllvyiU98ImeeeWYGDBiw0bUGDx5cv8aa0uxGN8Ameuv/jfJWMWjQoEa3AP/reQ+h8byH0HjeQ2g87yE0nvcQGs97CI3nPYTG8x6yurqHu971rnfVu2RTeP0pW8uWLdug55cuXfqG9eqhd+/eefrpp2vz5cuXp6OjI88880zuuOOOXHfddXnttdfS2dmZG2+8MU899VSuuuoq/6cAAAAAAAAAAABNqFuuZXwr6tu3b5f5hp689fr1/fr12+Se3kxbW1uGDh2a9773vXnve9+bY445JieddFKeeuqpJMlTTz2V733ve/npT3+6UfVfffXVOnYL9edvlGZWFEUtXNvR0fGWvNIYmp33EBrPewiN5z2ExvMeQuN5D6HxvIfQeN5DaDzv4VtHvW8ZE+5aT68Pdy1cuHCDnl99fVtbW7ec3PVmRo4cmSuuuCIf/ehH09HRkWTlNY1f+tKXMm7cuA2u5/9IaHb+RukpyrL09woN5j2ExvMeQuN5D6HxvIfQeN5DaDzvITSe9xAaz3vI6loa3UBPMXz48C7zmTNnrvezZVl2Wf/6WlUaNmxYjjjiiC6f/ed//meDugEAAAAAAAAAANZFuGs9bbvttl3mL7300no/+8orr2TZsmW1+ZgxY+rW18bYZ599usyffvrpBnUCAAAAAAAAAACsi3DXetpyyy0zYMCA2vzJJ59c72cnTpzYZd7ocNfQoUO7zBcsWNCgTgAAAAAAAAAAgHUR7toAe+65Z208e/bsTJ48eb2emzBhQpf53nvvXde+NtTrw1wDBw5sUCcAAAAAAAAAAMC6CHdtgPHjx3eZ33rrrev13G233VYb9+7de41rEav2+pPEttpqqwZ1AgAAAAAAAAAArItw1wbYb7/90qtXr9r82muvzbJly97wmXvvvTeTJk2qzffdd9/07du323p8M2VZ5je/+U2Xz973vvc1qBsAAAAAAAAAAGBdhLs2wLBhw/KZz3ymNp88eXIuu+yyda5fsmRJfvCDH9TmRVHkhBNOWOf6qVOnZrvttqv922+//d6wn8cee2wDul/p/PPP7/LcVlttlXe/+90bXAcAAAAAAAAAAOhewl0b6Pjjj0+/fv1q8wsuuCBXXnllOjs7u6ybM2dOjj322Dz77LO1zz760Y9mxx13rFsvX/ziF/OFL3wht9xySxYtWvSGa5999tmcfPLJufjii7t8fvrpp6e9vb1uPQEAAAAAAAAAAPXR1ugGeprhw4fn3HPPzQknnJDOzs6UZZkf/ehH+eUvf5n3vOc9GTx4cF588cXcddddWbx4ce25sWPH5nvf+15deynLMvfcc0/uueeetLe3Z9y4cdluu+0yePDg9OvXL6+99lpmzZqViRMndgmZrXLKKafkIx/5SF17AgAAAAAAAAAA6kO4ayN88IMfzNlnn51/+qd/qp2Y9cILL+SFF15Y6/oddtghF154Yfr3799tPS1dujR/+ctf8pe//OVN1w4cODDf+MY38qlPfarb+gEAAAAAAAAAADaNaxk30kEHHZTrr78+H/rQh9KrV6+1rtliiy1y0kkn5de//nVGjhxZ9x7OPvvsHHLIIdl6663Xa/3o0aNz2mmn5dZbbxXsAgAAAAAAAACAJufkrk0wZsyY/OxnP8vcuXMzYcKEzJgxIwsXLsywYcMyatSo7LHHHmltbV3veiNHjszTTz+93uv333//7L///kmSuXPn5tlnn83UqVMzd+7cLF68OH369En//v0zfPjw7LTTThk6dOgG/0YAAAAAAAAAAKAxhLvqYPPNN8/48eMb3sPee++dvffeu6F9AAAAAAAAAAAA9VFpuGvWrFl57LHHavM999wzgwcPrrIFAAAAAAAAAACAHqHScNd//ud/5gc/+EGSpE+fPrnnnnuq3B4AAAAAAAAAAKDHqDTcNX/+/JRlmSTZeeed07dv3yq3BwAAAAAAAAAA6DFaqtxs0KBBSZKiKLLFFltUuTUAAAAAAAAAAECPUmm4a/VA16JFi6rcGgAAAAAAAAAAoEepNNy14447piiKJMkLL7xQ5dYAAAAAAAAAAAA9SqXhrhEjRmTXXXdNWZaZNGlSJk2aVOX2AAAAAAAAAAAAPUal4a4kOfbYY2vjH//4x1VvDwAAAAAAAAAA0CNUHu760Ic+lEMOOSRlWeYPf/hDvvvd72b58uVVtwEAAAAAAAAAANDUKg93Jcn3vve9HHXUUSnLMr/85S9z0EEH5brrrsvcuXMb0Q4AAAAAAAAAAEDTaat6w6OOOqo27tevXxYuXJhnn302Z555ZpLkbW97W4YMGZJ+/fqtd82iKPKLX/yi7r0CAAAAAAAAAAA0SuXhrvvvvz9FUdTmRVGkLMuUZZkkmT59eqZPn95lzRspy3K91wIAAAAAAAAAAPQUlYe71kY4CwAAAAAAAAAAoKuGhLtWndIFAAAAAAAAAADA2lUe7nrqqaeq3hIAAAAAAAAAAKDHaWl0AwAAAAAAAAAAAKxJuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ITaGt1Akjz55JO544478tBDD2Xy5Mnp6OjIwoULUxRFJk6cuMb6efPmZcGCBUmS9vb2DBs2rOqWAQAAAAAAAAAAulVDw11PP/10zj777Nx33321z8qyfNPn7rvvvpx66qlJks022yz33HNPNttss27rEwAAAAAAAAAAoGoNu5bx+uuvz6GHHpr77rtvjUBXURRv+Oz48eOz1VZbpSzLLFq0KLfddlt3tgoAAAAAAAAAAFC5hoS7brvttnzzm9/M4sWLa5+VZZmtttoqO+yww5ue3tXS0pKPfvSjtfmdd97Zbb0CAAAAAAAAAAA0QuXhrpdffjmnn356kv85oevwww/P7bffnjvvvDMXXHDBetUZP358kpWhsAceeKB7mgUAAAAAAAAAAGiQtqo3/NnPfpZFixYlSVpbW3Puuefmwx/+cO37N7uScZWdd945bW1tWb58eV599dVMmTIlo0aN6paeAQAAAAAAAAAAqlbpyV0rVqzIzTffnKIoUhRFjj322C7Brg3R1taWMWPG1ObPP/98vdoEAAAAAAAAAABouErDXY888kgWLFiQsizT1taWf/iHf9ikem9729tq4xkzZmxqewAAAAAAAAAAAE2j0nDX5MmTk6y8enHnnXdO//79N6ne6s8vWLBgk2oBAAAAAAAAAAA0k0rDXXPmzKmNt9pqq02uVxRFbbxixYpNrgcAAAAAAAAAANAsKg131TuM1dHRURsPGDBgk+sBAAAAAAAAAAA0i0rDXUOGDKmNX3755U2u99e//rU2Hjx48CbXAwAAAAAAAAAAaBaVhrtWXcVYlmWefPLJLFu2bKNrTZo0KTNnzqzNt9tuu03uDwAAAAAAAAAAoFlUGu7afffd06dPnxRFkcWLF+fmm2/e6FpXX311bTx06NCMGTOmHi0CAAAAAAAAAAA0hUrDXe3t7XnPe96TsixTlmXOO++8zJs3b4PrPPTQQ/nVr36VoihSFEUOOOCAbugWAAAAAAAAAACgcSoNdyXJCSeckCQpiiIzZ87MF77whcyePXu9n//v//7vnHjiiens7ExZlmltbc0XvvCF7moXAAAAAAAAAACgISoPd+2666752Mc+lrIsUxRFnnjiiRx44IH52c9+lueffz6dnZ1rPLNixYrce++9Oe200/L5z38+HR0dteePPPLIjBw5suqfAQAAAAAAAAAA0K3aGrHpWWedlUmTJmXixIkpiiLz5s3LhRdemAsvvDC9evXqsvbAAw/M1KlTs3z58iSphbrKsszuu++er371q434CQAAAAAAAAAAAN2q8pO7kqRPnz65/PLL8573vKcW1kpWBreWLl3aZT5p0qQsW7YsZVkmSS3Ytc8+++Syyy5La2trI34CAAAAAAAAAABAt2pIuCtJhgwZkiuvvDJf/epXs/nmm3cJb6367+r/kpVhrwEDBuS0007LZZddlv79+zeqfQAAAAAAAAAAgG7VkGsZVymKIscee2yOPPLI/Pa3v82f//znPPTQQ3n55ZfT2dlZWzdo0KDsvvvuef/735+///u/z4ABAxrYNQAAAAAAAAAAQPdraLhrld69e+eQQw7JIYcckmTlCV0dHR1ZtmxZBg8enF69ejW4QwAAAAAAAAAAgGo1Rbjr9YqiyODBgxvdBgAAAAAAAAAAQMO0NLoBAAAAAAAAAAAA1iTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJpQW6MbWN1rr72WBQsWZPny5Rv87IgRI7qhIwAAAAAAAAAAgMZoaLhrypQpueGGG3LvvffmqaeeyuLFizeqTlEUmThxYp27AwAAAAAAAAAAaJyGhLuWLl2an/70p7nmmmvS2dmZJCnLshGtAAAAAAAAAAAANKXKw11Lly7Nl770pdx77721QFdRFCmKQsALAAAAAAAAAADg/6/ycNfFF1+cP//5z2sEukaPHp13vOMdGTBgQNraGnpbJAAAAAAAAAAAQMNVmqJavHhxrrzyyi6hrs9+9rM57rjjstVWW1XZCgAAAAAAAAAAQFOrNNx13333ZfHixbVTu0455ZSceOKJVbYAAAAAAAAAAADQI7RUudmUKVOSJGVZZvDgwTn++OOr3B4AAAAAAAAAAKDHqDTctWDBgiRJURTZbbfd0traWuX2AAAAAAAAAAAAPUal4a6BAwfWxv369atyawAAAAAAAAAAgB6l0nDXuHHjauO5c+dWuTUAAAAAAAAAAECPUmm4a7fddsvAgQNTlmUeffTRrFixosrtAQAAAAAAAAAAeoxKw129evXKZz/72STJwoULc/3111e5PQAAAAAAAAAAQI9RabgrSU444YRss802Kcsy55xzTp5//vmqWwAAAAAAAAAAAGh6lYe7+vTpk8svvzwjRoxIR0dHPvvZz+a3v/1t1W0AAAAAAAAAAAA0tbZGbPr2t789v/nNb3LGGWfk7rvvzte+9rWcd9552WeffTJmzJgMHDgwLS0bljs76KCDuqdZAAAAAAAAAACABmhIuCtJNt988xx44IF55JFH0tHRkZdeeinXXnvtRtcT7gIAAAAAAAAAAN5KGhLumj59ek455ZT85S9/SZIURVH7rizL9a5TFEXKsuzyPAAAAAAAAAAAwFtB5eGuOXPm5Igjjsj06dO7BLM2JNS1ysY8AwAAAAAAAAAA0BNUHu46++yzM23atBRFUTt5a9SoUXnf+96X0aNHp3///mlra9htkQAAAAAAAAAAAE2h0hTVrFmzcsstt9RCXX379s1ZZ52VAw88sMo2AAAAAAAAAAAAml6l4a4HHnggK1asSJIURZEf//jH+dCHPlRlCwAAAAAAAAAAAD1CS5WbTZs2LcnKYNeoUaMEuwAAAAAAAAAAANah0nBXa2trbbz99ttXuTUAAAAAAAAAAECPUmm4a/jw4bVxr169qtwaAAAAAAAAAACgR6k03DVmzJjaePr06VVuDQAAAAAAAAAA0KNUGu7afvvtM27cuJRlmccffzzz58+vcnsAAAAAAAAAAIAeo9JwV5J87nOfS5IsX748l112WdXbAwAAAAAAAAAA9AiVh7sOPfTQfPCDH0xZlrniiity0003Vd0CAAAAAAAAAABA06s83JUk559/fg444IB0dnbm61//er75zW9m8uTJjWgFAAAAAAAAAACgKbVVveEZZ5yRJOnXr18GDRqUjo6OXH/99bn++uuz9dZbZ8yYMRk0aFCKoljvmkVR5Ic//GF3tQwAAAAAAAAAAFC5ysNdN9xwQ5fgVlEUKcsySfLiiy9u8AleZVkKdwEAAAAAAAAAAG85lYe71mZDTukCAAAAAAAAAAD436Ah4a5VJ3UBAAAAAAAAAACwdpWHu+64446qtwQAAAAAAAAAAOhxKg93vf3tb696SwAAAAAAAAAAgB6npdENAAAAAAAAAAAAsCbhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACaUFujG1jlwQcfzIQJE/L4449n9uzZ6ejoSFEUGThwYIYOHZqdd945e+yxR/baa69GtwoAAAAAAAAAANDtGhruKssy//7v/55f/OIXmTx58hrfJUlRFEmS3//+90mSUaNG5ZhjjslnP/vZ2ncAAAAAAAAAAABvNQ27lnHmzJk56qij8v3vfz8vvvhiyrKsBbqSlaGu1cNbq76fPHlyvv/97+dzn/tcZsyY0YjWAQAAAAAAAAAAul1Dwl2zZ8/OEUcckQcffDBlWXYJcq0Kcb3+X/I/ga+yLPPQQw/lc5/7XGbPnt2InwAAAAAAAAAAANCtGnIt40knnZSpU6d2CWttscUW+fjHP57dd989Y8aMyYABA5Ik8+fPz6RJkzJhwoTcfPPNefnll2vPTJ06NSeddFJ++ctfNuJnAAAAAAAAAAAAdJvKw10333xzHnnkkVpAq0+fPvnyl7+co446Kq2trWusHz58eMaOHZv9998/X/va13LVVVfl/PPPz+LFi1OWZR599NH89re/zcc//vGqfwoAAAAAAAAAAEC3qfxaxiuuuCLJyusXN9tss1x++eX5/Oc/v9Zg1+u1tLTkmGOOyeWXX57NNtusFhBbVRMAAAAAAAAAAOCtotJw16xZszJx4sTadYxf+cpXstdee21wnT333DOnnXZayrJMkjz11FOZNWtWvdsFAAAAAAAAAABomErDXY888kiSlad29e3bN4ceeuhG1zr00EPTr1+/NWoDAAAAAAAAAAC8FVQa7nrllVeSJEVRZNddd017e/tG12pvb89uu+22Rm0AAAAAAAAAAIC3gkrDXfPmzauNhwwZssn1Bg8eXBvPnz9/k+sBAAAAAAAAAAA0i0rDXf3796+NOzo6Nrne6mGx1a9oBAAAAAAAAAAA6OkqDXetOq2rLMs88cQT6ezs3OhanZ2d+ctf/rJGbQAAAAAAAAAAgLeCSsNdO+20U5KkKIq8+uqr+d3vfrfRtW699dbMmTNnjdoAAAAAAAAAAABvBZWGu0aNGpV3vOMdSVae3nX22WdnypQpG1xnypQp+eEPf5iiKJIkW2+9dUaNGlXXXgEAAAAAAAAAABqp0nBXkhx55JEpyzJFUeSVV17J4Ycfnrvvvnu9n//jH/+YI444IrNnz67V+dznPteNHQMAAAAAAAAAAFSvreoNDz300Fx99dWZPHlyiqLIrFmz8qUvfSm77bZbPvGJT2T33XfPNttsk969eydJli5dmkmTJuXhhx/OTTfdlAkTJtRCXcnKU7sOO+ywqn8GAAAAAAAAAABAt6o83NWrV69cdNFFOfzwwzNv3rwURZGyLPPII4/kkUceqa1rbW1NURRZvnx5l+dXBbvKssygQYNy0UUXpVevXhX/CgAAAAAAAAAAgO5V+bWMSbLtttvmX//1XzNy5Mgup3CVZVn7t3z58ixbtqzLZ0lqwa6RI0fmiiuuyLbbbtuInwAAAAAAAAAAANCtGhLuSpJ3vvOdufHGG3P00Uenb9++XcJba/uXrAx/9e3bN0cffXRuvPHG7LTTTo1qHwAAAAAAAAAAoFtVfi3j6vr165czzjgjp5xySm6//fY89NBDeeKJJzJ79uzMmzcvSTJw4MAMHTo0O+20U/bcc8/sv//+6d+/fyPbBgAAAAAAAAAA6HYNDXet0r9//xx88ME5+OCDG90KAAAAAAAAAABAU2jYtYwAAAAAAAAAAACsm3AXAAAAAAAAAABAE6r8WsajjjoqSVIURc4999wMHTp0o+q88sor+cpXvlKr9Ytf/KJuPQIAAAAAAAAAADRa5eGu+++/P0VRJEmWLFmy0XWWLFmS+++/P0lq9QAAAAAAAAAAAN4qGnItY1mWjdgWAAAAAAAAAACgx2hIuAsAAAAAAAAAAIA31mPDXStWrKiNW1tbG9gJAAAAAAAAAABA/fXYcNfcuXNr4759+zawEwAAAAAAAAAAgPrrseGuBx54IElSFEW23HLLBncDAAAAAAAAAABQX22N3Lwoig1av2zZssyaNSv33HNPLrnkktrnf/M3f1Pv1gAAAAAAAAAAABqqW8JdO+yww5uuKcsy++2330bvUZZlbbwpdQAAAAAAAAAAAJpRt4S7Vg9e1WPd2hRFkbIsM2bMmHz4wx/e6DoAAAAAAAAAAADNqKW7Cm/olYsbqizL7LTTTrnkkkvSq1evbt0LAAAAAAAAAACgat1yctfee++9zu8eeOCBJCvDX7vsskva29vXq2ZRFGlvb8/AgQMzZsyYvOc978lee+1Vl34BAAAAAAAAAACaTbeEu66++up1frf99tvXTvU677zzMmLEiO5oAQAAAAAAAAAAoEfrtmsZ30hZlo3YFgAAAAAAAAAAoMfolpO73sjJJ59cGw8cOLDq7QEAAAAAAAAAAHqEhoa7AAAAAAAAAAAAWLuGXMsIAAAAAAAAAADAG6v85K6N9cQTT2Tq1Klpb2/Ptttum3e84x2NbgkAAAAAAAAAAKDbVB7uWrJkSV5++eXafMSIEWltbV3n+jvuuCNnnXVWpk+f3uXz3XbbLd///vczduzYbusVAAAAAAAAAACgUSq/lvFf//Vfc8ABB+SAAw7IUUcdlZaWdbdwyy235JRTTsn06dNTlmWXfw8//HA+/elP54knnqiwewAAAAAAAAAAgGpUHu76/e9/n7IskySHHHJIiqJY67qOjo585zvfSWdnZ5J0WVcURYqiyKJFi3LKKadkyZIl3d84AAAAAAAAAABAhSoNdy1evDhPPfVULaj1d3/3d+tce/XVV2f+/PkpiiJlWWbLLbfM5z73uRxzzDHZaqutagGxGTNm5KqrrqqkfwAAAAAAAAAAgKpUGu565plnsmLFipRlmc022yzvfOc717n2pptuqgW7ttlmm/z2t7/NmWeemdNPPz033XRTdt555yRJWZa54YYbqvoJAAAAAAAAAAAAlag03DV16tQkK69VHDt27DrXPffcc3nxxRdra0899dQMGDCg9n2/fv3yrW99qzafNGlSpk+f3k1dAwAAAAAAAAAAVK/ScNcrr7xSG2+xxRbrXPfQQw8lWXkqV9++fbP//vuvsWaXXXbJ2972ttr86aefrmOnAAAAAAAAAAAAjVVpuGvx4sW1cb9+/da5bsKECUlWntr13ve+N21tbWtdN27cuNp42rRpdeoSAAAAAAAAAACg8SoNd5VlWRsvX758nesefvjh2nivvfZa57rBgwfXxgsWLNi05gAAAAAAAAAAAJpIpeGu1U/rWv2KxtXNmjUrL774Ym2+++67r7PeihUr6tccAAAAAAAAAABAE6k03DV8+PAkK0/weuaZZ9a65u67766N29vbs+OOO66z3rx582rjzTbbrE5dAgAAAAAAAAAANF6l4a7tttuuNu7o6Mgf//jHNdZcf/31SZKiKLLLLrukV69e66w3ZcqU2njYsGF17BQAAAAAAAAAAKCxKg13bb311nnHO96RoihSlmW++93vdglo/eu//msmTJhQm48fP36dtRYuXJjJkyd3qQ0AAAAAAAAAAPBW0Vb1hp/+9KdzzjnnpCiKTJ06NQceeGC23377zJkzJ9OnT68Fv3r37p1PfOIT66xz//33pyzLJElra2vGjRtX1U8AAAAAAAAAAADodpWe3JUkRx11VMaMGZNk5dWLy5cvz1/+8pdMmzatFtYqiiLHHHNMhgwZss46t99+e23t9ttvn/b29u5vHgAAAAAAAAAAoCKVh7va29tzxRVXZMyYMbUwV1mWKYqiNt5///1z6qmnrrPGwoUL85//+Z+1Z9773vd2f+MAAAAAAAAAAAAVqvxaxiTZaqutcuONN+a6667LnXfemWnTpiVJxowZk49//OM54IAD3vD5G264IQsWLKjN9913327tFwAAAAAAAAAAoGoNCXclSa9evXLYYYflsMMO2+BnP/WpT+Xv//7va/MBAwbUszUAAAAAAAAAAICGa1i4a1P06dMnffr0aXQbAAAAAAAAAAAA3aal0Q0AAAAAAAAAAACwJuEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJpQW9Ubjh8/vu41i6LI73//+7rXBQAAAAAAAAAAaJTKw10vvfRSiqJIWZZ1q1kURd1qAQAAAAAAAAAANIPKw12rbGogqyzLuofEAAAAAAAAAAAAmkXl4a4RI0Zs0PrOzs50dHRk0aJFSf4nFLbZZptl8803r3t/AAAAAAAAAAAAzaDycNedd965Uc9Nnz49d955Z37+859nypQpWbFiRU444YR8+tOfrnOHAAAAAAAAAAAAjdfS6AbW11ZbbZUjjjgiN910Uw488MAsXbo03/72t/Pv//7vjW4NAAAAAAAAAACg7npMuGuVPn365Jxzzskee+yRsixz1llnZeLEiY1uCwAAAAAAAAAAoK56XLgrSVpbW3P66acnSVasWJELL7ywwR0BAAAAAAAAAADUV48MdyXJLrvskhEjRqQsy/zXf/1X5syZ0+iWAAAAAAAAAAAA6qbHhruSZLvttkuy8vSuhx9+uMHdAAAAAAAAAAAA1E+PDnf179+/Np4xY0YDOwEAAAAAAAAAAKivHh3uWv0qxoULFzawEwAAAAAAAAAAgPrqseGuJUuW5JFHHqnNBw8e3LBeAAAAAAAAAAAA6q3HhrsuuuiiLqd1bbvttg3sBgAAAAAAAAAAoL7aGt3Ahpo3b15+9rOf5aqrrkpRFCnLMgMHDsxuu+3W6NYAAAAAAAD+f+zdeZjVZf0//teBGQaGVRgW2VQwF0yU1NSsMCE17XLDINNE0kTFJbRC+4a5lJqf1FLMNMzUTA1T3EgzF0ozFYlQQAlEFj8ybLLLMDDn94c/z4czAs7AmXm/Z3g8rmuu67zec9/v85qa2xnmPM99AwAAFEy9h7vGjBlT6zkbN26MVatWxaxZs2Ly5MlRWVkZ2Ww2IiIymUwMHTo0mjZtWuhWAQAAAAAAAAAAEpNIuCuTyWzz/E1DXdlsNvr16xdnnXVWodoDAAAAAAAAAABIhSZJN1BbHwfDstlsHH300XH77bdHs2bNEu4KAAAAAAAAAACgsOp9566I/9t9a1t07NgxDj300Bg8eHAceOCBBewKAAAAAAAAAAAgPeo93HXPPffUek7Tpk2jVatW0aFDhygrK6uDrgAAAAAAAAAAANKl3sNdn//85+v7KQEAAAAAAAAAABqcJkk3AAAAAAAAAAAAwCcJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkUFFd3PR///d/42tf+1qsX78+IiLatGkTDz30UPTo0WO77jt//vwYNGhQrFq1KiIimjdvHn/961+jY8eO290zAAAAAAAAAABAmtTJzl233HJLVFRURDabjSZNmsT111+/3cGuiIgePXrE//zP/0Qmk4lsNhvr1q2LW2+9tQAdAwAAAAAAAAAApEvBw13l5eXx6KOPRiaTiUwmE4MHD47+/fsX7P79+/ePwYMHR0RENpuNhx56KJYuXVqw+wMAAAAAAAAAAKRBwcNdTzzxRFRVVUU2m43mzZvHeeedV+iniBEjRkTz5s0jk8nExo0b48knnyz4cwAAAAAAAAAAACSp4OGuCRMmREREJpOJQYMGRceOHQv9FNGxY8cYNGhQZLPZiAjhLgAAAAAAAAAAoNEpaLiroqIi3nrrrVw9cODAQt4+z1e/+tWI+OhoxmnTpsX69evr7LkAAAAAAAAAAADqW0HDXdOnT4+NGzdGRETLli3joIMOKuTt8xx44IHRsmXLiIjYuHFjzJgxo86eCwAAAAAAAAAAoL4VNNw1f/78iPjoSMaePXtG06ZNC3n7PEVFRbHLLrvk6nnz5tXZcwEAAAAAAAAAANS3goa7Vq5cmXvcsWPHQt56szZ9jk2fGwAAAAAAAAAAoKEraLhr9erVucdt2rQp5K03q3Xr1rnHq1atqvPnAwAAAAAAAAAAqC8FDXdtegzjihUrCnnrzdp0t666PAISAAAAAAAAAACgvhU03LXpTlrLli0r5K03a9PnaNWqVZ0/HwAAAAAAAAAAQH0paLhr5513joiIbDYbs2bNivXr1xfy9nkqKiriv//9b67u2rVrnT0XAAAAAAAAAABAfStouGuvvfbKPa6oqIhXXnmlkLfP89prr0VFRUWu3nPPPevsuQAAAAAAAAAAAOpbQcNdnTt3jq5du0Ymk4mIiPvvv7+Qt8/zxz/+Mfd45513ji5dutTZcwEAAAAAAAAAANS3goa7IiIGDBgQ2Ww2stlsPP/88zFp0qRCP0W8/vrr8dxzz0Umk4lMJhMDBw4s+HMAAAAAAAAAAAAkqajQN/zmN78Zf/jDHyIiIpvNxsUXXxwPPPBAdO3atSD3f//99+Piiy+OTCYT2Ww2MplMDB48uCD33lbLly+PyZMnx8KFC2P16tXRqVOn6N69e/Tr1y+aNm1ab32sXr06/vvf/8Y777wTy5cvj8rKymjTpk106dIl9t9//2jfvn299QIAAAAAAAAAAGyfgoe7evfuHUcddVQ89dRTkclkYtGiRTFs2LD41a9+FXvttdd23XvmzJlx4YUXRnl5eUREZDKZOPLII2P33XcvROu1NmfOnLjhhhvihRdeiMrKyk98vmPHjjFkyJAYPnx4NGvWrE56eOONN+Kvf/1r/POf/4zp06dHVVXVFsf27ds3hg4dGscee2zu6EwAAAAAAAAAACCdCn4sY0TEpZdeGm3atImIjwJYc+fOjW984xsxZsyY+OCDD2p9vxUrVsSYMWPi5JNPjrlz5+aCSa1bt45LL720oL3X1KOPPhonnXRSPPPMM5sNdkVELF68OMaMGRNDhgyJBQsWFLyHYcOGxcknnxx33HFHvPnmm1sNdkVETJ06NS655JIYNmxYLFq0qOD9AAAAAAAAAAAAhVPwnbsiIrp06RLXXXddXHDBBVFVVRWZTCYqKyvj1ltvjd/+9rcxcODAOOSQQ2LfffeN3r17R3Fxcd78ysrKeOedd2Lq1KnxyiuvxDPPPBPr16/PHcOYzWajadOmce2118bOO+9cF1/CVk2cODEuvfTSvDDVrrvuGgcffHC0a9cu5s2bF88//3ysW7cuIiKmT58ew4cPjwcffDBatWpVsD6WLVv2iWtdu3aN/fffPzp16hSlpaWxZMmSePXVV+Pdd9/NjXn55ZfjjDPOiPvuuy922mmngvUDAAAAAAAAAAAUTp2EuyIijjjiiLjmmmti9OjRUVlZmQtlVVRUxIQJE2LChAm5sSUlJdG6deuIiFi9enUuFPWxbDYbEZG7R3FxcVx99dUxYMCAump/ixYtWhQjR47MBbsymUyMGjUqhg4dGk2a/N9GaMuWLYuLLrooXn311YiImDVrVlx++eVx4403FrynsrKyOPHEE2PQoEGx2267feLz2Ww2nn766bj88stjxYoVERExe/bs+MlPfhI333xzwfsBAAAAAAAAAAC2X50cy/ix448/Pu67777Yeeedc7tufRzQ2vRj3bp1sXjx4li8eHF8+OGHn/j8pvN23nnnuO++++KEE06oy9a36Lbbbos1a9bk6gsuuCCGDRuWF+yKiGjfvn2MHTs2evfunbs2YcKEmD59esF6ad++fVx66aXx/PPPx/e///3NBrsiPgqgHX300XHXXXdFixYtcteffvrpmDp1asH6AQAAAAAAAAAACqdOw10REfvuu2+MHz8+hg0bFqWlpXm7cNXkI+KjnadKS0tj2LBh8cgjj0Tfvn3ruu3NWrJkSYwbNy5X9+zZM84+++wtji8pKYnRo0fn6mw2G7fddlvB+vntb38bw4YNi2bNmtVo/D777BNDhw7Nu/b0008XrB8AAAAAAAAAAKBw6jzcFRHRpk2bGDVqVLzwwgvxgx/8IA455JAoKSn5xA5d1T9KSkri4IMPju9///vx/PPPx6hRo6Jdu3b10fJmPfvss1FZWZmrBw8eHMXFxVudc+ihh0avXr1y9cSJE2Pt2rUF6aeoqPanah577LF5tZ27AAAAAAAAAAAgnWqfDtoOrVu3jjPPPDPOPPPMqKysjBkzZkR5eXksX748li9fHhER7dq1i3bt2kWnTp2iT58+nxqeqk/PPfdcXn300UfXaN5RRx2V27GroqIiXnrppfjqV79a8P5qYpdddsmrly5dmkgfAAAAAAAAAADA1tVruGtTxcXFiR2vuK1ef/313OOysrLo0aNHjeb169cvr37ttdcSC3etWbMmr96W3b8AAAAAAAAAAIC6Vy/HMjYG5eXlsWrVqly9995713hunz598urZs2cXrK/aevvtt/PqLl26JNQJAAAAAAAAAACwNcJdNfTOO+/k1V27dq3x3LKysrzjJefMmVOwvmrrsccey6sPOeSQhDoBAAAAAAAAAAC2RrirhsrLy/Pq2ux4lclkonPnzlu8V31599134/HHH8/VTZs2Tex4SAAAAAAAAAAAYOuKkm6goVi7dm1eXVpaWqv5LVu2zD3esGFDVFRURElJSUF6q4mqqqr48Y9/HJWVlblrJ5xwQvTo0WOb75nJZArRGtQZ36Ok2abfn75XIRnWISTPOoTkWYeQPOsQkmcdQvKsQ0iedQjJsw7ZEuGuGqoe7qptMKv6+DVr1tRruOvWW2+N1157LVe3b98+vv/972/XPdu1a7edXaXd0qQbYDs1/u9RGou2bdsm3QLs8KxDSJ51CMmzDiF51iEkzzqE5FmHkDzrEJJnHbIpxzLWUEVFRV5dXFxcq/nNmjXb6v3q0t/+9re49dZbc3Umk4mf/exn0b59+3rrAQAAAAAAAAAAqB07d9VQ9V22Nj3esCbWr1+/1fvVlddffz0uueSSyGazuWvnn39+HHHEEdt97+XLl2/3PaAu+R4lzTKZTC5xv2LFirz/TgP1wzqE5FmHkDzrEJJnHULyrENInnUIybMOIXnWYeNR6FPGhLtqqLS0NK+u7c5b1ce3bNlyu3v6NG+//Xacc845sW7duty1U045Jc4///yC3N9/SEg736M0FNls1vcrJMw6hORZh5A86xCSZx1C8qxDSJ51CMmzDiF51iGbcixjDVUPd61Zs6ZW8zcdX1RUVOc7d82bNy/OPPPMWLlyZe7aMcccE5dffnmdPi8AAAAAAAAAAFAYwl011Llz57y6vLy8xnOz2Wze+Or3KrTy8vI444wzYvHixblrX/rSl+L666+PJk38Xw4AAAAAAAAAAA2BpE8N9e7dO69+7733ajx3yZIlUVlZmat79epVsL6qW7ZsWQwbNiyvvwMPPDDGjBkTxcXFdfa8AAAAAAAAAABAYQl31VCnTp2idevWuXrGjBk1njt9+vS8uq7CXatXr46zzjorZs+enbu2zz77xO233x7Nmzevk+cEAAAAAAAAAADqhnBXLRxwwAG5x0uXLo158+bVaN7kyZPz6oMOOqigfUVErFu3LoYPHx7Tpk3LXdt9991j7Nix0apVq4I/HwAAAAAAAAAAULcKGu667LLLch/Lly8v5K1TYcCAAXn1U089VaN5Tz/9dO5xSUlJHHbYYQXtq7KyMi688MKYNGlS7lrPnj3jd7/7XbRv376gzwUAAAAAAAAAANSPgoa7HnnkkRg/fnyMHz8+1q5du9kxDTkAdsQRR0RxcXGuHjduXFRWVm51zssvvxxz5szJ1f3794/S0tKC9VRVVRWjRo2KiRMn5q516dIl7rrrrujcuXPBngcAAAAAAAAAAKhfBT+WMZvNbvXzNQmApVVZWVkMHjw4V8+bNy/uuOOOLY6vqKiIn/70p7k6k8nEueeeu8XxCxYsiD333DP3ccQRR3xqT1dccUU8+eSTubpDhw5x1113Rffu3T91LgAAAAAAAAAAkF4FD3fVxKcFwNJs+PDh0bJly1x9yy23xF133RVVVVV545YtWxZnnXVWzJo1K3ftmGOOiT59+hSslxtvvDEefPDBXN22bdv43e9+F7169SrYcwAAAAAAAAAAAMkoKuTNmjdvHuvWrYuIj3ataow6d+4cN954Y5x77rlRVVUV2Ww2rrvuunjggQfikEMOiXbt2sXcuXPj+eefz/1vERGx++67x1VXXVXQXm6//fa8euXKlXHSSSfV+j7Tp08vVEsAAAAAAAAAAECBFDTc1a5du1i4cGFERMyaNSt22223Qt4+NQ4//PC49tpr44orrogPP/wwIiLefffdePfddzc7fu+9944xY8ZEq1at6rSvbDYbGzdurNPnAAAAAAAAAAAA6kdBj2Xcc889c4/Hjh2bCz41RieccEI8/PDDMXDgwCguLt7smI4dO8aIESPiT3/6U3Tv3r2eOwQAAAAAAAAAABqygu7c9eUvfzkmTpwYERFTp06Nr371q/GlL30pOnfuHEVFn3yqu+++O1q3bl2Q5z7//PMLcp/a6NWrV9x6663xwQcfxOTJk2PhwoWxZs2aKCsrix49esTnPve5aNq0aY3v171793j77bdrPL42YwEAAAAAAAAAgIaloOGuE044IX7zm9/EkiVLIiJiyZIlMX78+M2OzWazcc899xTsuZMId31sp512igEDBiT2/AAAAAAAAAAAQONT0GMZW7ZsGTfffHO0bds2stlsZDKZQt5+s7LZbJ0/BwAAAAAAAAAAQH0raLgrIqJfv37x6KOPxmmnnRYdOnSIbDab97Gp6p/blg8AAAAAAAAAAIDGqKDHMn6sc+fO8eMf/zh+/OMfR3l5eSxdujTWrl0bGzdujKFDh0ZERCaTiRtuuCHKysrqogUAAAAAAAAAAIAGrU7CXZvq3LlzdO7cebOf23///aNr16513QIAAAAAAAAAAECDU/BjGWsik8kk8bQAAAAAAAAAAAANRp3v3FXdpjt1NW3atL6fHgAAAAAAAAAAoEGo93DXc889V99PCQAAAAAAAAAA0OAkciwjAAAAAAAAAAAAWyfcBQAAAAAAAAAAkEL1fizjlkyaNCkmT54cb7zxRixdujRWrFgRmUwm2rRpEx06dIh99903Pve5z8WBBx6YdKsAAAAAAAAAAAB1LtFwVzabjfvvvz/uvvvumDdv3ic+FxGRyWQiIuJvf/tbRET06NEjzjjjjDjllFNynwMAAAAAAAAAAGhsEjuWsby8PE4//fS4+uqrY+7cuZHNZnOBroiPQl2bhrc+/vy8efPi6quvjtNOOy0WLlyYROsAAAAAAAAAAAB1LpFw19KlS+PUU0+NSZMmRTabzQtyfRziqv4R8X+Br2w2G6+//nqcdtppsXTp0iS+BAAAAAAAAAAAgDqVyLGMI0aMiAULFuSFtTp27Bhf//rXo1+/ftGrV69o3bp1RESsWrUq5syZE5MnT44nn3wyFi1alJuzYMGCGDFiRDzwwANJfBkAAAAAAAAAAAB1pt7DXU8++WRMmTIlF9Bq3rx5XHTRRXH66adH06ZNPzG+c+fOsfvuu8dXv/rV+MEPfhD33HNP/OpXv4p169ZFNpuN//znP/HEE0/E17/+9fr+UgAAAAAAAAAAAOpMvR/LeOedd0bER8cvtmjRIsaOHRvDhg3bbLCruiZNmsQZZ5wRY8eOjRYtWuQCYh/fEwAAAAAAAAAAoLGo13DX4sWLY/r06bnjGC+++OI48MADa32fAw44IEaOHBnZbDYiIt56661YvHhxodsFAAAAAAAAAABITL2Gu6ZMmRIRH+3aVVpaGkOGDNnmew0ZMiRatmz5iXsDAAAAAAAAAAA0BvUa7lqyZElERGQymdhvv/2iWbNm23yvZs2axf777/+JewMAAAAAAAAAADQG9RruWrlyZe5x+/btt/t+7dq1yz1etWrVdt8PAAAAAAAAAAAgLeo13NWqVavc4xUrVmz3/TYNi216RCMAAAAAAAAAAEBDV6/hro9368pms/Hmm29GVVXVNt+rqqoqpk2b9ol7AwAAAAAAAAAANAb1Gu767Gc/GxERmUwmli9fHn/5y1+2+V5PPfVULFu27BP3BgAAAAAAAAAAaAzqNdzVo0eP2GWXXSLio927rr322pg/f36t7zN//vy45pprIpPJREREz549o0ePHgXtFQAAAAAAAAAAIEn1Gu6KiPj2t78d2Ww2MplMLFmyJL71rW/FxIkTazz/H//4R5x66qmxdOnS3H1OO+20OuwYAAAAAAAAAACg/hXV9xMOGTIk7r333pg3b15kMplYvHhxnHPOObH//vvHcccdF/369YvddtstSkpKIiJi/fr1MWfOnPj3v/8djz/+eEyePDkX6or4aNeub37zm/X9ZQAAAAAAAAAAANSpeg93FRcXx69//ev41re+FStXroxMJhPZbDamTJkSU6ZMyY1r2rRpZDKZ2LBhQ978j4Nd2Ww22rZtG7/+9a+juLi4nr8KAAAAAAAAAACAulXvxzJGRPTu3Tt+97vfRffu3fN24cpms7mPDRs2RGVlZd61iMgFu7p37x533nln9O7dO4kvAQAAAAAAAAAAoE4lEu6KiNhnn31i/PjxMXTo0CgtLc0Lb23uI+Kj8FdpaWkMHTo0xo8fH5/97GeTah8AAAAAAAAAAKBO1fuxjJtq2bJlXHbZZXHBBRfEM888E6+//nq8+eabsXTp0li5cmVERLRp0yY6dOgQn/3sZ+OAAw6Ir371q9GqVask2wYAAAAAAAAAAKhziYa7PtaqVas48cQT48QTT0y6FQAAAAAAAAAAgFRI7FhGAAAAAAAAAAAAtky4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWKkm4AAHZklaO7RMukm6hDqy+ekXQLAAAAAAAAAA2WnbsAAAAAAAAAAABSKPU7d5WXl8eyZcuioqIiWrduHd26dYvmzZsn3RYAAAAAAAAAAECdSmW466233op77rknJk6cGMuWLcv7XNOmTWPvvfeOQYMGxUknnRTNmjVLqEsAAAAAAAAAAIC6k7pw10033RRjx46NqqqqyGazn/j8hg0b4s0334w333wz7r333vjlL38Zn/nMZxLoFAAAAAAAAAAAoO40SbqBTV177bVxxx13xMaNGzcb7PpYNpuNbDYbs2fPjjPOOCPmz59fj10CAAAAAAAAAADUvdTs3DV58uS4++67I5PJRETEYYcdFoMHD4799tsvOnToENlsNhYvXhxTpkyJ+++/PyZNmhSZTCaWLl0aV155ZYwdOzbhrwAAAAAAAAAAAKBwUhPueuCBB3KPL7nkkvjud7/7iTHdunWLbt26xbHHHhu/+MUvcoGul156KebPnx89evSot34BAAAAAAAAAADqUmqOZfx4J6599tlns8Gu6i655JK8MNdrr71Wl+0BAAAAAAAAAADUq4KGu8aPHx9///vft2nukiVLIiJiv/32q9H4TCYT++67b65eunTpNj0vAAAAAAAAAABAGhU03LVgwYIYPnx4fO9734vy8vJazW3RokVERCxfvrzGczYd27x581o9HwAAAAAAAAAAQJoV/FjGbDYbTz/9dBxzzDFx9913RzabrdG83XbbLbLZbEycODEWL178qePnzJkTr776aq7eddddt7VlAAAAAAAAAACA1ClouOvggw+Ojh07RjabjTVr1sR1110XgwYNiqlTp37q3IEDB0ZExJo1a2Lo0KFbnfPKK6/EmWeeGRs2bIiIiDZt2sTBBx9cmC8CAAAAAAAAAAAgBYoKebODDjoo/vKXv8RNN90U999/f1RVVcWMGTPim9/8ZgwePDguvvjiaNOmzWbnnnbaafGHP/whysvLY86cOTFkyJDYY489om/fvtGhQ4fIZrOxePHi+Pe//x3vvvtubkewTCYTI0aMiGbNmhXySwEAAAAAAAAAAEhUQcNdERGtWrWK0aNHx0knnRQ/+clP4s0334xsNhsPPvhgPPPMMzFq1Kg47rjjPjGvefPmcfvtt8fpp58eK1asiIiImTNnxsyZMz8xNpvNRiaTiWw2GyeffHKcfvrphf4yAAAAAAAAAAAAElXQYxk3tc8++8S4ceNi9OjR0bp168hms7F06dIYNWpUDB06NN55551PzNlzzz3jscceiwEDBuTCW5v7iIjo0KFDXH311XH11VfX1ZcAAAAAAAAAAACQmILv3LWpTCYTp556ahx99NFxzTXXxJNPPhnZbDZeffXVOP744+PMM8+Mc889N0pKSnJzOnfuHLfeemvMnz8//v73v8e0adNi2bJlsX79+mjVqlX07NkzDjjggPjSl74URUV12j4AAAAAAAAAAEBi6iUd1aFDh7jhhhvi5JNPjquuuirmzJkTlZWVcfvtt8cTTzwRl19+eXz5y1/Om9OjR4849dRT66M9AAAAAAAAAACA1KmzYxk359BDD43HHnssLrjggigpKYlsNhsLFiyI4cOHx4UXXhjl5eX12Q4AAAAAAAAAAEBq1Wu4KyKiuLg4RowYEU888UR88YtfjIiIbDYbzzzzTHzta1+L3//+91FVVVXfbQEAAAAAAAAAAKRKvYe7PtajR48YO3Zs3HTTTdG5c+fIZrOxdu3a+PnPfx6DBg2K//znP0m1BgAAAAAAAAAAkLjEwl0f+9rXvhYTJkyIb3/729G0adPIZrPx1ltvxSmnnBKXX355rFy5MukWAQAAAAAAAAAA6l3i4a6IiJYtW8b/+3//Lx566KHo27dvZLPZqKqqinHjxsXRRx8d48ePT7pFAAAAAAAAAACAelUv4a5169bF7NmzY8qUKTFjxowoLy/f7Li99947/vSnP8UVV1wRbdu2jWw2G8uWLYvLLrssvv3tb8fs2bPro10AAAAAAAAAAIDEFdXVjdevXx8PP/xw/PnPf44ZM2bExo0b8z6/0047Rf/+/eP000+PvffeO+9z3/zmN+PII4+M6667Lh577LHIZrMxadKkOOGEE+I73/lOnHfeeVFSUlJXrQMAAAAAAAAAACSuTnbumj17dpx00klx5ZVXxptvvhkbNmyIbDab97Fs2bIYP358nHzyyXHDDTd84h7t27eP66+/Pu65557o1atXZLPZqKysjDvuuCOOOeaYmDhxYl20DgAAAAAAAAAAkAoFD3fNnz8/Tj/99Jg9e3YuyLU1GzdujLFjx8a111672c9//vOfj0cffTS+973vRfPmzSObzcZ7770X55xzTlx44YWxcOHCQn8JAAAAAAAAAAAAiSt4uOvqq6+OpUuX5urDDjssxowZE//4xz/izTffjClTpsRjjz0WF198cbRt2zYymUxks9m455574t///vdm71lcXBznnHNOPPHEE9G/f/+IiMhms/HMM8/EMcccE3fddVdUVVUV+ksBAAAAAAAAAABITEHDXQsWLIi///3vkclkIiJixIgRceedd8bAgQOjY8eOUVRUFM2bN4899tgjzj777Hj00Udj5513zs2///77t3r/7t27x+233x4333xzdOnSJbLZbKxduzauv/76GDt2bCG/FAAAAAAAAAAAgEQVNNw1adKk3OMePXrEBRdcsNXxnTt3jgsvvHCz87fmyCOPjAkTJsSwYcOiqKgoIiLWr1+/DR0DAAAAAAAAAACkU0HDXYsWLco93nfffWs0Z7/99ouIj45Z3PQ4x09TWloao0aNioceeij233//WvUJAAAAAAAAAACQdkWFvFmLFi1yj1esWFGjOatWrco9bt68ea2fc6+99or7778/3n///VrPBQAAAAAAAAAASKuC7ty16667RsRHu3C99tpr8d57733qnD//+c8REZHJZGKXXXbZ5ufeeeedt3kuAAAAAAAAAABA2hQ03HXwwQdHmzZtIpPJREVFRXznO9+JN998c7NjKysr4+abb44HH3wwd23gwIGFbAcAAAAAAAAAAKDBKuixjM2aNYvzzz8/rrnmmshkMjF37tz4xje+EX369Im+fftGu3btYsOGDTFv3rz417/+FStXrszNLSsri9NOO62Q7QAAAAAAAAAAADRYBQ13RUScfvrpMWvWrPjTn/4UmUwmstlsTJ8+PaZPn543LpvNRiaTiYiINm3axO233x6lpaWFbgcAAAAAAAAAAKBBKuixjB+76qqr4mc/+1mUlZVFxEdBruofHzv88MNj/Pjx0adPn7poBQAAAAAAAAAAoEEq+M5dHxs0aFAcf/zx8eKLL8brr78e8+bNi1WrVkWzZs1ip512in322Se+/OUvR8+ePeuqBQAAAAAAAAAAgAarzsJdERFFRUVx+OGHx+GHH16XTwMAAAAAAAAAANDo1MmxjAAAAAAAAAAAAGwf4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUKkq6AQDYki8eXpV0C3VsaUw5LukeAAAAAAAAAEgrO3cBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABAChUl3UBjsHz58pg8eXIsXLgwVq9eHZ06dYru3btHv379omnTpkm3BwAAAAAAAAAANEDCXdthzpw5ccMNN8QLL7wQlZWVn/h8x44dY8iQITF8+PBo1qxZnfayfv36mD59erzxxhsxderUmDp1asydOzey2WxuzNtvv12nPQAAAAAAAAAAAIUj3LWNHn300bjiiiti7dq1WxyzePHiGDNmTDz33HNxyy23RPfu3Qvex2OPPRa///3vY+bMmZsNmAEAAAAAAAAAAA2TcNc2mDhxYlx66aVRVVWVu7brrrvGwQcfHO3atYt58+bF888/H+vWrYuIiOnTp8fw4cPjwQcfjFatWhW0lzfeeCOmTZtW0HsCAAAAAAAAAADJE+6qpUWLFsXIkSNzwa5MJhOjRo2KoUOHRpMmTXLjli1bFhdddFG8+uqrERExa9asuPzyy+PGG2+s8x5LSkpir732igULFsTSpUvr/PkAAAAAAAAAAIDCa/LpQ9jUbbfdFmvWrMnVF1xwQQwbNiwv2BUR0b59+xg7dmz07t07d23ChAkxffr0gvZTVFQUe+21V3zjG9+Iq666Kh555JGYPHly/OlPf8p7bgAAAAAAAAAAoGGxc1ctLFmyJMaNG5ere/bsGWefffYWx5eUlMTo0aPjjDPOiIiIbDYbt912W9xyyy0F62nUqFEFuxcAAAAAAAAAAJAedu6qhWeffTYqKytz9eDBg6O4uHircw499NDo1atXrp44cWKsXbu2znoEAAAAAAAAAAAaB+GuWnjuuefy6qOPPrpG84466qjc44qKinjppZcK2hcAAAAAAAAAAND4CHfVwuuvv557XFZWFj169KjRvH79+uXVr732WkH7AgAAAAAAAAAAGh/hrhoqLy+PVatW5eq99967xnP79OmTV8+ePbtgfQEAAAAAAAAAAI2TcFcNvfPOO3l1165dazy3rKwsiouLc/WcOXMK1hcAAAAAAAAAANA4CXfVUHl5eV7dpUuXGs/NZDLRuXPnLd4LAAAAAAAAAACgOuGuGlq7dm1eXVpaWqv5LVu2zD3esGFDVFRUFKQvAAAAAAAAAACgcSpKuoGGonq4q6SkpFbzq49fs2ZNre+RNplMJukWYKt8j0LyrEPSbNPvT9+rkAzrEJJnHULyrENInnUIybMOIXnWISTPOmRLhLtqqPpOW8XFxbWa36xZs63eryFq165d0i3UsaVJN8B2avzfozsC67Chsw5pKNq2bZt0C7DDsw4hedYhJM86hORZh5A86xCSZx1C8qxDNuVYxhqqvstWZWVlreavX79+q/cDAAAAAAAAAADYlJ27aqi0tDSvru3OW9XHt2zZcrt7Stry5cuTbgG2yvcoJM86JM0ymUzunS8rVqyIbDabcEew47EOIXnWISTPOoTkWYeQPOsQkmcdQvKsw8aj0KcbCXfVUPVw15o1a2o1f9PxRUVFjWLnLv8hIe18j0LyrEMaimw26/sVEmYdQvKsQ0iedQjJsw4hedYhJM86hORZh2zKsYw11Llz57y6vLy8xnOz2Wze+Or3AgAAAAAAAAAAqE64q4Z69+6dV7/33ns1nrtkyZKorKzM1b169SpYXwAAAAAAAAAAQOMk3FVDnTp1itatW+fqGTNm1Hju9OnT82rhLgAAAAAAAAAAP1ADUwAAW7NJREFU4NMId9XCAQcckHu8dOnSmDdvXo3mTZ48Oa8+6KCDCtoXAAAAAAAAAADQ+Ah31cKAAQPy6qeeeqpG855++unc45KSkjjssMMK2hcAAAAAAAAAAND4CHfVwhFHHBHFxcW5ety4cVFZWbnVOS+//HLMmTMnV/fv3z9KS0vrrEcAAAAAAAAAAKBxEO6qhbKyshg8eHCunjdvXtxxxx1bHF9RURE//elPc3Umk4lzzz13i+MXLFgQe+65Z+7jiCOOKEzjAAAAAAAAAABAgyPcVUvDhw+Pli1b5upbbrkl7rrrrqiqqsobt2zZsjjrrLNi1qxZuWvHHHNM9OnTp956BQAAAAAAAAAAGq6ipBtoaDp37hw33nhjnHvuuVFVVRXZbDauu+66eOCBB+KQQw6Jdu3axdy5c+P555+PdevW5ebtvvvucdVVV9VJT1sKjG3cuLFG46655po44YQTCt0WAAAAAAAAAACwHYS7tsHhhx8e1157bVxxxRXx4YcfRkTEu+++G+++++5mx++9994xZsyYaNWqVZ30Uz3EVdtx1XcdAwAAAAAAAAAAkudYxm10wgknxMMPPxwDBw6M4uLizY7p2LFjjBgxIv70pz9F9+7d67lDAAAAAAAAAACgIbNz13bo1atX3HrrrfHBBx/E5MmTY+HChbFmzZooKyuLHj16xOc+97lo2rRpje/XvXv3ePvtt2vdx7bMAQDgI5Wju0TLpJuoQ6svnpF0CwAAAAAAAGwj4a4C2GmnnWLAgAFJtwEAAAAAAAAAADQijmUEAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQqSroBAADS64uHVyXdQh1bGlOOS7oHAAAAAAAA2Dw7dwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkUFHSDQAAALBjqxzdJVom3UQdWn3xjKRbAAAAAACggbJzFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABAChUl3QAAAABb9sXDq5JuoY4tjSnHJd0DAAAAAACkk527AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFKoKOkGAAAAAEhW5egu0TLpJurY6otnJN0CAAAAANSanbsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFipJuAAAAACDNvnh4VdIt1LGlMeW4pHsAAAAAADbHzl0AAAAAAAAAAAApJNwFAAAAAAAAAACQQsJdAAAAAAAAAAAAKSTcBQAAAAAAAAAAkELCXQAAAAAAAAAAACkk3AUAAAAAAAAAAJBCwl0AAAAAAAAAAAApJNwFAAAAAAAAAACQQkVJNwAAAAAAsKOrHN0lWibdRB1bffGMpFsAAACABsfOXQAAAAAAAAAAACkk3AUAAAAAAAAAAJBCwl0AAAAAAAAAAAApJNwFAAAAAAAAAACQQsJdAAAAAAAAAAAAKSTcBQAAAAAAAAAAkELCXQAAAAAAAAAAAClUlHQDAAAAAACf5ouHVyXdQh1aGlOOS7oHoHJ0l2iZdBN1bPXFM5JuAQAAqCU7dwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApJBwFwAAAAAAAAAAQAoJdwEAAAAAAAAAAKSQcBcAAAAAAAAAAEAKCXcBAAAAAAAAAACkkHAXAAAAAAAAAABACgl3AQAAAAAAAAAApFBR0g0AAAAAAADp98XDq5JuoQ4tjSnHJd0DAADAJ9m5CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFJIuAsAAAAAAAAAACCFhLsAAAAAAAAAAABSSLgLAAAAAAAAAAAghYS7AAAAAAAAAAAAUki4CwAAAAAAAAAAIIWEuwAAAAAAAAAAAFKoKOkGAAAAAAAAgE/3xcOrkm6hDi2Naf/pkHQTAACpY+cuAAAAAAAAAACAFBLuAgAAAAAAAAAASCHhLgAAAAAAAAAAgBQS7gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUKkq6AQAAAAAAAABoCL54eFXSLdShpTHtPx2SbgKAauzcBQAAAAAAAAAAkELCXQAAAAAAAAAAACnkWEYAAAAAAAAgcZWju0TLpJuoY6svnpF0CwBAA2PnLgAAAAAAAAAAgBSycxcAAAAAAAAAAA3CFw+vSrqFOrQ0pv2nQ9JNkDJ27gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIIeEuAAAAAAAAAACAFBLuAgAAAAAAAAAASKGipBsAAAAAAAAAAJJXObpLtEy6iTq2+uIZSbcAUCt27gIAAAAAAAAAAEgh4S4AAAAAAAAAAIAUEu4CAAAAAAAAAABIoaKkG2gMli9fHpMnT46FCxfG6tWro1OnTtG9e/fo169fNG3atN77WbNmTUyaNCnKy8tj+fLl0b59++jWrVsccMAB0axZs3rvBwAAAAAAAACAT1c5uku0TLqJOrb64hlJt9CgCHdthzlz5sQNN9wQL7zwQlRWVn7i8x07dowhQ4bE8OHD6yVUtWjRorjxxhvj6aefjrVr137i823bto3jjjsuvve970WrVq3qvB8AAAAAAAAAAGDbOZZxGz366KNx0kknxTPPPLPZYFdExOLFi2PMmDExZMiQWLBgQZ328+KLL8Zxxx0XjzzyyGaDXRERK1asiHvvvTdOOOGEmDFDChIAAAAAAAAAANLMzl3bYOLEiXHppZdGVVVV7tquu+4aBx98cLRr1y7mzZsXzz//fKxbty4iIqZPnx7Dhw+PBx98sE52zJo2bVqcf/758eGHH+auderUKb785S9HWVlZvP/++/H888/HypUrIyJi/vz58d3vfjceeuih6NKlS8H7AQAAAAAAAAAAtp9wVy0tWrQoRo4cmQt2ZTKZGDVqVAwdOjSaNPm/jdCWLVsWF110Ubz66qsRETFr1qy4/PLL48YbbyxoP+vWrYsRI0bkBbu+853vxMiRI/OOgly9enWMHj06JkyYEBEf7Sr2ve99Lx544IGC9gMAAAAAAAAAABSGYxlr6bbbbos1a9bk6gsuuCCGDRuWF+yKiGjfvn2MHTs2evfunbs2YcKEmD59ekH7+cMf/hDvv/9+rh40aFCMGjUqL9gVEdGqVau44YYb4tBDD81d+/e//x1/+9vfCtoPAAAAAAAAAABQGMJdtbBkyZIYN25cru7Zs2ecffbZWxxfUlISo0ePztXZbDZuu+22gvVTWVkZY8eOzdWtW7eOUaNGbXF8kyZN4sorr8wLov36178uWD8AAAAAAAAAAEDhCHfVwrPPPhuVlZW5evDgwVFcXLzVOYceemj06tUrV0+cODHWrl1bkH5eeeWV+OCDD3L117/+9Wjbtu1W5+yyyy7xhS98IVdPmzYt5s+fX5B+AAAAAAAAAACAwhHuqoXnnnsurz766KNrNO+oo47KPa6oqIiXXnqpTvrZ9Hm2pnrfzz77bEH6AQAAAAAAAAAACke4qxZef/313OOysrLo0aNHjeb169cvr37ttdcK0s+kSZNyj5s2bRp9+/at0bzPfe5zddIPAAAAAAAAAABQOMJdNVReXh6rVq3K1XvvvXeN5/bp0yevnj179nb3U1VVFe+++26u3mWXXaJly5Y1mturV69o3rx5QfsBAAAAAAAAAAAKS7irht555528umvXrjWeW1ZWFsXFxbl6zpw5293Pe++9FxUVFdvUTyaTiS5duuTq+fPnR2Vl5Xb3BAAAAAAAAAAAFI5wVw2Vl5fn1ZuGoz5NJpOJzp07b/Fe9d1PROT1s2HDhli6dOl29wQAAAAAAAAAABROUdINNBRr167Nq0tLS2s1f9MjEzds2BAVFRVRUlKyzf2sWbOmYP1s7n41kclkaj0H6pPvUUiedQjJsw4hedYhpIO1CMmzDiF51iEkzzqE5FmHkDzrsHaEu2qoerirtsGs6uPXrFmzXeGuQvdT/X410a5du1rPaVjsZtbQNf7v0R2BddjQWYeNgXXY0FmHjYF12NBZh42BddgYWIuNgbXY0FmHjYF12NBZh42BddjQWYeNgXXY0FmHjYF12NBZh7Uj3FVDFRUVeXVxcXGt5jdr1myr92vo/TRG0/7TIekW6sHCpBuArbIOIXnWISTPOoTkWYeQDo1/LVqHpJ91CMmzDiF51iEkzzpkR9Mk6QYaiuo7XVVWVtZq/vr167d6v4beDwAAAAAAAAAAUFjCXTVUWlqaV9d2p6vq41u2bJmqfqrfDwAAAAAAAAAASJZwVw1VDz+tWbOmVvM3HV9UVLTdO2VVD4dtTz+bux8AAAAAAAAAAJAs4a4a6ty5c15dXl5e47nZbDZvfPV71Xc/ERELF/7fGa1FRUXRoUNjP5MWAAAAAAAAAAAaFuGuGurdu3de/d5779V47pIlS6KysjJX9+rVa7v76datWzRv3nyb+slms3nhrp49e0ZxcfF29wQAAAAAAAAAABSOcFcNderUKVq3bp2rZ8yYUeO506dPz6sLEe5q0qRJ7Lrrrrl63rx5NT6acfbs2VFRUVHQfgAAAAAAAAAAgMIS7qqFAw44IPd46dKlMW/evBrNmzx5cl590EEHFbyfjRs3xtSpU2s079///ned9AMAAAAAAAAAABSOcFctDBgwIK9+6qmnajTv6aefzj0uKSmJww47LNF+qo+rfh8AAAAAAAAAACB5wl21cMQRR0RxcXGuHjduXFRWVm51zssvvxxz5szJ1f3794/S0tKC9PP5z38+2rdvn6uffPLJWLly5VbnzJ07N/75z3/m6n322Sd69OhRkH4AAAAAAAAAAIDCKUq6gYakrKwsBg8eHPfdd19ERMybNy/uuOOOGDFixGbHV1RUxE9/+tNcnclk4txzz93i/RcsWJC3i1a3bt3iueee2+L44uLiOOuss+L666+PiIhVq1bFddddF9dcc81mx1dVVcVPfvKTqKqqyl0777zztnh/Gqfly5fH5MmTY+HChbF69ero1KlTdO/ePfr16xdNmzZNuj0AqFPLly+PmTNnxty5c2P58uWRzWajbdu20bVr19h///2jdevWSbcIjVpVVVXMmzcv5s6dG+Xl5bFy5cpYv359lJaWRrt27WKvvfaKz3zmM34vBQCg3r3//vvxxhtvxP/+7//G2rVro6SkJMrKymK33XaLvfbaK5o1a5Z0iwBQJyorK2PmzJnx9ttvx4oVK6KioiJatWoVHTt2jM9+9rPRrVu3pFuERq+qqireeOONmD17dixbtiyKioqiU6dOsccee8Tuu++edHukgHBXLQ0fPjzGjx8fa9asiYiIW265JUpLS2Po0KHRpMn/bYS2bNmyuOiii2LWrFm5a8ccc0z06dOnoP2ceuqpce+998b7778fERF//vOfo23btjFy5Mi8f2yuXr06Ro8eHS+//HLuWr9+/WLgwIEF7Yf0mjNnTtxwww3xwgsvbHbHuY4dO8aQIUNi+PDh/lABdWDNmjUxffr0mDp1akydOjXeeOONeO+993Kf/7RAL7BtqqqqYtKkSfHMM8/Ev/71r5g5c+YWx2YymTj00EPjjDPOiP79+9djl9C4LVu2LO68886YPHlyzJgxIz788MOtjm/btm0cd9xxceaZZ8bOO+9cT10CH/vpT38a9957b961E088Ma677rqEOgKAulNVVRWPPfZY3HPPPTFt2rQtjisuLo5+/frF2WefHV/60pfqsUNoXL797W/Hq6++ut33Of/88+OCCy4oQEewYysvL4/f/va38eijj271dKjPfOYz8a1vfSuGDBniDXlQYCtWrIjf/e53cf/998eKFSs2O2bPPfeMoUOHxqBBg+q5O9Ikk81ms0k30dC88MILce655+btgLXrrrvGIYccEu3atYu5c+fG888/H+vWrct9fvfdd48HH3wwWrVqtcX71nbnro9NmzYtTj311LwXSTp16hT9+/ePDh06xMKFC+O5557L+6HcsWPHeOihh6JLly41/rppuB599NG44oorYu3atZ86tk+fPnHLLbdE9+7d66EzaPzuuuuuePjhh2PWrFl5PzeqE+6CunHkkUfG3Llzaz3v2GOPjauuumqrv7sBNfPGG2/EySefXOt5paWlMXr06DjppJPqoCtgc6ZMmRKnnHLKJ35vFe6CwjniiCPy3uhTG3/9619jl112KXBHsONasGBBXHLJJTFlypQaz/nud78b3//+9+uuKWjkChXu+uEPfxhnnnlmATqCHdff/va3+NGPfrTFMMnm9O3bN2699dbo1KlTHXYGO46pU6fGeeedF4sXL67R+K985Svxi1/8wusWOyg7d22Dww8/PK699tq44oorcoGqd999N959993Njt97771jzJgxdbbI9tlnn7jlllvi+9//fixfvjwiIhYtWhTjxo3b7Pju3bvHLbfcIti1g5g4cWJceumlnwgjHnzwwdGuXbuYN29eXhhx+vTpMXz48E8NIwI189prr211pyCgbi1btuwT13bdddfo27dvlJWVRUlJSSxcuDBefvnlWLhwYW7Mk08+GYsWLYo777wzSkpK6rNlaPTKyspijz32iF122SXatm0bTZs2jeXLl8eMGTNiypQpud9b165dG5dddlmsX78+vvnNbybcNTR+lZWVMXr06K2+IQEAGov//ve/MWzYsLwX0jKZTPTt2zf22muv6NChQ1RUVOSOapw/f36C3ULj0aRJk23a9Wfjxo25x5lMJo488shCtgU7nBdffDG+973v5Z30U1RUFIccckjsscce0aJFi/jggw/i3//+d8yYMSM3ZurUqTF06NAYN26c1xBhO02dOjVOO+20qKioyF0rLS2Nww47LHbbbbeoqqqK2bNnxz//+c/cmOeffz4uuuiiuP3226OoSNRnR+P/8W10wgknRN++feOGG26IiRMnbvGYu8GDB8c555xT58fcfelLX4rHH388brjhhnj66ac3e9TJx8ebfO973/MDdwexaNGiGDlyZO6P85lMJkaNGrXFY0Q/fsfMrFmz4vLLL48bb7wxkb6hsSstLY199tknpk2bVqMd9YDt161bt/jGN74RJ5544mYD7hs3bow//elPce211+b+ofTaa6/FL3/5yxg1alR9twuNStOmTeOggw6Ko446Kg477LDo1avXFse+9957cdVVV8ULL7yQu3bNNdfEF77whejZs2c9dAs7rjvuuCP3poSOHTvW+F2jwLbLZDJ5f5+pyXhg+y1btizOOuusvJ91AwcOjMsuu2yLpxnMnDkzHn744WjdunV9tQmN0t13313rOc8880ycf/75ufrAAw+MHj16FLIt2KGsW7cuRo8enffa9kEHHRTXX399dO3a9RPjX3755fjBD36Q+7n5zjvvxM033xw/+tGP6q1naGxWr14dF110UV6w6ytf+Ur87Gc/iw4dOuSNff/992PUqFHxyiuvRMRH4cxf/epXcckll9RrzyTPsYwF8MEHH8TkyZNj4cKFsWbNmigrK4sePXrE5z73uUTOHV6zZk1MmjQp3n///VixYkW0b98+unXrFgceeGCdh8xIlyuvvDL++Mc/5uoLL7wwRowYsdmxFRUVceKJJ8bs2bMj4qM/GD788MPRp0+feukVGquRI0fGggULYt99943Pfvazse+++0bv3r2jSZMmecdxOJYR6sZxxx0XQ4cOjRNOOKFGv5dNnDgxzjnnnFwwuri4OJ599tno3LlzXbcK/P82btwY3/3ud+Oll17KXTvjjDPisssuS7AraNzeeeedOP7442P9+vXRokWLuPzyy/PWnGMZoXA2/XegtQXJuOSSS+KJJ57I1eecc06MHDkywY6ArTn33HPz/m56zTXXxKBBgxLsCBq2CRMm5P3c23XXXeORRx6J0tLSLc556623YtCgQbFhw4aIiGjZsmX861//8rozbKPf/OY3cdNNN+XqQw45JO68884t7sZVUVERp5xySkybNi0iIkpKSuKvf/2rk9p2MHbuKoCddtopBgwYkHQbOS1btoz+/fsn3QYJW7JkSd7RnD179oyzzz57i+NLSkpi9OjRccYZZ0RERDabjdtuuy1uueWWum4VGrVNfzkD6t/DDz9cq+2J+/fvH8cee2w8/vjjEfHREVXPPvtsfOtb36qrFoFqmjZtGpdcckleuOsf//iHcBfUkWw2G6NHj47169dHRMR5550X3bp1S7grAKgb//znP/OCXQMGDBDsghRbtmxZ/OMf/8jVpaWlcfTRRyfYETR8L7/8cl59xhlnbDXYFRGx1157xYABA+Lpp5+OiI82GnnjjTfigAMOqLM+oTG77777co8zmUxcccUVW30do6SkJH7yk5/E4MGDI+KjsNcdd9wRl19+eZ33SnrUfN9voEF59tln87ZUHTx4cBQXF291zqGHHpp3TM7EiRMdGQdAg7Yt584fe+yxefUbb7xRqHaAGtpnn33y/rD4/vvvJ9gNNG4PPPBATJo0KSIi9thjjxg2bFjCHQFA3bnjjjtyj4uLi72BAFLu8ccfz3ud48gjj4yWLVsm2BE0fOXl5Xn1/vvvX6N5n/vc5/LqRYsWFaol2KH897//zVs/Bx54YOy2226fOm+//faLPfbYI1c/9dRTuRNI2DEId0EjVf14t5q+m+Woo47KPa6oqMjbMQEAdgQ9e/bMq5csWZJQJ7Bj2/QP9tlsNsFOoPEqLy+PG264ISI+eqfolVde+alvCgKAhmr+/Pnxr3/9K1f3798/evTokWBHwKd55JFH8uoTTzwxoU6g8ageBmnevHmN5rVo0SKvzmQyBesJdiQfH634sX79+tV47qZjly5dGpMnTy5YX6SfcBc0Uq+//nrucVlZWY3/UFH9B8hrr71W0L4AIO3WrFmTV2/L7l/A9vnwww9j+fLludqLblA3rr766li1alVEfLTbc/V3YgNAYzJhwoS8Nw1U37UZSJe33347ZsyYkau7desWBx98cIIdQePQvXv3vLqmu6W/9957efUuu+xSsJ5gR7Lp3zwjIjp37lzjudXHeh1/xyLcBY1QeXl57g/0ERF77713jef26dMnr549e3bB+gKAhuDtt9/Oq7t06ZJQJ7Djeuqpp/KO3jj88MOTawYaqb/+9a/xzDPPREREhw4d4pJLLkm4IwCoW1OmTMmrDzzwwGQaAWqk+q5dxx9/vJ2CoAC+9KUv5dV/+ctfPnXOxo0b4+mnn87V3bp1iz333LPgvcGOYN26dXl1s2bNajy3pKQkr541a1ZBeqJhsA0BNELvvPNOXt21a9cazy0rK4vi4uLci2lz5swpaG8AkHaPPfZYXn3IIYck1AnsmN566634+c9/nqvbtWsXQ4cOTbAjaHxWrVoVV199da6+9NJLo23btgl2BAB1780338w97ty5c3Tq1CkiIubOnRsPP/xwvPjii/H+++/Hhx9+GDvttFPstttucdhhh8Xxxx8fHTp0SKpt2CFt2LAhHn/88bxrjmSEwjj88MNjzz33zL3B9c9//nMcccQR8ZWvfGWz47PZbFx//fXx7rvv5q6NGDEimjSxhwxsi9atW+fVK1eurPHc6mOrZwJo3IS7oBEqLy/Pq2uz40gmk4nOnTvHggULNnsvAGjMXn311Xj11VdzdevWreOLX/xigh1B45fNZmP16tUxc+bMeOqpp+KBBx6I9evXR0REaWlp3HzzzVFWVpZwl9C4XH/99bFo0aKIiPjCF74Qxx13XMIdwY7prbfeipEjR8b06dNjyZIlEfFRqLl79+5x0EEHxcCBA2OvvfZKuEtoHFatWpX72Rfx0bHfGzZsiN/85jdx2223xYYNG/LGr127Nt5777148cUX45ZbbomzzjorzjvvPLsGQT35xz/+kfvZGPHRTns9e/ZMsCNoPJo2bRo33XRTfOtb34rly5fHxo0b47zzzoshQ4bECSecEHvssUe0aNEiPvjgg5gyZUr8/ve/j1deeSU3/5vf/GYMGjQowa8AGrbqRyvWZvetmTNn5tU1PVaVxkG4CxqhtWvX5tWlpaW1mt+yZcvc4w0bNkRFRcUntnkEgMbmww8/jNGjR+ddGzZsWN7PRWD7vfPOO/H1r389V1dVVUU2m/3EuP79+8dll10Wu+22W322B43ea6+9FuPGjYuIj7b+/8lPfpJwR7DjmjFjRsyYMSPv2urVq2PBggXxr3/9K2655Zb48pe/HD/+8Y9jl112SahLaByWL1+eV5eVlcWPfvSjePTRRz917tq1a+Pmm2+Ot956K2666aYoKvKyCtS16kcy2rULCqt3794xbty4+H//7//Fq6++GlVVVXH//ffH/fffv8U5ZWVlceGFF8aQIUPqsVNofPr165dXv/jii7Fhw4ZP/R1zzZo1eW9Mj/hkJoDGzX6J0AhV/w95bYNZ1cevWbNmu3sCgLS78sor87YX79WrV5x11lnJNQSNVDabjY0bN+Y+qge7mjRpEt/+9rfjqquuEuyCAlu/fn2MHj06t+7OOeec2HXXXZNtCtiqv//97zFo0KB44YUXkm4FGrRVq1bl1S+99FIu2NW8efM455xz4rHHHov//Oc/MWnSpLjvvvvi+OOPz9up669//WvceOON9do37IhWrFgRzz//fK5u0aJFHH300Ql2BI1Tz5494957741rr7022rZtu9Wxffr0iV//+teCXVAAHTp0iP322y9XL168OB566KFPnXfPPfd84jX7ioqK2LhxY8F7JJ2Eu6ARqqioyKuLi4trNb9Zs2ZbvR8ANDZ333133rtCmzVrFv/zP/9j50pIQFVVVdx7770xcODAuO6663JHNALb79Zbb405c+ZERMRuu+0W3/3udxPuCHZMnTt3jm9961sxZsyYeOaZZ2Ly5Mnx5ptvxosvvhi//e1vY8iQIXl/m1m1alVceOGF8Z///CfBrqFhq/5m2I/DXu3atYsHHnggRo4cGXvuuWc0b948WrduHQceeGBcf/31cf3110eTJv/3Msrvfve7eOutt+q1d9jRPPHEE3n/DjzyyCOjVatWCXYEjdPs2bPjO9/5Tlx22WWxYsWKrY6dPn16DB48OM4+++xYuHBhPXUIjdd3vvOdvPr666+PyZMnb3H8P/7xj7j11ls3+7l169YVtDfSy/7B0AhVfyG6srKyVvOrv4DmhW0AGrOnnnoqrrvuurxrV111VXz2s59NqCNo3Hr37h1vv/12rl6/fn0sX748ZsyYEU899VQ8/vjjUVlZGZWVlXHXXXfFzJkz4ze/+c0n3oAA1M7bb78dd955Z66+8sorrStIwM9+9rM46KCDNnvkRseOHaNjx47x5S9/Oc4888w4//zzY+bMmRHx0RvvRo4cGU899ZS1C9tgS+vmqquuir333nuL84477rh488034+67746Ij3ah/d3vfhfXX399nfQJRIwfPz6vdiQjFN5LL70UI0aMiA8//DAiPtok4hvf+EYce+yxsccee0SLFi1i+fLlMXXq1HjggQfi73//e0RETJw4MU488cT4wx/+EL17907yS4AG7aijjorDDz88t0PzmjVrYujQofHtb387jj/++Nhtt90im83G7Nmz4+GHH477778/NmzYEBERpaWluTcuZDKZaNGiRVJfBvXMzl3QCJWWlubVtd15q/r4li1bbndPAJBGL7/8cvzgBz+Iqqqq3LVLLrnEHw6hHjVr1iw6deoU/fv3j2uvvTYeeuih2HnnnXOff+mll2LMmDEJdggNX1VVVYwePTr3xp8TTzwxDj744IS7gh3ToYceutlgV3W77LJL/P73v4+uXbvmrr333nsxbty4umwPGq3N/X2zd+/ecdRRR33q3LPPPjvvZIQXXngh79+QQOHMnj07pk6dmqu7desWhxxySIIdQeMzb968OP/883PBrjZt2sR9990XP/nJT+LAAw+MNm3aRHFxcXTs2DEGDBgQv/3tb+OKK67IzV+2bFmce+65uflA7WUymfj5z38e++yzT+7a+vXr484774zjjjsu9t133+jbt2+ceOKJce+99+aCXRdeeGHe301btWqVt8ssjZv/p6ERqh7uqn7+7qfZdHxRUZGduwBolKZOnRrnnXde3o6VZ555Zpx99tkJdgXstdde8dvf/jbvBbS77747PvjggwS7gobt3nvvzR3n1q5du/jhD3+YcEdATXTo0CG+//3v512bMGFCQt1Aw7a5cNdXvvKVGs0tKyuLvn375uoVK1bErFmzCtYb8H8eeeSRvPr444+PTCaTUDfQOP3iF7/IO674qquuiv3222+rc0455ZQ45ZRTcvXcuXPjj3/8Y531CDuCdu3axX333Rcnn3xyNG3adKtjW7RoEZdffnmMGDEiFi9enLvepk2bum6TFBHugkaoc+fOeXV5eXmN52az2bzx1e8FAI3BzJkz47vf/W7eHzK+8Y1veLEbUuIzn/lMHHPMMbl63bp1MXHixAQ7goZr3bp18ctf/jJX//CHP4z27dsn1xBQK0cddVS0atUqV0+ZMsUuCbANOnTokPfmgYiPfuesqT322COvrs3fW4Gaqaqqisceeyzvmp3VobBWrVoVf/vb33J1z5494+ijj67R3OpviH300UcL2hvsiFq0aBE/+9nP4oknnohzzjkn9t9//ygrK4vi4uJo37597LvvvnHhhRfGX/7ylzj11FNjxYoVsXLlytz83XffPcHuqW+fvgc40OBUP+f6vffeq/HcJUuW5I7qiIjo1atXwfoCgDSYN29efOc734nly5fnrh199NFx1VVXJdcU8Alf+MIX8v5Q+PbbbyfYDTRc69evzwszjx49OkaPHr3VOdlsNq8eP3583gttJ5xwQlxzzTWFbRTYrKKioth3333j5ZdfjoiIDRs2xKJFi2KXXXZJuDNoWIqLi6Nnz54xe/bs3LW2bdvWeH71sStWrChYb8BHXnrppbzg5AEHHBA9e/ZMsCNofN54443YuHFjrj7ooINqvDte165do3v37rFgwYKIiPjvf/8bFRUVTv+BAujVq1eMHDnyU8e98cYbefW+++5bVy2RQnbugkaoU6dO0bp161w9Y8aMGs+dPn16Xi3cBUBjUl5eHmeccUbe1sX9+/ePX/ziF86mh5QpKyvLq1evXp1QJ9C4bNy48VM/qqqq8uZks9mtfh6oWx06dMirHVUM26b6zgbr16+v8dzqY72QDYU3fvz4vNquXVB4S5cuzas7duxYq/mbjq+qqsp78yxQ9yZPnpxXb3p0OI2fV7CgkTrggANyj5cuXRrz5s2r0bzqPxQOOuiggvYFAElZtmxZnHHGGXk7Wn7+85+Pm2+++RPHcwDJqx7matOmTUKdAECyqh/DKFQC2+bzn/98Xl2boxUXLlyYV++0004F6Qn4yOrVq/OOimvRokV87WtfS7AjaJyq/x65bt26Ws2v/ntpaWnpdvcE1NyTTz6Ze9yhQ4f4whe+kGA31DfHMkIjNWDAgHjhhRdy9VNPPfWJ87A35+mnn849LikpicMOO6wu2gOAerV69eo466yz4p133sld69u3b9x2223RvHnzBDsDtqT6jrI777xzQp1Aw9amTZtaH2v6yiuvxOmnn56rTzzxxLjuuusK3RpQQ/Pnz8+r27dvn1An0LANHDgwfvrTn+aOH548eXLez7styWazMWXKlFzdtGnT2GuvveqqTdghTZgw4f9r787DqizzP45/DggiO4groYjijkqLmGkuleWk5tY45kJmbqWOms1ki20appaNMmpZSi4tllbmkqaj5r7vu7iAiKKyKcgi8PvDy/PzgQOcYwik79d1eV1+73Pfz/M9h3OYCT/ctyFk8tRTT8nV1bUEOwLuTbn/f+TtxxUXJjMz07CRhKOjo+EUIQB318aNG3XmzBlz/dxzz/FL6/cZdu4C7lFt27Y1fEP/4YcflJmZWeCaLVu26PTp0+a6VatWpO4BAH95aWlpGjx4sA4dOmQeq127tr788kt+UAiUUmlpafr1118NY/wmGgDgfhQbG6sTJ06Y6/Lly6tixYol2BHw11W5cmU9+OCD5vp///uf4uPjC123ceNGnT9/3lw3atSI/5YEithPP/1kqLt27VpCnQD3tvr16xv+7XD79u26dOmSVWvXrFmj1NRUc92kSZOibg9APjIyMhQWFmauy5Urp969e5dgRygJhLuAe5SPj4/+/ve/m+uoqCh98cUX+c5PT0/XuHHjzLXJZNKQIUPuao8AANxtN27c0D//+U/t2LHDPObv7685c+bIw8OjBDsD7g8ZGRk6evSoTWuys7P17rvvGv4BrXHjxgoICCjq9gAAKPWmT59u3mVIkh577DGZTKYS7Aj4axs2bJj57+np6frwww8LnJ+SkqLx48cbxvr06XNXegPuV1FRUdq9e7e5rlq1qpo1a1aCHQH3LmdnZ4WEhJjr3P82mJ+EhARNnDjRMNa2bdsi7w9AXllZWRo9erROnjxpHhs2bJh8fX1LsCuUBMJdwD1s0KBBcnFxMdfTpk3TnDlzlJ2dbZgXHx+vl19+2fA/Cn/7299Uv379YusVAICilpOTozfeeMNwTLGvr68iIiLk4+NTco0B95G0tDR17txZw4cP19q1a5WRkVHg/H379qlv3776+eefzWN2dnZ666237nKnAADcXRkZGYYjwq2xaNEiLVy40FybTCarjpADkL9HH31UrVu3NtfLly/Xv//9b129ejXP3KioKPXr189w0kFQUJDat29fHK0C943Fixcb6ueee44gM3AXvfrqq4b6t99+0/Dhw/PdwWv//v164YUXFBMTYx7z8fFRjx497mqfwL3ugw8+0H//+1+dO3cu3zmHDx9Wr169tHLlSvNYcHCwQkNDi6NFlDKmnNt/9QvAPWfdunUaMmSIIdDl7++vZs2aydPTU2fPntXatWsN59nXqlVL33//PduLA0UgJiZGTz31lMXHsrKyDLW9vb3FeREREWratGmR9wbc62JiYvL8BpnJZJKdnW2/3+Dr66vff/+9KFsD7hvJycl65JFHzHW5cuVUt25d1apVSx4eHipXrpxSUlJ04cIFHThwQNHR0Yb1JpNJ48ePV7du3Yq7deC+tm3bNkOApEuXLpowYUIJdgT89SUnJ6tZs2Z65pln1LVrVzVr1kxlypSxOPfSpUuaPn26vvnmG8M4n0WgaCQlJalHjx6G0Jabm5tatmypatWqKTMzU8ePH9fWrVuVmZlpnuPt7a1FixapatWqJdE2cE/KycnRE088YQiNrFq1StWrVy/BroB735QpUzRz5kzDmKOjo5o2baratWvL2dlZiYmJ2rt3rw4ePGiY5+DgoFmzZunRRx8tzpaBe87w4cPNoa3AwEA1aNBAFStWlJ2dnS5fvqx9+/bpxIkThjV16tRRRESEvL29S6JllDDLP0EAcM9o3bq1wsLC9N577+n69euSpDNnzujMmTMW59erV0/h4eEEu4AikpOTkyfElZ/85pHDBu6Mpc+OLZ/JW2ydDyB/169f1549e7Rnz55C51aqVEnvv/++2rRpUwydAQBw92VlZWnZsmVatmyZXF1dVa9ePQUEBMjDw0MODg5KTk7W0aNHtXfvXkOgRJIefvhhffDBByXUOXBv8fDw0Jdffqnhw4fr0KFDkqSrV69q+fLl+a4JCAjQ559/TrALKGLbtm0zBLseeughgl1AMRg5cqQcHBw0ffp0888+MzIytHHjRm3cuDHfdd7e3powYQLBLqCInThxIk+QK7d27drpo48+kpubWzF1hdKGcBdwH+jcubMaNWqkTz75ROvXr8/zA0JJqlChgv7+979r8ODBcnR0LIEuAQAAcK9xcXHRxx9/rA0bNmjHjh26ePFioWvq16+vLl26qGvXrvzCAQDgnnXt2jXt2LFDO3bsKHRuz5499cYbb/DzGqAIPfDAA/r+++81e/Zsff/994Zwye0qVqyo0NBQ9e7dW05OTsXcJXDv+/nnnw11ly5dSqYR4D40dOhQtW3bVnPmzNHKlSuVnp6e79zy5cure/fuCg0NVfny5YuxS+De9cQTTyghIUF79+5VRkaGxTkmk0lNmzZV//791apVq2LuEKUNxzIC95mEhATt3r1bFy5cUEpKinx8fOTn56cHH3ww3yPhAAAAgKIQFxenyMhInTt3TklJSUpPT5ezs7NcXV31wAMPqEGDBnJ3dy/pNgEAKHIZGRn673//q23btunQoUP5/vD+FmdnZz355JPq27evgoKCiqlL4P6Uk5OjAwcO6PTp07p06ZJMJpO8vb1Vr1491a1bt6TbAwDgrsvIyNDhw4cVGRmp5ORkpaWlycXFRV5eXqpfv74CAgJkMplKuk3gnpSenq4DBw7o7NmzunLlim7cuCFnZ2dVq1ZNTZo04QhGmBHuAgAAAAAAAIBicuPGDZ0+fVpRUVHmX767ceOG3Nzc5O7ursDAQNWpU4dfwgMAAAAAAJIIdwEAAAAAAAAAAAAAAABAqWRX0g0AAAAAAAAAAAAAAAAAAPIi3AUAAAAAAAAAAAAAAAAApRDhLgAAAAAAAAAAAAAAAAAohQh3AQAAAAAAAAAAAAAAAEApRLgLAAAAAAAAAAAAAAAAAEohwl0AAAAAAAAAAAAAAAAAUAoR7gIAAAAAAAAAAAAAAACAUohwFwAAAAAAAAAAAAAAAACUQoS7AAAAAAAAAAAAAAAAAKAUItwFAAAAAAAAAAAAAAAAAKUQ4S4AAAAAAAAAAAAAAAAAKIUIdwEAAAAAAAAAAAAAAABAKUS4CwAAAAAAAAAAAAAAAABKIcJdAAAAAAAAAAAAAAAAAFAKEe4CAAAAAAAAAAAAAAAAgFKIcBcAAAAAAAAAAAAAAAAAlEKEuwAAAAAAAADcUxYvXqw6deqY/yxevLikWwIAAAAAALgjZUq6AQAAAAAAgOLWtm1bxcTEFDjHzs5OLi4ucnNzU/Xq1VWvXj21atVKISEhMplMxdQp7kXWvv/c3Nzk5uammjVrKigoSO3atVOdOnWKqUsAAAAAAACUBuzcBQAAAAAAYEF2drauXr2q8+fPa8uWLZo9e7ZCQ0PVrl07rV+/vqTbQxHo06ePYXen0iQ7O1tJSUk6d+6c1q9fr/DwcHXq1Em9e/dWZGRkSbcHAAAAAACAYkK4CwAAAAAAwAZRUVEaOHCgwsPDS7oV3Id27NihLl26aPXq1SXdCgAAAAAAAIoBxzICAAAAAID73qeffqrGjRsbxm7t3HXixAn9/vvv+t///qfs7Gzz49OmTZO/v786dOhQ3O3iHpPf+y8xMVGHDh3Szz//rL1795ofS09P16hRo7RgwQIFBQUVc7cAAAAAAAAoToS7AAAAAADAfc/Hx0cPPPCAxccaNGigzp07a+vWrRoyZIhSU1PNj02ePFnt2rWTo6NjcbWKe1B+779q1aqpUaNG6tmzp+bPn69x48YpJydH0s2AV1hYmL755pvibhcAAAAAAADFiGMZAQAAAAAArNCsWTONHTvWMBYbG6stW7aUUEe4n/Tu3Vv9+vUzjO3atUuHDx8uoY4AAAAAAABQHAh3AQAAAAAAWOm5556Tl5eXYWzr1q0l1A3uN4MGDZKDg4NhbOPGjSXUDQAAAAAAAIoDxzICAAAAAABYyc7OTkFBQfrjjz/MYxcuXLija0VHR+vQoUOKj49XcnKy3Nzc5OPjoyZNmqhSpUpF1bIkKS0tTTt37tSFCxcUHx8vd3d3Va1aVSEhISpbtmyR3CMuLk779+/XlStXlJiYKGdnZ5UvX15BQUHy8/P7U9fOzMxUZGSkTp8+rUuXLiklJUVly5aVu7u7/Pz81KhRI5UrV65Inkdp5unpqYYNG2rPnj3mscjIyBLsqGCZmZnas2ePzp8/r8uXLys7O1uBgYFq06ZNoWujo6N1+PBhxcfHKykpSQ4ODvLw8FCNGjVUr149OTs7/6necnJytH//fp05c0ZxcXFycHBQhQoV9NBDD6ly5cp/6tqxsbGKjIxUdHS0rl27puzsbLm7u6t8+fJq3LhxkXy+Y2NjdeTIEcXGxiolJUVZWVkqV66cvLy85Ovrqzp16sjNze2Or5+SkqLdu3crLi5O8fHxsre3l7e3t2rWrKkGDRrIzu7Of2c4JSVFR48e1alTp3T16lWlpaWpbNmycnV1VZUqVVSjRo0//T0DAAAAAIB7CeEuAAAAAAAAG7i7uxvqpKQkq9empqZq3rx5WrRokc6ePZvvvHr16mnQoEF65plnZDKZCr3utGnTFB4ebq7nzp2rkJAQXbx4UeHh4Vq2bJlSUlLyrHN2dlanTp00cuRIeXp6Wv08bsnMzNSPP/6ob775RsePH893nr+/v1566SV169ZNZcpY9+OouLg4rVy5UmvXrtWePXuUmpqa79wyZcqoZcuWevnll/Xwww8XeN3cr9Xt6tSpk++6pk2bat68eVb1fjflDh4lJCQY6nPnzumJJ54w1126dNGECROsvn6fPn20fft2c33s2LF85+b3vktMTNR//vMfLV++XImJiYY1devWzTfclZCQoIiICP3666+KiYnJ974ODg4KDg7Wc889pw4dOsjJycnKZydlZ2fr66+/1vz583Xu3DmLcx5++GH961//UuPGja26ZkZGhjZu3KhVq1Zp69atio2NLXC+v7+/+vbtq+7du9sUrszOztaiRYu0YMECHTlypMC5JpNJtWrVUps2bfTiiy+qfPnyVt1jw4YNmjVrlnbv3q3MzEyLc7y8vNS9e3cNGDBAHh4eVvd/5MgRTZ8+XevWrVNGRkaBc729vdW8eXP16NFDTZs2tfoeAAAAAADciwh3AQAAAAAA2CB3SMrR0dGqdRs2bNC///1vXblypdC5R44c0YgRI9S8eXNNnTr1jnbg2b17t4YMGZInXHO71NRUfffdd1q1apVmzpxpdZhFkg4ePKgRI0YoOjq60LlnzpzR2LFj9e233+rzzz+3aueiZ555xmIgzZIbN25o7dq1Wrt2rV588UW9/vrrVofI/mpycnJKuoUC7dq1SyNHjtTFixdtWvfDDz/oo48+KjDEd0tmZqa2b9+u7du3y8/PTyEhIVbd48qVKxoxYoQhvGbJzp071atXL4WFhaljx46FXnfixIk2Bf/OnDmjDz74QAsXLlR4eLhVu1QlJydryJAh2rlzp1X3yMnJ0YkTJ3TixAk9+uijat68eYHz4+Pj9dprr2nz5s2FXjshIUGzZs3SDz/8oPDwcD3yyCOFrpk1a5Y+/fRTZWdnW9V/fHy8li5dKpPJRLgLAAAAAHDfuzd/ygUAAAAAAHCXHDp0yFBbE8xYuHCh3nvvPWVlZRnGfX19FRgYKFdXV/NRZbfv+rN582a98MIL+vbbb+Xq6mp1j1FRUZo4caKSk5MlSU5OTmrcuLF8fHyUnJysw4cPG0Jm8fHxeumllxQREaGgoKBCr7927VqNHDlS169fN4xXqFBBdevWlYeHh65fv67IyEidOXPG/PiRI0f0/PPPa+HChYUefZc7xOTj46OAgAB5enrKyclJKSkpioqK0qlTpwyva0REhDIzMzV27NhCn8dfUe7QlJeXVwl1kld0dLQmTZpkDhQ6OzurYcOGqlChglJTUw3vhduNHz9ec+fOzTPu6empunXrytvbW1lZWUpISNCxY8ds2i3vlrS0NA0aNEgHDhyQdDOU2bBhQ1WqVEnZ2dmKjIzUyZMnzfMzMzM1ZswYBQYGqm7dugVeO3dgqVy5cgoICFDFihXl4uKizMxMXb58WUePHjUEFo8ePaq+ffvqp59+KnTnvBEjRuQJdjk7O6tu3bqqWLGiHB0dlZqaqitXrigyMtL82bfG2bNn1b9//zxBTRcXFzVo0EA+Pj7KyspSTEyMDh8+bH6+iYmJ6tevn2bMmKGWLVvme/0lS5Zo8uTJhjGTyaTAwEA98MADcnV1VUZGhq5du6bTp0/r/PnzpT7ECAAAAABAcSLcBQAAAAAAYKU1a9YoLi7OMFbYrkFbtmzJE+zq2LGjBg8erFq1auWZv23bNo0bN858zOHx48c1duxYffrpp1b3OWnSJCUnJ8vBwUGvvPKKXnzxRTk7O5sfz8rK0sqVKzV+/HhdvnxZknTt2jWNHj1av/zyS4HH3J08eVKjRo0yBLtatmyp4cOHq1GjRnnmHz58WOPHjzcHUy5evKhRo0Zp3rx5sre3z/c+JpNJLVu21DPPPKPHH39cFStWtDgvLi5OCxYs0FdffWU+Rm7BggVq3bq1Hn/88TzzQ0ND1aVLF0nSqFGjtG/fPvNja9asybcfW47Pu1uSkpJ08OBBw1jNmjVLqJu8PvroI6WkpMjDw0MjR45Ut27d8uxslztAFBERkSfYFRwcrH/+858KCQmRnZ1dnvscPXpUK1as0MKFC63uberUqUpISJCTk5OGDRumF154wfCZkKT9+/dr9OjR5iNTMzMzFRYWpq+//rrQ61erVk3PPfecWrdurfr161vsOzMzU6tXr9Ynn3xifh3Onz+v999/X1OmTMn32hs2bNCmTZvMtaenp9566y21b99eDg4OFtecOHFC69ev148//lhg39evX9fQoUMNX5caNWpo5MiRevLJJ/N8RuPi4jRt2jTza5+ZmanXX39dv/zyi8Ud+bKzszVp0iTDWO/evTV48GBVqFDBYk+JiYnatGmTli5dWuD3CAAAAAAA7heEuwAAAAAAAKwQGRmZZzeoqlWrWgwQ3ZKSkqLRo0ebg10mk0njxo1T9+7d810TEhKi7777Tv3799eePXskScuWLVPPnj2tOv5MuhkCsre312effaYnn3wyz+P29vb629/+pvr166tXr17mgNeZM2c0c+ZMjRgxwuJ1s7OzNXLkSMPRecOGDdPQoUPz7aV+/fr6+uuvNXLkSK1atUrSzaP7fv31V3Xu3DnfdUuWLNEDDzxQ6HOtWLGiRo4cqZCQEA0YMEA3btyQdPMYOEtfG3d3d7m7u0vKG9iy5n4l6YsvvjAH2G4p7Li94pSSkiJPT0/NmzdPtWvXtjjn9p3uTp48mSf406tXL7399tsWw1G31K1bV3Xr1tWQIUPyvB75SUhIkLOzs77++muLIURJatSokSIiItShQwfzDlvbtm3T2bNnVb169Xyv/fLLLxfasyQ5ODioffv2at68uUJDQ3XkyBFJ0m+//aZRo0bluwtg7tDh1KlTCw2VBgYGKjAwUP379y/wNZo4caI5SCpJjz/+uKZNm5ZvwLNixYr68MMPFRAQoAkTJki6+dp+9tlnCgsLyzP/4MGDhkBsly5d9M477xTYu6enp5599lk9++yzSktLK3AuAAAAAAD3g4J/4gAAAAAAAHCfys7OVmJionbu3KmwsDB169bNHIKSJDs7O7333nt5dia63XfffWdY079//wKDXbe4uLhoypQphmt/9dVXNvXfu3dvi8Gu2/n7++u9997L03NGRobF+atWrTIEQdq3b19gsOuWMmXKaMKECSpfvrx5rLDnY2vQqnnz5vrHP/5hrrdv357nCMO/sm+//TbPaxYcHKyGDRuWUEeWjRkzJt9gV24zZswwh/Gkm8Gid955p9CQ1C1OTk5yc3Ozqbf8gl23VK1aVT169DDXOTk52rZtW6FrrO1Zkjw8PDRu3DhznZ2draVLl+Y7//z58+a/e3p6Fhrsup3JZMr3e9TFixf1ww8/mGtfX19NnTq1wJ37bunXr59atWplrn/99VddunQpz7yYmBhD/fTTT1vbuiRZ1QsAAAAAAPc6wl0AAAAAAOC+17dvX9WpU8fwp169egoJCVGvXr0UERFhOIbQyclJEydONIQbLJk/f775787OznrllVes7qlKlSpq3769ud60aVO+oavcHBwcNGTIEKvmPvXUU2rQoIG5TkhI0Lp16yzOnTdvnvnvJpNJr732mlX3kG4G1m4PzRw/flznzp2zer012rVrZ6h3795dpNe/Wy5fvqxz584Z/kRFRenAgQP6/vvv1bNnT7333nvKyckxr3F0dNSYMWNKsOu8qlSpok6dOlk1NzExUStWrDDXdnZ2euedd2Qyme5Kb5UqVVLXrl2tmtumTRtDffjw4SLvp2HDhvL19TXXt3bpK0xKSorS09OLpIfvvvvOsKvX0KFDVa5cOavX9+vXz/z3zMxMbdiwodA1V65csa1JAAAAAADAsYwAAAAAAADWcnNzU4cOHTRgwABDMMOSU6dOGXbcadWqlVxcXGy6X0hIiH755RdJUkZGhvbv36+HH3640HUtWrSQl5eX1ffp0KGDDh06ZK537dqVJyiVmpqqffv2meugoKB8j5HLT0hIiKZPn26ud+7cafMOXTdu3FBqaqpSUlLMx13ekjsYFBkZadO1S8qoUaNsmu/o6KjJkyercePGd6mjO9O2bVurd7DasWOH4evXvHlzVatW7W61phYtWqhMGet+FFqzZk1DHR8ff0f3zMnJMb9XLQUzvby8zDtbFfReDQgI0Pr16yXdDFFNmjRJb7311p8Owm3evNn8d3t7e5t31XrooYdUpkwZ8+5rO3fuzBOgCwgIMNRffPGFWrVqpQoVKtxh1wAAAAAA3H8IdwEAAAAAAFgpLS1NdnZ28vHxKXTurl27DHWVKlVs3qkqd1AmKirKqnCXraGf3EfVHThwIM+cffv2GXb58fPzs/n53L7zlCRFR0cXuubSpUv67bfftHHjRh0/ftwQmCtMcnKyTf39FQQHB+uDDz6w+ujD4lSvXj2r5+beVc2WowbvRK1ataye6+7ubqivXr1q1bqMjAxt2rRJq1at0uHDh3Xq1Cmrd9sr6L367LPPas6cOeZ63rx52r59u7p37642bdrYHLKUpPT0dEOgs3LlykpISFBCQoJN13FzczOvsfR5rlOnjmrXrm0+zvXs2bNq3769unTpoqefflpNmjSxOnQHAAAAAMD9iv9yBgAAAAAA971PP/00TyDq+vXrio6O1oYNG7R48WKlpaUpMzNTCxYs0PHjx/Xll1/Kyckp32teuHDBUM+ePVuzZ8/+U30mJSVZNc/f39+m6+aeb+notNjYWEO9bNkyLVu2zKb75FbQ87l+/bqmTZumuXPnGkJltrA2lFMa2dnZycXFRe7u7qpRo4YaNWqkdu3a2RSgKm7ly5e3eu6lS5cMtS3hqzuRO7BVEAcHB0N9a2eqgqxevVphYWF3fNRoQe/VoKAghYaG6uuvvzaPHTt2TOPHj9f48eNVpUoVBQcHKzg4WI888ojq1q1b6K5ely5dMnyuYmJi9MQTT9xR77ckJiZaHP/www/Vt29f83GSV69e1dy5czV37lw5OzurUaNGatKkiR566CE9+OCDcnV1/VN9AAAAAABwryHcBQAAAAAA7ns+Pj4WjwcMDAxU27ZtFRoaqv79+5uDGzt27NC7776rjz/+ON9r5hd0+DNSUlKsmmdrOMLNzc1QWwpdFefzSUlJ0cCBA7Vz584/df3cO4WVVnPnzr3rO1cVB1uOHc39frIlfHUnrD0u8k5EREQoLCzsT12jsPfqm2++qapVqyo8PDxPECw2NlaxsbFavny5JKlSpUp69tlnFRoaqsqVK1u8XnF+nps0aaJvv/1Wb7/9tg4fPmx4LDU1VVu3btXWrVsl3TxytGXLlurdu7eaN29e5D0CAAAAAPBXRLgLAAAAAACgEP7+/vr888/1/PPPKzU1VZL0888/q23btnr66actrrnT3aYKYm1YqbBdewqbb2l9cT6fyZMnG4JdJpNJzZs3V+vWrdWgQQNVrlxZnp6ecnR0NOyydO7cuT+9+xBKhq3v2dJi3759eUKevr6+6tixo4KDg+Xn5ycfHx85OTnJ0dHR8Dz79Omj7du3W32vF198Ud26ddPSpUu1evVq7d692/z96HYXL17U7NmzNX/+fI0ePVqhoaF55tyNz3NBGjRooMWLF2vz5s1aunSptm7davGI1YyMDK1Zs0Zr1qxR69atNWHCBHl5eRVrrwAAAAAAlDaEuwAAAAAAAKxQq1YtDR8+XBMmTDCPhYWFqVWrVhaPZ8wdSPjkk0/UoUOHu96nZPtxhMnJyYba0i5KuZ/PqFGjNGjQINubK0RcXJy+++47c122bFlNnz5dLVq0KHTttWvXiryf+01WVlax3Cf3+8naI0dLm/DwcGVnZ5vrHj16aOzYsSpTpvAfu97J+9XNzU09e/ZUz549dePGDR07dkx79+7Vzp07tXnzZsOOXBkZGfroo49kMpnUt29fw3Vyv/4tWrTQV199ZXM/tjCZTHrsscf02GOPSbq549jevXu1a9cubd26VSdOnDDMX7dunQYOHKhvv/3WqtcTAAAAAIB71d3bjxwAAAAAAOAe07t3b1WvXt1cx8bGav78+Rbnli9f3lCfOXPmbrb2p+6Ve37u3i2N3a3ns27dOkNY5uWXX7Yq2CXdDIbd73KHYG7cuGHT+txBv7ulQoUKhvrkyZPFct+ilJqaqi1btphrPz8/q4NdknTp0qU/df8yZcqoQYMG6tWrl6ZMmaLNmzfriy++UFBQkGHelClT8nxdfXx8DPXp06f/VC93okqVKmrfvr3efvttLV26VCtXrlSvXr0MR2ju379fP/30U7H3BgAAAABAaUK4CwAAAAAAwEoODg4aNmyYYWzWrFkWd+AJDg421Bs3bryrvd1u3759Ns3fv3+/oc4dDpFuPp/bj5TbtGmT1cdE2iJ3aKx169ZWr92zZ0/RNvMX5Orqaqht2cUtIyNDUVFRRd2SRQ8++KChtuV4wtLi/PnzhuMNW7ZsaXWwKzo6+k+Hu3Kzt7dXq1at9M0336h+/frm8dTUVG3atMkw19XVVYGBgeY6JiamWAOolvj7+2vs2LF67bXXDOO///57CXUEAAAAAEDpQLgLAAAAAADABs8++6xq1KhhrhMTEzVv3rw88xo0aGA4+mzv3r06fvx4sfS4ceNGJSQkWD1/6dKlhvqhhx7KM8fb29sQGLl48aL++OOPO28yH7nDSG5ublaty8rK0pIlS2y6l6Ojo6HOyMiwaX1p5OLiYjgm1JYdsbZs2aL09PS70VYeTZs2NQShNm3apOjo6GK5d1HJvRuWte9VSVq8eHFRt2Pm6OioTp06GcbOnTuXZ17uHfEWLlx413qyRffu3Q21pd4BAAAAALifEO4CAAAAAACwgZ2dnYYMGWIYmzNnTp5Qkp2dnV544QVznZOTo3Hjxtl8TN6dyMzM1IwZM6ya+/vvv+vQoUPm2svLK9/dsnr16mWoP/74Y6WkpNxxn5a4u7sb6lOnTlm1bv78+TaHQHLf61441tFkMqlevXrm+ty5czpx4kSh67Kzs61+zxQFd3d3dezY0XD/8ePHF9v9i4KHh4ehtva9GhMTYzEQWpTs7e0Nde4goyT17NnTELCbP3++Ve+Vuy337meWegcAAAAA4H5CuAsAAAAAAMBGHTp0kL+/v7lOSkpSREREnnkvvfSSYfeubdu2acyYMTbvjnT+/HmtX7/epjXz58/X6tWrC5xz9uxZvf/++4axHj165Bum6Ny5swICAsx1ZGSkhg4dqqSkJJt6i4+P16pVqyw+VrduXUM9e/ZsZWVlFXi99evXa/LkyTb1IEk1a9Y01LmPrvuratasmaH+7LPPCl0zadKkYj/WcuDAgXJwcDDXa9eu1fjx45WdnW3V+rS0NJuOnSxqfn5+cnZ2Ntfr1q0rdHe++Ph4DRs2zKa+IyIiFB8fb/X8rKysPLvx5X6vS1L16tXVtWtXc52enq6BAwfatNubdHPHu/x2Ilu9enWeY18L8/PPPxtqS70DAAAAAHA/IdwFAAAAAABgI3t7+zy7d0VEROQJObm6umrKlCmGnWiWLFmiLl26aMmSJQWGvOLi4rRo0SINHjxYTz75pFasWGF1fx4eHsrKytKIESM0Y8YMpaamGh7PysrS8uXL9cILL+jSpUvm8erVq2vw4MH5Xtfe3l5Tp06Vq6ureWzz5s3q1KmTvvnmG127di3ftYmJiVq+fLlGjRqlVq1a5btz0eOPPy4XFxdzvXPnTr366quKjY3NMzchIUGTJ0/WK6+8ooyMDHl7e+d7f0tCQkIM9cSJEzVr1izt3btXZ8+e1blz58x/bn+dSrtu3brJzu7/f+y3evVqjRkzxmIILzIyUkOGDNHs2bMl5d3N7G4KCAjQG2+8YRibO3euevfura1bt+Yb8jp69KimTJmiNm3a6PDhw8XRqkWOjo568sknzXVmZqb69+9v8bjSrKwsrVy5Ut27d9ehQ4dkMpnk6elp1X3Cw8PVunVrjRgxQsuXL1diYmK+cyMjIzV48GDt27fPPFa5cuU8gb9b3njjDdWpU8dcnz9/Xt26ddOUKVMsfuZuSUtL0+bNmzVu3Di1atVKY8aMsThv27Ztev7559WtWzfNmjVLkZGRysnJsTj32rVr+uKLLzRhwgTDeOfOnfPtAwAAAACA+0GZwqcAAAAAAAAgt44dO2rGjBk6c+aMpJvBhNmzZ2vkyJGGeY8++qjCwsL01ltvKSMjQ9LNAMbrr7+uN998U/Xq1VPFihXl7Oys1NRUJSUl6dSpU7py5cod9/baa69p0qRJunr1qj777DN9/vnnaty4sXx8fHT16lUdOnRIly9fNqxxdXXV5MmTVa5cuQKvHRgYqGnTpmn48OHm3YcuXLig999/X+PGjVPt2rVVpUoVubq6Ki0tTcnJyTpz5owuXLhgVe8eHh4aMmSIYSeutWvX6o8//lCDBg3k5+enGzdu6MKFCzp48KB5Vy9nZ2d9+OGHevXVV61+nR555BE1bNhQBw8elHTza5jfDmBNmza960fpFRU/Pz/169dPX331lXls8eLFWrZsmZo0aaIKFSro+vXrOn36tOEowcGDB2v37t3avn17sfXau3dvRUdHG3a+27Vrl0JDQ+Xp6an69evLy8tLWVlZio+P1/HjxwsMNxW3YcOGafXq1eYAZVxcnAYMGCBfX1/Vq1dPTk5OSkxM1IEDBwzhukGDBtn0Wqenp2vFihXmkKevr6+qV68ud3d3OTo66urVq4qMjFRUVJRhnb29vcaPH5/nqMNbXFxc9Pnnn+ull14yvxfS0tI0c+ZMzZw5U35+fgoICJCbm5uysrJ09epVxcTEKCoqqtAd9W538OBBHTx4UJMnT5arq6sCAwPl7e0tFxcXpaenKzY2VkeOHFFmZqZhXadOndSyZUur7wMAAAAAwL2IcBcAAAAAAMAdsLe31+DBgw07D82dO1ehoaF5dpDq1KmTatSooddee01nz541j2dmZlp9ZJktOyr5+/tr5syZGjJkiJKTk3X9+nVt3bo13/ne3t6aMWOGGjVqZNX1mzdvrkWLFmnUqFHmYJR0c3eiI0eO6MiRI4Veo6DnM2DAAEVFRWnhwoWGa+/fv9/i6+Xp6anw8HBVqVLFqv5v99lnn2ngwIGGkNO9YMSIEYqKitLvv/9uHktPT9e2bdsszh8wYIBGjhypPn36FFeLZmPGjFFAQIDCwsJ0/fp183hiYqI2b95c7P3Yolq1apo6daqGDx9u2CEvJiZGMTExFtf079//T7/WBV3/Fg8PD02cOFEtWrQocF6VKlX0448/6t1339Wvv/5qeCw6OlrR0dGF9mPL96dr165ZdQToP/7xD73zzjtWXxcAAAAAgHsVxzICAAAAAADcoU6dOql69ermOjU1VV9++aXFuUFBQVqxYoUmTZqk4ODgfHfSucXOzk7169fXyy+/rJ9++klvvvmmTb09/PDDWrJkibp27SpnZ2eLc5ydndWjRw+tWLFCTZo0sen61atX148//qiZM2eqefPmcnR0LHRNzZo11adPHy1YsEDh4eEFzv3www81adIk+fv75zvH29tbvXv31rJly/TII4/Y1P8tfn5++uWXXzRp0iS1b99eNWvWlJubW6Ffn9LO0dFRU6dO1TvvvKMKFSpYnGMymdS0aVPNmTNHo0ePLuYOjXr06KE1a9bopZdeyrffWxwdHfXYY49p4sSJCg4OLqYO89eyZUstWrRITzzxhEwmk8U5ZcqUUYsWLRQREaF//etfNl1/zpw5Gjp0qIKDg1W2bNlC51etWlUDBw7UqlWr1Lp1a6vu4eLiosmTJ+uXX35Rp06d5OHhUeiaihUrqmPHjvrPf/6jTZs2WZwzaNAgjRs3Tu3atZOPj0+h13RyctLTTz+t77//Xu+///5f/nMIAAAAAEBRMOXk5OSUdBMAAAAAAAD3m2vXrmnfvn26cOGCkpKSlJ6eLmdnZ3l6esrf3181a9aUq6urVdeaNm2aISw1d+5chYSEmOvU1FTt2rVLFy5cUHx8vNzd3VW1alWFhITIycmpSJ5Penq69u3bp/PnzysxMVGpqalydnaWu7u7qlWrppo1a8rLy8vm6+bk5OjYsWM6ePCg4uPjZW9vLx8fH/n6+qpJkyaEP6yQnZ2tgwcP6tixY0pISFDZsmVVqVIlBQUFydfXt6Tbs+j48eM6ceKE4uPjdfXqVTk5OcnLy0v+/v7m4w5Lo8uXL2vXrl2KjY1VWlqavL29VaFCBTVu3DjPjn53IjMzUydPnlRUVJTi4uKUkpIi6WY4q2LFiqpTp46qV6+eb8jMWtnZ2Tp27JhOnjyppKQkJScnq2zZsnJ1dZWvr69q1qx5RzvlxcTE6PTp0zp//rySk5OVkZGhcuXKycPDQzVr1lTt2rULPRoWAAAAAID7DeEuAAAAAACAv7jCwl0AAAAAAAAA/po4lhEAAAAAAAAAAAAAAAAASiHCXQAAAAAAAAAAAAAAAABQChHuAgAAAAAAAAAAAAAAAIBSiHAXAAAAAAAAAAAAAAAAAJRChLsAAAAAAAAAAAAAAAAAoBQi3AUAAAAAAAAAAAAAAAAApRDhLgAAAAAAAAAAAAAAAAAohUw5OTk5Jd0EAAAAAAAAAAAAAAAAAMCInbsAAAAAAAAAAAAAAAAAoBQi3AUAAAAAAAAAAAAAAAAApRDhLgAAAAAAAAAAAAAAAAAohQh3AQAAAAAAAAAAAAAAAEApRLgLAAAAAAAAAAAAAAAAAEohwl0AAAAAAAAAAAAAAAAAUAoR7gIAAAAAAAAAAAAAAACAUohwFwAAAAAAAAAAAAAAAACUQoS7AAAAAAAAAAAAAAAAAKAUItwFAAAAAAAAAAAAAAAAAKUQ4S4AAAAAAAAAAAAAAAAAKIUIdwEAAAAAAAAAAAAAAABAKUS4CwAAAAAAAAAAAAAAAABKIcJdAAAAAAAAAAAAAAAAAFAKEe4CAAAAAAAAAAAAAAAAgFKIcBcAAAAAAAAAAAAAAAAAlEKEuwAAAAAAAAAAAAAAAACgFCLcBQAAAAAAAAAAAAAAAAClEOEuAAAAAAAAAAAAAAAAACiF/g8alFBb799D6gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 711, "width": 1211 } }, "output_type": "display_data" } ], "source": [ "with pnbd_map.model:\n", " prior_idata = pm.sample_prior_predictive(random_seed=45, samples=1)\n", "\n", "obs_freq = prior_idata.observed_data[\"recency_frequency\"].sel(obs_var=\"frequency\")\n", "ppc_freq = prior_idata.prior_predictive[\"recency_frequency\"].sel(obs_var=\"frequency\")[\n", " 0\n", "][0]\n", "\n", "# PPC histogram plot\n", "clv.plot_expected_purchases_ppc(pnbd_map, ppc=\"prior\");" ] }, { "cell_type": "markdown", "id": "1fe9efa2-ad01-4aeb-b498-fe92335e0d00", "metadata": {}, "source": [ "Here the `ParetoNBDModel` is simulating customer purchases from the prior distributions to compare against the obseved data. The default priors look reasonable for non-repeat customers, but do not model repeat customers well.\n", "\n", "Let's fit our model and run a *posterior* predictive check for comparison:" ] }, { "cell_type": "code", "execution_count": 14, "id": "5961724e-9f9e-4334-bbc8-c9b7bf1a0ab3", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3b1b92871d12460ea1fe21e66e812a77", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [recency_frequency]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "51a20fc25c8445fc9af52cc263ad8402", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [recency_frequency]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "192eee871dc041b2941f2fefa50eba61", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACXcAAAWPCAYAAADpjVXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3QU1fvH8U96QhKSUEKvoUlvUpWOFEEC0gVFEBFBsYCiCCpfGxZEEEWaIKIUAUGadBSU3jvSQ4ckkEb67w9O9pfZ3SS7IWWB9+sczsmdnblzJ7t395J59nmckpOTkwUAAAAAAAAAAAAAAAAAcCjOuT0AAAAAAAAAAAAAAAAAAIAlgrsAAAAAAAAAAAAAAAAAwAER3AUAAAAAAAAAAAAAAAAADojgLgAAAAAAAAAAAAAAAABwQAR3AQAAAAAAAAAAAAAAAIADIrgLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IAI7gIAAAAAAAAAAAAAAAAAB0RwFwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOyDW3BwAAAAAA95vt27fr2WefNbXr1aunOXPm5OKI8LAYOXKklixZYmp/+umn6tKlS5r7T5o0Sd9++62pPXToUL3yyivZOsacwBzMGXFxcTp27JguXLig69evKyYmRq6urvLz81PevHlVvnx5lSlTRs7Otn93cPHixXrnnXdM7c6dO+uzzz7LjuE/kO63319MTIx+//13/f333zp27JjCwsIUHR1t2Of48eO5NLr7Q2Jiok6ePKmzZ8/q2rVriomJkZOTk/Lmzau8efOqTJkyKl++vFxd+TMvAAAAAAAPKv7XDwAAAKRiHjiRFldXV/n6+srPz09BQUGqUaOGWrZsqXLlyuXAKAHHFhISopYtW9q0b548eZQ3b14FBgaqWrVqqlu3rlq1aiV3d/dsHiUAa+7cuaM//vhDK1eu1K5duxQXF5fu/t7e3qpVq5Y6dOig1q1by8fHJ4dGCke3Y8cOvf7667px40ZuD+W+k5CQoDVr1mj58uX6999/LQLizHl6eqpq1apq37692rVrp3z58uXQSIEHT4sWLXTx4sV77ofAcwAAAABZieAuAAAAIBMSEhIUFhamsLAwnT17VuvXr9f48ePVsGFDvfvuu6pQoUJuDzHbhYSEGALhihUrlm4GIcCa6OhoRUdH68qVKzpw4IDmzp2rgIAA9evXTwMHDpSLi0tuDxFZbN26dTp69Kip3apVKz3yyCO5OCJId7MDzZ07V999953CwsJsPi4qKkpbtmzRli1b9MEHH6h379566aWX5Ofnl42jhaM7ceKEBg4cqDt37uT2UO47y5Yt09dff61Lly7ZfMydO3e0a9cu7dq1S59++qk6deqkV199VYUKFcrGkTqOxYsXG4JxOnfurOLFi+fiiAAAAAAAyFoEdwEAAABZ6N9//1XXrl31wQcfPPCBThcvXjSUe6tXr94Df83IGWFhYfr666+1adMmTZkyRf7+/rk9JGShdevWWQSGEtyVu65cuaJhw4Zp37596e7n4eEhLy8vRUVFKT4+3uLxO3fuaObMmVq0aJF++eUXslk+xD7++GNDYJeXl5fatGmjihUrysvLKxdH5rhu3bqlt99+Wxs3bkx3Pzc3N3l7eysmJkaxsbEWj8fHx+u3337T8uXLNWXKFDVs2DC7huwwlixZoh07dpja9erVI7gLAAAAAPBAIbgLAAAASEfp0qXVr18/i+0JCQkKDQ3VgQMHtG3bNiUkJJgei42N1XvvvaeAgAA1b948B0cLOK5+/fqpdOnSFtsjIiIUEhKiLVu2WJTA2bt3r4YMGaIff/yRMo1ANjl16pT69euna9euWTzWsGFDNWvWTI0bN1aRIkVMJReTk5N17do1HTx4UH/99ZdWr16tW7dumY67deuWbt68SXDXQ+rChQvatm2bqe3p6akFCxY8FFlNM+vatWt6/vnn9d9//1k8Vr16dbVs2VKPP/64SpYsKV9fX9NjN27c0JEjR7R161atWLFC169fNz12584dXb58OUfGDzzImjVrpmbNmtl9XGBgYNYPBgAAAMBDi+AuAAAAIB2BgYHq1atXuvtcuHBB7733nuFGZmJiokaNGqV169YpT5482T1M5LD69evr+PHjuT2M+0qLFi1Uv379NB9PTEzU4sWL9dFHHxmyvezatUs//fSTXnjhhZwY5gPnlVde0SuvvJLbw8hyzMGscfXqVauBXdWrV9fIkSNVp04dq8c5OTmpUKFCKlSokFq1aqV33nlHCxYs0Hfffafw8PAcGDkc2e7duw3t1q1bE9iVjsjISA0YMMAisKtMmTJ666231KJFizSPLVCggJo0aaImTZpoxIgRWrZsmSZOnEhQF5CFqlatmuH/BwEAAAAguznn9gAAAACA+12JEiU0Y8YM1atXz7D95s2bmjdvXi6NCri/uLi4qFu3bvruu+/k7Gz8r+r06dOtlp4CkHmJiYl65ZVXLAK7nnzySf3yyy9pBnZZ4+Xlpeeee06rV6/WE088kdVDxX3mzJkzhnblypVzaST3h3fffVcnTpwwbKtXr55+++23dAO7zLm6uqpLly5auXIlgSgAAAAAADxgCO4CAAAAsoCrq6s++eQTubi4GLavXbs2l0YE3J8aN26s4OBgw7awsDCLTDAA7s3s2bO1f/9+w7a2bdvqyy+/lJubW6b6DAgI0KRJk/Tmm29aBGni4XH79m1DO2/evLk0Esf3559/6s8//zRsq127tqZPn24qg2qvPHny6IMPPtC4ceMyPZcBAAAAAIBj4S9tAAAAQBYpUaKEGjZsaNh28OBBQ4k5ABnr3r27xbbt27fnwkiAB1NERISmTJli2FawYEF9+OGHWRKU9eKLL9qV+QsPFvN1D4F+1iUmJmr8+PGGbV5eXho3bpw8PDzuuf/g4GA9+eST99wPAAAAAADIfa65PQAAAADgQVKzZk1t2bLF1I6Pj9f169dVokSJDI8NDw/Xvn37dP36dYWFhcnd3V358uVTqVKlVLVqVYusYJlx+/ZtHT16VOfOnVNERIRiY2Pl6ekpHx8fFSlSRKVKlVLJkiXv+TxZITk5WUePHtXZs2cVGhqqyMhI+fn5qWDBgqpVq5by58+fLee9cOGCDh06pCtXrigmJkZ58uTRo48+qipVqmTb+Y4cOaKbN2/q9u3b8vX1Vb58+VSxYkWVLVs2W86Z8rs9ceKErl+/roSEBPn5+ally5YqVKhQtpzTHlWrVpWrq6sSEhJM2y5fvpypvq5evaqDBw8qJCRE0dHR8vT0VLVq1fToo49meGxcXJz27duny5cvKywsTHFxccqXL58KFy6sOnXqyMvLK1NjMhcfH6/du3crJCREN27ckLu7u4oWLapatWo5xPORIi4uTgcOHDD9PqKiouTl5aWCBQsqKChI5cqVk6srf2ZIz6lTp3Ty5EmFhoaa5nv+/PlVvXp1FS1aNMfGsWjRIt26dcuwbfjw4fL398+yc9xLQM/t27e1e/dunTt3TjExMcqbN68KFSqkevXqZWkWqJya4ykuX76sw4cPKywsTGFhYZLuZrUqWbKkKlasmG2fazktOTk5y/vMiTWSNdm5JtiwYYPOnj1r2DZw4MAsXYc5amBdUlKSzpw5o+PHj+vmzZuKioqSs7OzPD09VaBAARUvXlxBQUHy9vbO7aEqISFBBw4cUEhIiEJDQxUXF6eAgAAFBgaqVq1a2ZaZ7tatW9qzZ4/OnTun6OhoeXt7q1y5cqpTp448PT0zPP7KlSum97eU97aKFSuqWrVqcnJyypIxPixr9Zxyr+vz69ev68CBAwoNDTW9T+bPn1/lypVTpUqVsux5v3Hjhvbu3aurV68qIiJCefPmVdmyZVW7du0sCUx1FLmxZkv53YaEhCg2NlZ+fn4qVqyY6tatqzx58mTZeVjTAwAA3J9YoQEAAABZqECBAhbbwsLC0g3uWr16tWbNmqX9+/crKSnJ6j7+/v5q0aKFhgwZouLFi9s9rg0bNmjOnDnatm1bmudIfa66deuqTZs26tChg+HG4Pbt2/Xss89aPW7Hjh2qWLFimv0WK1ZMGzZsyHCsFy5c0A8//KANGzbo5s2bVvdxcnJSlSpVNHDgQLVt2zbDPlOMHDlSS5YsMbU//fRTdenSRZK0dOlSzZgxQ8ePH7c47tlnnzXcMDL/PdSrV09z5syxeRx37tzRnDlztGjRIp05cybN/YoXL65OnTqpf//+dpVnatGihS5evGhqr1+/XsWLF1dMTIxmzJihefPm6fr16xbHBQYGOkQwkZubm/z9/XXjxg3TtpRAiNQmTZqkb7/91tQeOnSoXnnlFUnS5s2b9f3332vv3r0Wx7Vs2TLd4K6dO3dqxowZ2rZtm2JiYqzu4+7ursaNG2vo0KGqWrWqzdeWWmRkpCZOnKilS5cqPDzc6j716tXTsGHDVLdu3UydI73fka22bNmi2bNna+fOnWn+PiTJx8dHDRs2VHBwsJo1a2a4KWQ+91J755139M4776TZr7Ux2zoHR40apd9++83U7tKliz799NM0z5Wejz76yHCOtm3b6ptvvsnwuBs3bmjatGlas2aNLl26lOZ+5cqV07PPPquuXbtmW6BKikWLFhna/v7+at++fbae0xbnz5/XhAkTtGbNGsXHx1s87uLiohYtWuiNN964p+DXnJrj0t33rlmzZmn16tUWgTzmKlSooFatWqlr164qVqxYps+ZllOnTunFF19USEiIaVvhwoU1derUdD+/M2L+PmMurTluy7ogO9dIWbUmyCzzeejq6qpu3brdc7+2uNfPhpCQELVs2dLUtnWNFxoaqmnTpumPP/6wug5JzdnZWeXLl1ezZs3UuXNnlSlTxvB43759tWPHDqvHprVWTZH6uU7L2bNnNXnyZG3atMmi1GgKFxcX1apVS/379zf8PjKS3mfYuXPnNH78eK1bt84Q5J4ib9686tevnwYOHCh3d3eLx3ft2qVvvvlGO3futBpoWaRIEb355pvq2LGjzeM1dz+s1R1RdqzP4+Li9Msvv2jJkiU6duxYmucuWLCgOnfurIEDB2Y6IPHQoUP66quvtH37diUmJlo8nidPHnXp0kVDhw5VQECAJFl8tlh77lLc6/+vpLR/x7bKzjVbeu+7hw8f1jfffKO///7b6medu7u7OnTooNdee+2e/q+WFWv6ZcuWacSIEaZ2iRIltHbt2kwFDy5fvlxvvvmmqV2sWDGtW7fOYQOTAQAAchurJAAAACALZRQ4ldqVK1fUo0cPDRs2THv37k332PDwcC1evFht27bVd999Z/M5YmJiNGTIEA0ePFj//POPTeMLDw/XunXrNGLECEVGRtp8rnuVmJiocePGqV27dlq4cGGaN4uku99sP3TokIYNG6ZnnnlGoaGhmT5vZGSkBg0apLfeeivdGw5ZZceOHWrTpo2+/PLLdAO7pLs3TydPnqzWrVtr48aN93Te06dPKzg4WJMmTcrwhqojMH+t2nrDID4+XqNGjdKLL75oNbArPaGhoRo0aJD69OmjjRs3pnvTIy4uThs3blTXrl01duxYqze50rNv3z61b99es2fPTjOwS7r7eunTp48mT55sV/9Z4cKFC+rZs6cGDBigv/76K93fh3R3Lq1du1ZDhgzRH3/8kUOjTN/TTz9taK9evVpRUVF29xMfH6/ly5cbtmUUGCBJ06dPV+vWrTVr1qx0bxJK0n///acxY8aoU6dOunDhgt1jtNXFixd14sQJw7aOHTtaDRLIScuXL1fHjh21YsUKq4Fd0t3PibVr16pLly76+++/7T5HTs5xSZo5c6ZatGihKVOmZBjYJUknTpzQd999p759+9p9rozs2LFDvXr1MgR2VapUSQsWLLinwK7skhNrJGtyak0QGxurf//917CtSZMmCgwMzLZz5rZNmzapbdu2mjlzpk3rkKSkJB0/flw//PCDfvnllxwY4V3JyckaP368nnzySS1btizNwC7p7nvSrl279PLLL6tv377prl1tsWrVKj311FNavXq11cAu6W5mw4kTJ2rAgAGKjo42PPb111+rT58+2rFjR5oZ9C5fvqzhw4frk08+sXt8D8taPSfdy/r8r7/+0hNPPKFPP/003cAu6W5Wr6lTp6p169bavHmz3eOcNGmSunfvrn/++SfNz8Po6Gj9/PPP6tixow4ePGj3OXJbbq3ZZsyYoW7dumnz5s1pftbFxcVp8eLF6tSpkw4fPmz3ObJyTd+2bVtDVr4LFy5kak0mSfPmzTO0u3fvTmAXAABAOlgpAQAAAFnI2k2OlG8up3bq1Cn17NlT+/bts9qPj4+P3NzcLLbHx8frm2++0bvvvmtToNbQoUO1bt06q495eHgoICBA3t7eWVamI7NSbtrMnDnT6k39lExO1r4ZvWvXLvXs2VNXrlyx+7yJiYkaOnSoNm3aZHG+7Ciz8+eff2rAgAFWx+rk5CQ/Pz+rf9AODQ3VkCFDtHDhwkyd9+rVq+rXr59FcIGXl1eWlvjIKvHx8RY3U20tFzd69GhDpibpbmYNPz+/dF/np0+fVvfu3S1eCym8vLyUN29eiz6Sk5M1d+5cDRkyJM0bseb279+vAQMG6OrVqxaPWXsdJCcna+LEiZo5c6ZN/WeFbdu2qWvXrmkGyLm4uMjf3z/NgKDsKMuWGbVr1zZke4mOjtbq1avt7mfjxo2G7HGBgYF67LHH0tw/Pj5e77zzjr744guLm+/S/7+nWXufP3nypHr06JHhjdrM2rlzp8W2evXqZcu5bPX7779r+PDhunPnjmmbs7Oz/Pz8rP6OYmJi9PLLL+vUqVM2nyMn53hsbKzefPNNjRs3zurzL93NcOLr65sjn79Lly5V//79DaU4H3vsMc2dO9chsjWay6k1krmcXBMcOHDA8HqXcn8eZqedO3dq6NChFuVgpbufez4+Pmm+J+akhIQEvfnmm/rhhx+sznd3d/c0M6nu2LFDPXr00Pnz5zN17vXr1+vNN980vC5cXV3l7+9vdW24Y8cOvffee6b2J598oilTphg+fz08PNJ87c6ePVtz5861eXwPy1o9J93L+vyXX37RSy+9ZLVsecrnp7XyneHh4Xr55Ze1dOlSm8f5xRdf6Ntvv7Ua1GVtTly/fl0DBgywKajZEeTmmu27777T559/bvjdpsx7a3MpLCxMAwYMsCtYMqvX9O7u7hZZJs2DtGxx6tQpw5rUzc1NXbt2tbsfAACAhwllGQEAAIAsZH4j0s3NTQULFjRsi46O1ssvv2zxx/iUsi6PPfaY8uTJo+TkZIWEhGjFihWaOnWqIdvMokWLVLJkSb300ktpjmX58uXasmWLYVu9evX0zDPPqG7duoYSkomJiTp//ryOHz+uLVu2aOPGjYaSeClKly6tDz74QNLdcjWzZs0yPNavX780x+Pt7W11e3JysoYPH27xjd86deqoV69eqlevnunmc1JSko4ePaqlS5dq3rx5io2NlXS3hM3rr7+uOXPmGMpGZGTWrFn677//JN0tVzJw4EC1bNnSVL4jNjZW+/btU0REhM19puX48eMaPny44uLiDNufeuop9ejRQzVr1pSrq6sSExN1+PBh/fbbb1q4cKHpBnViYqLef/99lSlTxu4SfWPGjDEFElWpUkUDBgxQ48aNTQFTERER2rx5c6ZKfmaHgwcPWtxULVKkSIbHrV692vR8+vr66vnnn1fbtm1VtmxZOTk5KT4+XkePHrXImBYeHq4BAwYYvqXv4uKitm3bKjg4WLVr1zbduIqNjdWePXv0888/GwInN27cqAkTJmj48OHpjvH27dsaMmSIRVa8tm3b6plnnlGtWrXk5uZmeh3Mnz9fixYtMmUSqVChQoa/h3t18uRJDR482OIGV+XKldW7d281atRIRYsWNQWlhIeH68iRI9q6datWr15tyAyUIjg4WDVq1JB0N5An9XtlcHCwatasmeZ47qUknnQ3w9ZXX31lai9ZssQio1dGFi9ebGh37tw53TI8n3zyicUxFStWVJ8+fdSwYUNDqd5Tp05p1apVmjVrlum95ubNm3r11Ve1ePFiu0qy2uLIkSMW2+71d3wvTpw4oRUrVig5OVleXl7q06eP2rdvr0qVKsnZ2VnJyck6fPiwfvzxR0P2tLi4OL3//vv6+eefMzxHTs5xSfrggw8sMr15eHioe/fuat26tWrUqGG66Z6YmKjTp09r//79Wrt2rbZu3Zph//aYPHmyJk6caNjWrVs3ffDBB3Z9XqanWbNmhjWFrXPc2rogp9ZI1uTkmsDR5mF2Sk5O1pgxYwwBQb6+vurbt69at26tcuXKGYIKbt++rRMnTmjfvn3avHmzdu3aZbXffv36mcrJzpo1yxBI0q9fP5UuXTrNMaX1mTNx4kStWLHCsM3Pz08vvvii2rZta3otREZG6q+//tL06dMNWXQuXLigIUOGaNGiRXZlQ7x27ZpGjhypxMREeXp66tlnn1WHDh1UoUIFOTk5KS4uTv/++6/Gjx9vCCJZsWKFunXrphs3bmj27NmSpEKFCmnQoEFq0aKFae0UERGh1atXa/z48YagkPHjx6tdu3bKly9fuuN7WNbqOS2z6/PVq1frww8/NGwrWLCgevXqpebNm6tixYqmNcq1a9e0efNmTZ061RR4mJCQoPfee08VKlTQI488ku4YV65cqenTpxu2+fj46MUXX1T79u1N65mUOfHDDz/o2LFjunXrlt56663M/WJyWG6t2bZu3Wr6rPT399fzzz+v1q1bm/7fkpiYqL179+r77783/J8+LCxM48aN07hx4zI8R3as6SWpV69emjZtmikobdOmTbpy5YoKFy5s8/X/+uuvhnarVq0MawkAAABYIrgLAAAAyCIXLlzQtm3bDNuqVatm8a3pzz77zOKbzIMGDdJrr71m+Ga+k5OTSpQooZdeekmdOnWy+Gb3pEmT1KRJE1WuXNnqeH7//XdDu2/fvoZv+Kfm4uKiMmXKqEyZMmrbtq3i4+O1Zs0aixtThQoVUq9evSRJ27dvNwR3BQYGmh6zx8yZMw0lB93c3PTBBx9Y/eaus7OzqlSpoipVqqhTp04aNGiQqYTJnj17NHv2bA0YMMDmc6fcLKpfv76+++47iz/Ie3h4qH79+nZfk7mUTBCpA7vc3Nz0zTffqGXLloZ9XVxcVL16dVWvXl3t2rXT4MGDTaUzEhMTNWLECK1YscKujFsp19m/f3+NGDHCIgOEr6+vOnTokNnLy3LWMpTZ8jykXGeFChU0Y8YMi/JWbm5upt9taiNHjjQEfRQuXFjffPON1Zu/Hh4eatiwoRo2bKilS5fq3XffNQWiTZ8+XU888YRF/6l99tlnhrI7zs7O+vTTTxUcHGzYL/Xr4IknntDQoUMVFxeXqVIs9oiJidHQoUMNN4FcXFw0atQo9e7d22qWIX9/fzVq1EiNGjXS8OHDtX79eotMaw0aNFCDBg0k3c1cljrwo379+jaVOMysTp06acKECaYbULt27dL58+dVsmRJm46/ceOGxQ3tzp07p7n/6tWrDSXEnJycNGzYMA0aNMhq9pWgoCANHTpUnTp10osvvqjTp09LunsjfPz48RozZoxN47SVeVYZX19fFS1aNEvPYY+U13Tp0qU1bdo0i+fFyclJVatW1VdffaXSpUvr22+/NT22c+dOHTt2TJUqVUr3HDk5xxcuXGhxk7hKlSqaPHmy1SBVFxcXlS9fXuXLl1fXrl119epVi+CSzIiPj9eYMWMMY0l5LQ4ePPie+0+tWrVqqlatmql9L3M8p9ZI1uTUmkCS1TJejlgeMyscOHDA9L4m3Q2WWrBgQZrBV3nz5lXdunVVt25dvfDCCzp//rwuXrxosV/q9dPKlSsNz3+LFi3sfq727NmjadOmGbZVrFhRM2fOtAg48PHxUfv27dWmTRt9/PHHhgxYJ06c0Pjx4zVy5Eibz50y9iJFimjGjBkKCgoyPO7u7q6mTZuqbt26euaZZ3T06FHTY99++60pi2GjRo00adIki9eur6+vunXrptq1a6tbt26mYMjIyEgtW7Ys3S9nSA/HWj03ZGZ9fuHCBY0aNcqwLeV16Ovra3GOwMBAdevWTR06dNCIESO0du1aSXcDpN966y0tW7YszQyS4eHh+t///mfYVrJkSc2ePdti3ZAyJ5544gmNGTNGixYt0v79+234LeSu3FyzpWTSqlmzpr7//nuLIEsXFxfVrVtX06dP17vvvmv4PF+xYoXefvvtdAMzs2tNL91dR7Vs2VJr1qyRdPf/qAsWLNCrr75q07XHxMRYZI/LzN8RAAAAHjaUZQQAAACyQEJCgkaNGmVRrqJVq1aG9tWrV61mgHnjjTes/gE5RZEiRfTjjz8abmgkJCRoypQpaR6TOiuEm5ubXnvtNVsuxbT/k08+abWcR1a6ffu2Jk+ebNg2btw4m0oypNwsT/3t/1mzZllkxspIiRIlNGXKlCzPjpPamjVrdPLkScO2sWPHWgR2mWvYsKG+/PJLw7ZLly5pyZIldo+hffv2evvtt9N9nTmCrVu3WgQmBgQEqE6dOjYd7+fnZzWwKy3//vuv4Yalr6+vfvzxx3QzSaXo1KmTIYtPcnKyRXaD1C5fvmxxbcOGDbMI7DLXtGlTi5tr2WX+/PkWgRWfffaZnnnmGZvKxzk5OalVq1Z2Z5fLToUKFVLjxo1N7eTkZLvm0LJlywyZ5MxLPaaWmJiozz//3LDtjTfe0ODBgzOceyVKlNDUqVMNN2d/++03u0rv2OLatWuGtp+fX5b2nxm+vr6aPn16hgF3Q4YMsQiAyajMZk7O8djYWE2YMMGw7ZFHHtHPP/9sU/ZB6e7rtX///jbtm5aIiAi9+OKLhvWGm5ubPv/88ywP7MpKOblGSktOrAkky3no7OxsNTDjQWAelNyjR490s2qZK1mypBo2bJjFo7L0/fffG8p55s+fXz/++GO6mWRcXFw0evRotW7d2rD9l19+sfu9283NTVOmTLEI7ErN29vbIrBn165dCgsLU+nSpTV58uR0X7tBQUEW7y9//vlnuuN6WNbq6fn2229VsWJFu/6Zv5elxd71+cSJEw3ZX5s1a6avv/46w/cPLy8vjR8/3pAh8MSJE2mWKpbultpL/Tr29PTU9OnT0w0Id3V11UcffaRGjRrZcDW5yxHWbMWKFdPUqVPTDdJycnLSe++9Z3gvio+P1/r169PtO7vX9M8884yhvXDhQpvLV69YsUK3b982tcuWLXvfBmkCAADkJMf+qz4AAABwHwgJCdELL7yg7du3G7bny5fP4huov/76q6EsjZ+fn83f7C9atKjFt2HXrVtnUbooReo/mPr7++faDZH0/Prrr4ZSSi1bttSTTz5p8/E1atRQx44dTe1r166le5PCmrffftuuLFiZYV42rF69ejZnMWnVqpVFkOBPP/1k1/nd3NwsbgY6mqSkJC1cuFAvv/yy4eaqJA0YMEAeHh429fPyyy/bHNglySJQY+jQoSpbtqzNx/ft29cQkLJ27do0b+wsXLjQEABaunRpm7NXBAcH2xzgllnx8fGaOXOmYVuHDh301FNPZet5c4L5fPv999+VnJxs07HmgWDplXRctWqVIcNMlSpV9MILL9g8zhIlSui5554ztWNjYy0yG9wr89I8efPmzdL+M2PQoEGGskdpcXZ2Vrdu3QzbDh06lO4xOTnHFy1aZChp7Orqqq+++irbP2NSu3Tpknr37q1//vnHtM3Pz08zZ850+Lmck2uktOTEmkCSYe0j3Q06tOVm+/0o9XpUksOUgE7t3LlzFhkahw8frvz582d4rJOTk0aPHi0vLy/TttjYWKtZSNPTs2fPDLMQStKjjz5qNbhmxIgRNr12O3XqZGgfPXrUYt2V2sOyVs8N9q7PL126pJUrV5raXl5eGjt2bLplolNzd3e3KJU4f/58q/smJSVpwYIFhm0vvPCCSpUqleF5nJ2dNWbMGJvHlVscYc02fPhwm4Lsvb29DfNISn/9kxNr+gYNGqhcuXKm9rVr17RhwwabjjUvyUjWLgAAANsQ3AUAAACk49q1a/r1118t/s2ZM0cTJ07UgAED1LZtW/3777+G45ydnfW///3P4kbEX3/9ZWh37NjRaqmDtHTt2tXQZ2JiorZs2WJ139TfJL5586auXLli83lyyvLlyw3tvn372t1H+/btDe0dO3bYfGyBAgXUvHlzu89pj4iICFPZjRR9+vSxq49nn33W0D579qxFabX0tGjRIt3MEzlhw4YNVufS9OnTNWbMGLVq1Urvvfee7ty5YziuVq1ahhsn6XFzc8swC1ZqoaGh2rp1q6nt6elpETiSEVdXV7Vp08bUTkpK0u7du63ua37Do1u3bnJzc7P5XObfkM9q+/fv19WrVw3bHDnLjz1atmxpeK+9dOmSRRldaw4ePKgTJ06Y2nny5FHbtm3T3N/8Pa137952Z8u7l/c0W6QOnpFkCEjIDdYCttJTu3ZtQzt1uTdzOT3HzTPgtG7dOt0sPFnt8OHD6t69u+E1W6xYMf3666+qV69ejo0js3JyjWRNTqwJUjjaPMxO5hmFMgrIzA1//fWXIeDX39/frnLVhQoVsvhs2Lx5s11jsOe9KXX2JelulrEWLVrYdGyJEiUM8yomJsZQttbcw7BWzy32rs9Xr15tyIz0xBNPqFChQnads379+ipYsKCpvXv3bqvBfSdOnDAEPrm4uKhHjx42n6dMmTI5knHvXuT2ms3f39+wvsiIPeufnFrT9+7d29CeN29ehsccOnTI8Dng6elp1//fAAAAHmauGe8CAAAAPLzOnj2rDz74wK5j3N3dTcEqqUVHR+v48eOGbeZlXDLi7e2txx9/3HADee/evVZvCFWvXt30zfikpCS9+uqr+uqrr2zKjpITwsLCDKUKPTw8MnXzuUqVKob2vn37bD62Tp06hlIx2WHfvn2GmyZubm5236SqV6+eAgICFBYWZtq2Z8+eDEuYpXCEMhezZs2y+5gaNWrou+++k7u7u037V6xY0a5AgF27dhlu5tauXVve3t72DlOVK1c2tPfu3Wsxt2NiYixKc2ZUltNcixYt5OLiYlH+NauYZx+sUqWK4Rv59zN3d3d17NhRc+bMMW1btGhRhjcezcsqtWnTJs0siNaCfh5//HG7xxoUFCRPT09ToKM972m2MA8ojImJydL+7VWhQgW75q35Z1hERESa++bkHI+Li7N4rnIyU9amTZv0+uuvGzKzVa1aVT/88EOuB/faIqfXSNbkxJoghaPNw+xUvXp1Q3vRokWqVKmSevXq5TClos2D8Js1a2bz2iNFmzZtDJkeDx06pLi4OJv68fPzU4UKFWw+l3mZ19q1a9v1uyxSpIjCw8NN7bTeRx+WtXpGmjVrpmbNmtl1jC2lf+1dn5sHDj322GN2HZ/ikUce0fXr1yXdzax3+vRpi/Xe/v37De3q1avblRlXupt92J4A25zkCGu2OnXq2JXdzJ71T06t6Tt16qSvvvrKlN3vn3/+0blz59LN8GaetevJJ590iCyyAAAA9wOCuwAAAIAsVK9ePY0aNcpqWZX//vvP8G1rJycni5sdtqhatarhxqX5zdAUPXv2NJQ92b9/v9q2basmTZqoVatWatCggYoVK2b3+bPKgQMHDDfdfX19Lcp/2ML82+YpNytsYc+NtMwyf34qVKhg9w3DlNdK6hskaT3v1uTEdWYlf39/Pfvssxo0aJBdN/TsvU7zG1dxcXEWNxxscerUKUPb2mvw5MmThvmfJ08elS5d2q7zeHl5qXTp0hbnyypHjhwxtGvVqpUt58ktXbp0MQR3rV27VpGRkWkGa8XFxRnKH0npl2Q8c+aMofyYq6urzeVpzLm5uZluFIaGhiohISHLbm6bZ5RM7+ZgTrD3c8g8OCsyMjLNfXNyjp8+fdoi86AtN/ezwty5c/Xxxx8bAj+bN2+u8ePH3zelzHJ6jWRNTn5W2vM6vt9Vq1ZNVatWNWVqSUxM1NixYzVjxgw9+eSTatKkiWrUqGH32igrmb9OzDNj2cL8mNjYWJ07d07ly5fP8NgiRYrYVZbTfF5bK9Noz/HmZUJTPCxr9YxUrVo1W8rG2XttBw4cMLSPHz+eqc+01F8Wke4+H+aBP8eOHTO0zYOcbZGZ9/Cc4ghrtuxc/+TUmt7Hx0fBwcGaO3euJCk5OVnz5s3T22+/bXX/yMhIi7U1JRkBAABsR3AXAAAAkAmurq7y8fFR3rx5FRQUpBo1aqhVq1bp3sC5deuWoe3n52dRqsYWxYsXT7ffFM2bN1ePHj00f/5807aEhARt2LDB9MfrwoULq2bNmqpXr54aNGiQo+Wjbty4YdG2N0uaNWn9PqyxJ1tMZpmPJ7MBdbY+79b4+fll6pw5wcvLS76+vgoMDFS1atVUt25dtW7dWh4eHnb3Ze/zaf4a3LVrl3bt2mX3ec1Ze25SZ8iQ7t6ItedGbopixYplW3BXaGiooe0oWf6ySuXKlVWpUiXTDcs7d+5o5cqV6t69u9X9161bZ3jeSpYsqbp166bZv/nN6oSEhCx5T5PuZtbIly9flvQVGBiow4cPm9r2vJdkB3s/B82zXFgrJ5UiJ+e4+fzx9fXNsucsPRs2bDBkC5LulnAdNWqUXRlBcltOr5GsyYk1QYrUZdGkuwFPERERmbrm+8G4cePUu3dvw/Nx8eJFTZ06VVOnTpW7u7sqV66s2rVrq379+qpfv36OlqrMirVawYIF5eHhodjY2DT7Tcu9vg+mFaRs6/FpZQR9WNbqucWe9XlSUpLF58z06dOzZBzma1Rr2+wNIJQy/3+enOAIazZ75715dr701j85uaZ/5plnTMFdkrRkyRK9/vrrVgN2f//9d4sMo9WqVcu2sQEAADxoCO4CAAAA0lGvXj1Dppd7kfrbwZLlt29tZX4DJ70bJB9++KHKli2rSZMmWf1275UrV7R69WqtXr1a0t1vkPfs2VPdunXL9gwK2RVQYE9po5zIaGJ+nfbegEthfgPAnt+fI2Ru+emnn7K9PKS915mTr0Hz7EhZ9TrISuY38h7EEildunTRJ598YmovXrw4zeAu84CZzp07pxuQl51BUllZss38Bt/t27d1+fJlizJfOSUzQY62ysk5nlvzx9pnzLPPPntfBXZJubNGMpeTn5XWbrQfP3483QDS+1m5cuW0cOFCvffeexal5aT/L2u6b98+zZw5U3ny5FGrVq30wgsvqGLFitk+vqxcq6UO7rIWNGPNvb4PZtf76MOyVs8t9lzbrVu3DFnUspJ51knJ8j05M3PCkYNVHWHNlp3rn5xckwQFBalBgwbatm2bpLuZ4VatWqVOnTpZ7Dtv3jxDu2fPntk2LgAAgAeRc8a7AAAAAMgOWfUH3fT6cXJyUr9+/bRhwwaNHj1ajz76aLpBWydOnNDYsWPVvn17i9IfWS0+Pj5b+3/QZecNgYdFbr4GM/v8ZdeNPWsexNdYx44d5ebmZmrv3btXZ86csdjv2rVr2rp1q6nt7Oyszp07p9t3dr6esvJ5t1ZaKaVc2oPmYficqVKliiH7S2RkpPr06aMTJ07k4qjuXU6skXLTwzQPU5QqVUpz5szR3Llz1b1793QDSqOjo7Vs2TJ16tRJn3zySY7P5Qf99Werh+E99H6R22uM+/21bC63f585Lbufvz59+hja5kFc0t3sqSdPnjS1fX191aFDh2wdFwAAwIOGzF0AAABADjH/xqy1TFq2MD/Olm/i+vn5qU+fPurTp49iY2O1f/9+7d692/QvdXkESbpw4YKee+45/frrr6pUqVKmxmnLmFJr2LChZs2alS3nyk3m15nZ590889ODmFUpp5k/N8OGDdPLL7+cLecyz15g/nzaKrOvH1uYlz7K7XJ92SFfvnxq0aKF/vzzT9O2JUuW6I033jDs9/vvvxvKVDVq1CjDzFbmr6eSJUtq7dq1WTDqrPXoo49abNu+fbtat26dC6PJXjk5x83nj3nWk+xSoUIFffLJJ+rfv79u3rwp6W65qb59+2r69On3Tbmj3Fwj5Ybq1atblPDbvn27+vXrl3uDssO9BC/UrVvXlKEsJCREu3bt0p49e7Rr1y6LssPJycmaPXu2wsPD9fnnn9/TmNPj5+dnKNOW2c9o8+McuSy2LR6Wtfr9wFp5ys2bN6tw4cLZcj7z987MzInMzqN7kV6pwtTulzVbZuX0mr5FixYqUqSILl++LEnas2ePjh8/bsi8+OuvvxqOCQ4OztHyuwAAAA8CMncBAAAAOcTaH1kz80fvkJAQQ9veG0ceHh6qV6+eBg8erOnTp2v79u2aOnWqmjZtatgvOjpaY8eOtXt8tsqXL5+hfeHChWw7V24yf94vXryYqX7u9XmHpZx8DZq/Di5dupSpm+OZff3Ywvz3cf78+Ww7V27q0qWLof37779b3Aw0L8lofow15r+/y5cvKyEhIZOjzD7FixdX+fLlDdv++OMPxcXF5dKIsk9OznHzc0VERCg0NDTbzpdapUqV9PPPPxtu8oeHh6tfv37atWtXjozhXjnKGimneHp6qmHDhoZtf/31lyHAKDuZZ3FJHcxqi6wKXixevLiCg4M1duxYrVy5Uhs2bNDrr7+ugIAAw35Lly7Vv//+myXntCYr1mrXr183BOtJjvv6s9XDsla/H7i7u1uUq83pdau97J1Hzs7GW1X2vi9Jtr833S9rtszK6TW9i4uLevToYdiWOntXaGio1qxZY3i8V69e2TomAACABxHBXQAAAEAOCQoKkqvr/yfPTU5O1uHDh+3ux7xsT+pvxGaGu7u7mjZtqqlTp2rEiBGGx3bv3p1twSSPPPKIoR0SEmL6tu+DpEKFCob2iRMn7A6iSE5O1pEjRwzb7vV5hyyy0mVnEET58uUN8z86Olpnz561q4+YmBi7j7FHlSpVDO29e/dm27ly0+OPP66CBQua2levXjWUYNy3b59Onz5taufNm1etWrXKsN+goCBD2dv4+Hjt27cvawadxcyD1cLDw7Vy5cpcGk32yck5XrZsWYsMFDk5h8qWLatffvlFJUuWNG2LjIzUCy+8oL///jvHxpFZjrpGyk7m8zAhIUELFizIkXP7+PgY2uYZXDOSmUAPWxQrVkwvvfSSli9fruLFixseW7ZsWbacU7Jcq2WmRKb5MR4eHipduvS9DCvXPSxr9fuF+fOxc+fObDuX+Xun+f9DbGHve7h58Jq970u3bt1SVFSUTfveT2u2zMiNNX337t0Npc+XLVtmeg4XLVpk+P9vvXr1FBQUlO1jAgAAeNAQ3AUAAADkkDx58lj8oXzdunV29REdHW1xk7ZWrVr3PLYUAwYMMAQ9SNLx48et7uvi4mJo2/vt6hIlSqhEiRKGbatXr7arj/tBzZo1Dd9Ej4+P16ZNm+zqY+fOnRYZYGrXrp0Vw3uoNW7c2NA+f/58poIJbOHl5WWRLWn9+vV29bFhw4ZMZTGwVb169QztI0eO6L///svy89zre0dWnL9Tp06GbYsXL7b6syR16NBBHh4eGfbr6elpMS8d9T2ta9euFiWXvvzyyywt22NraaTslJNz3N3dXTVr1jRsy85gFGuKFSumuXPnqly5cqZtMTExGjx4sMOXm7of1khZrWXLloZgPEmaNm1almZYSWsempcKNs94lpEdO3Zkeky2KFCggF544QXDtrTWo5Ll54q97z/mr5NNmzbZHYhvnpWmatWqhkCH+9HDsla/XzRq1MjQzs7nwvzz7MCBA3ZnFrT3Pdz8fcneLxjZE+x2P63ZMiOn1vSp5c+fX23btjW1IyMj9ccffyg5OdkicJmsXQAAAJlDcBcAAACQg8xLH/7xxx923UxftGiR4VvMLi4uevzxx7NsfE5OTipWrJhhW0xMjNV9zbM+REZG2n2+Nm3aGNrTp0+3+RvX9wtfX1+Lmwc///yzXX3MmTPH0C5TpozFDWHYr0iRIqpevbph28SJE7PtfM2aNTO0Fy5cqPj4eJuP/+WXX7J4REY1a9ZUkSJFDNu+//77LD+PeWaG3Jjz5hlz1q9fr9u3bys2NtYig5UtJRlTmL+nLViwwCGznOTNm1cvvviiYdv169f1/vvvZ0lQ1rRp07R79+577ude5fQcb9eunaG9bt06nTp1KtvOZ01gYKDmzJljyNoRHx+v1157LceDzezl6GukrObq6qrXX3/dsC0mJkYjR460KO+XGcuWLUszI1/ZsmUN7f3799s892NiYnLktWSeuSu9LD7mnyv2rkmbNGliKFUZHh6uFStW2Hz8tWvXLAJDzD/z71cPw1r9ftGmTRvD6/T48ePZFpBUoUIFw/8JExMTNX/+fJuPP3PmjN2lVIsWLWrIgHn79m2dPHnS5uNTlwG0xf2yZsuMnFrTm+vTp4+hPW/ePG3ZssUQtJw/f36bMuICAADAEsFdAAAAQA7q2bOn4Vv84eHhGjdunE3HXrlyxeKmdOvWrVW4cGGLfTObCSchIcEiY0SBAgWs7ps/f35D+8KFC3YFqkhS//79lSdPHlP7xo0bGjlypJKTk+3qx9GZ/6F7+/bt+v333206duPGjRbZIPr27ZtVQ3voDRkyxNDetGmTZs+enen+0nvtdu/e3ZDF7ezZs5oxY4ZN/f7+++/ZWlJOuhto0L9/f8O25cuXZ/lNfPP3lJwOfpHuluNJnZUiNjZWy5cv15o1axQREWHaXqFCBVWrVs3mfrt27Wp4T46NjdXrr79+T4Ea2fV++Pzzz6tq1aqGbatWrdKIESOUkJCQqT7Dw8M1bNgwffnllw6RuUvK2TneuXNnQ/bLhIQEvfnmm3aXlrpX+fLl0+zZsw2BxQkJCXr77bftvvmdk3JqjeRI2rdvr9atWxu27d69WwMHDsx0AM2dO3f0v//9TyNGjEgz+9Qjjzxi+F3fuHFDGzdutKn/L7/8UuHh4TaPJ7PvJ6nL40qyyCybmvma1N7PlVKlSqlJkyaGbV9++aVF1tS0fPTRR4Z57unpqW7dutk1Bkf1sKzV7wflypXTE088Ydj2wQcf3FO2v7SeR2dnZ3Xt2tWwbdq0aTp37lyGfSYlJWns2LF2/3/UxcVFlStXNmz77bffbDp2zZo1dpcgvp/WbPbKqTW9uZo1axqCy48cOaJPPvnEsE/Xrl0NJTEBAABgO4K7AAAAgBxUqFAhiywwixYt0jfffJPuH4OvXLmifv366fbt26Ztrq6uGjRokNX9T5w4oU6dOmnJkiW6c+eOzeP75ptvDDey8uTJk2ZgQ8GCBQ032qKjo20OWEqRP39+i2tYs2aNBg8erLCwMJv7iYuL09KlS9W5c2ebb8TlpNatW1uU5Bs9enSG5Rm3b9+uN954w7CtaNGi6ty5c1YP8aHVrFkzPfbYY4Ztn332mb7++mu7bkiHhYXphx9+sCgjlVrRokUVHBxs2PbNN99o6dKl6fb9119/afTo0TaP5V50795dZcqUMWwbOXKk5s6da9MNq+TkZK1bty7dQLRHHnnE0F67dq1u3LiRuQHfg6efftrQXrJkiZYsWZLuPhlxd3fX8OHDDdv27t2r5557zq6yZ4mJiVq/fr369u2bbWUEXV1d9e2331oETCxfvly9evXSnj17bO4rNjZWc+fOVdu2bR2urFFOznF3d3e99tprhm1Hjx5V3759deXKFZvOc/XqVc2cOdPmcaXF19dXM2fONJTxSkpK0vvvv58l/WeHnFojOZpPP/1UQUFBhm3bt2/X008/bXPAlXT3fWPZsmVq3759hhlCPT09LTKlffzxx7p27Vq6x02ePNnu7KNvv/22xowZY1dJsJCQEE2bNs2wrX79+mnubx4Q8vvvv9sdVPnSSy8ZArBv3LihAQMGpLuuTExM1EcffaQ///zTsL13794KCAiw6/yO6mFZq98vXn/9dUOwXVhYmJ555hlt27bNrn4OHjyoESNGWGQHTq1nz56G1/GdO3f0wgsvpJvdKiEhQaNHj9Y///xj13hSmGfTmjt3boblFjdv3qy3337b7nPdT2u2zMiJNb01vXv3NrRTB+o6Ozure/fudvUHAACA/+ea2wMAAAAAHjYjR47U9u3bdfbsWdO27777Ttu2bdOAAQPUuHFjU0mKCxcuaOXKlZo6dapFiZlXX33V4mZWaseOHdPIkSM1duxYNW3aVI0bN1aVKlUUFBQkDw8P036hoaHavXu35s6da1E+o2vXroYbCOaaN2+uBQsWmNqjR4/WmjVrVKNGDQUEBBhuknl7e+upp56y6GPQoEE6cuSI4cbYxo0b1bJlS3Xt2lXNmzdX9erVDSV3YmJidOrUKR07dkxbt27V5s2bHbpEjKurq7766it17drVlEUjLi5OL730koKDg9W9e3dVr15drq6uSkxM1NGjR7Vw4UItWLDAkP3GxcVFX3zxRbrPCez31VdfqXv37qZsBElJSZoyZYr++OMP9ezZU40aNVLFihUtMsqcOHFCR44c0aZNm7Rz504lJCRYBPGZe/vtt/XXX3+ZgpmSkpL01ltvaePGjerTp49q1qxpeh0cPnxYCxYs0G+//abk5GS5ubmpQoUK2XrjyNPTU5MmTVL37t1NN8YTExM1duxYLVq0SL1791bjxo1VuHBhU2mg8PBwHT16VFu3btXq1at14cIFffrpp6pbt67Vczz66KPy9fU1ZcgKCwvTk08+qdatW6tMmTLy8vIylB2qWrWqXdmzbNW+fXt98sknptKzBw4cMJzXzc3N6ntWRjp27KjDhw/rxx9/NG3bu3ev2rVrp44dO6pNmzaqWbOm/Pz8TI/HxcXpzJkzOnbsmLZt26YNGzaYMuNkZxaIIkWK6Mcff9Tzzz+v69evm7YfOHBAvXr1UsOGDdW8eXM1btxYRYoUMbwPX7t2TYcOHdLff/+tVatW2XWTP6fl5Bzv2rWrdu3aZQgUPHTokNq0aaPu3bvriSeeUPXq1U2fw4mJiTpz5oz27dundevWacuWLQoMDLTIuJEZXl5e+uGHH/Taa69p/fr1pu3jxo1TVFSUXnnllXs+R1bLqTWSI/H19dWPP/6o5557TmfOnDFtP3PmjF566SVVr15drVq10uOPP66SJUsaymKHhoaa3n9XrFhhcxChdDer6Lp160ztixcvqnv37ho2bJhatmypvHnzSro7F/755x/NmjVL+/fvlyTVqlVLe/futek8MTExWr58uebPn68KFSqoVatWqlmzpipVqqTAwEDT+258fLxOnTqldevWafbs2YZgvTx58qQbbNu0aVM5Ozub1kxnzpxRu3bt1LJlS5UsWdKw7pXuBoqZl6asXbu2Bg4cqB9++MG07ciRI2rXrp0GDRqktm3bqmjRopLulhP++++/NW3aNB06dMjQT4UKFSzKbd7vHoa1+v2iTJky+uKLLzR06FDT+uDatWt67rnn9Nhjj6lz586qU6eOYZ2WmJioS5cu6fjx49q9e7fWr19v+jysVKlSmufKly+fRo0aZQiAOn/+vDp06KAXX3xRHTp0MJVujIyM1F9//aWpU6fq6NGjkqQaNWqY3jNs1alTJ02aNMm0RoyPj9fAgQM1cOBAde7c2TQH4+LitHv3bi1cuFArV65UcnKySpYsqaioKN28edPm891PazZ75cSa3pqOHTvqiy++sJrhsUmTJhYldwEAAGA7grsAAACAHJYnTx5999136t+/v+Em3J49e0yZUnx9fRUbG5tmOZ2nn35aAwcOtOl80dHRWrVqlVatWmXa5unpKS8vL925c8cU2GDukUcescgaZa5fv35atmyZKTtYcnKy/vrrL/31118W+xYrVsxqoISTk5PGjRsnJycnQ8aXqKgozZ4921Q+y9PTU56enoqKirK7/KMjqFixor744gtDmaTk5GRTtiBnZ2f5+voqMjLSahkTFxcXffjhh3b9cR228ff314wZM/Tyyy/rxIkTpu0XL17UV199pa+++krS3QBFV1fXNJ8jW881adIkvfDCC4abnClzNL3XwZtvvqnjx49ne1aA8uXL67vvvtOwYcN069Yt0/bDhw9r1KhRku4GLPr4+CgmJsbu8jWenp7q16+fJk2aZNoWHh6uhQsXWt1/6NCh2RLc5ePjo9atWxtK1KS+KdesWTPly5cvU32nlDZMnREjLi5OixYt0qJFiyTdzRjh7e2t6OjoeyoBdK/Kly+v+fPna9iwYTp48KDhsX///dcQ9Jvy2REVFZXm55N0t/RmeiXUclpOznFJ+vDDD3Xnzh3D5+6dO3f0008/6aeffjKdy8XFRREREdl6M9jd3V0TJ07U22+/reXLl5u2f/vtt4qOjs5UtpPslNNrJEdRqFAhzZs3TyNGjLBYQx04cEAHDhzQ+PHjJd0NPE15/00vO6uPj49KlCiR5uMNGzZUcHCwIevq5cuXNXLkSEl3f8+JiYkWGbAeeeQRffDBB+rUqZO9l6kTJ04Y5mDKZ56kNOeds7OzPvjgAxUpUiTNfosUKaLg4GAtXrzYtO3KlSuaO3eu1f0//fRTi+Au6W5QYErQYIqU8qDjxo2Tu7u7PDw8DOV7UytRooQmT578wJUce1jW6veLVq1a6bPPPtOYMWMM64ctW7Zoy5Ytku7+v8HX11dxcXH3VBq4Y8eOOnLkiCHjY2RkpMaPH6/x48enOSf8/f31+eefW2Tiyoi/v7/eeecdvfvuu6ZtMTExmjhxoiZOnCgvLy+5ubkZgj+lu+9XkyZN0ssvv2z3Nd5PazZ7Zfea3hoPDw916dLFapbQXr163XP/AAAADzPKMgIAAAC5ICgoSPPnz1fNmjWtPh4REWH1pqWbm5teffVVffLJJ4asWOZSZ5+x5s6dOwoLC0szsKtVq1b6+eefTdkx0hIUFKSvv/7a8G3mzPDy8tI333yjd955x5CRwnzM4eHh6d4sKlu2rEV2BkfStm1bzZgxQ4ULF7Z4LCkpSbdu3bJ6YzNfvnyaPHmyunXrlhPDfCiVKFFCCxYsUNeuXeXi4mJ1n6ioqDSfI+nuvKtYsWKG56pdu7amT59uNfjF2uvAyclJw4YN0/PPP2/j1dy7hg0bav78+apatarVxxMSEhQeHp7mTaD03p8kafDgwerRo8c9j/NemZeAs/WxjLi4uOi9997Tl19+qfz581vdJy4uTmFhYeneSCtatKj8/f0zPQ5bFStWTPPmzdPIkSPTPV/KZ0daQTW+vr4aOnSo1qxZYzVwIjfl5Bz38PDQ119/rddee02enp5pnuv27dtWA7sy+gy3l6urq7744guLUkgzZ87UmDFjDBkiHUF2r5Eclb+/v6ZOnarPPvvM6johRXx8vMLCwtIM7PLw8FDfvn21du1aPfroo+me88MPP1Tz5s2tPhYREWERFFKnTh3NnDkzzbWaNem9nlM+89KadwEBAZo4caJNgWSjR49Wy5YtbR6XNa6urho/frwGDRokV1fL70THxcWlGdhVr149zZ8/XyVLlrynMTiqh2Wtfr8IDg7WvHnz0vxMSkxMVHh4eLqBXRkFgKZ4++23NXjwYKvvq9bmRMGCBTVjxgyVLl06w76tefrpp/Xqq69afSwmJsYisKtQoUKaNWtWulnI0nO/rdnsld1remt69+5tcVyxYsXUpEkTu/sCAADA/yNzFwAAAJBLChcurPnz52vVqlWaPXu29u/fn+YNVj8/P7Vs2VIvv/yyTX+Er1SpklauXKmNGzfqn3/+0f79+y1KFplzd3dX06ZN9cwzz6hhw4Y2X0eLFi20Zs0arVixQv/8849Onjyp0NBQRUdH2535pF+/furSpYt+/vlnrVy5UidPnkx3/5Qb7Y0aNVLbtm1Vo0YNu86XG+rVq6c///xTP/30kxYtWmQoPWWuWLFiCg4OVv/+/e26kYrM8fLy0scff6xBgwZpxowZ2rhxo65evZruMe7u7qpZs6Yef/xxtW/f3uZSI7Vr19aqVas0ceJELV261PBt+tTq1aunYcOG5UrGtjJlymjRokVau3atfvrpJ+3duzfdG7Z+fn5q3LixOnfurMcffzzdvl1cXDR27Fj17t1by5Yt08GDB3XmzBlFRkbqzp07OVbWpkGDBipWrJguXrxo2F6gQIEsuQHVsWNHtW7dWgsXLtSSJUt09OjRDANpypQpo0aNGql169Zq0KBBlgf6pMXV1VXPP/+8evbsqWXLlmnlypXavXt3htlXfHx8VKdOHT311FNq1apVmsFMjiAn57iTk5MGDx6srl27atq0aVqzZo0uX76c7v6PPPKInnjiCXXt2tWu67KFs7Oz/ve//ylPnjyaNWuWafv8+fMVHR2tzz77zGowS27JzjWSI3NyclLnzp3VoUMH/fnnn1q+fLm2bduWZjB+Ci8vL1WrVk0dO3ZUu3btTNmwMuLp6anJkydrwYIFmjJlSpplHQsXLqwBAwbomWeekYuLi12ZgL788ktTWb5du3bpzJkzGb7Hly5dWh07dtSzzz5rKg+ZkZSsb7t27dKqVat0+PBhnT9/XlFRUelmODPn5OSkN954Q507d9Z3332njRs3phnQ5eLiopo1a6p///5q1aqVzee4nz0Ma/X7ReXKlbV06VJt2LBBv/zyi3bt2pXha71AgQJq0KCBmjdvbtdn9muvvaYWLVpo/Pjx2r59u9X34zx58qhz58565ZVXFBAQkKlrSjFkyBDVqlVL48ePt8gqmvp8Xbt21SuvvGLz+0R67qc1m72yc01vTYkSJVS6dGmdPn3atK179+73ZeA1AACAI3FKdqRC4AAAAMBDLDw8XHv37tWNGzcUFhYmd3d3BQQEqFSpUqpWrVqamUZskZSUpLNnz+r8+fO6fPmyIiMjFR8frzx58sjPz09BQUGqUKGCw92Uv3nzpg4ePKibN28qLCxMCQkJpjGXLl1aQUFB933Q04ULF3T48GHdvHlTERER8vHxUb58+VSxYkUFBQXl9vAeemfPntXx48cVHh6u8PBwOTk5ydvbW/nz51eZMmVUpkyZey6/FB8fr127dikkJEQ3b96Uu7u7ihQpotq1a6tQoUJZdCX3Ljo6Wvv27dPVq1cVGhpqeg8pWLCggoKCFBQUdE/vUw+DiIgI7du3Tzdu3FB4eLju3LmjPHnyKG/evCpRooSCgoLu+YZoVoqLi9OxY8d07tw53bx5UzExMXJxcZGfn5/8/f1Vrlw5lS1b1mFvZtoiJ+Z4ilOnTunEiRMKDQ3V7du35ebmprx586pkyZKqUKFCpsuAPgyyc43k6BISEnTixAmdPXtW169fV3R0tKnkmp+fn8qWLavy5cvf8+8gOTlZx44d05EjRxQaGqrExETlz59flSpVUtWqVbNsnt+6dUunTp1SSEiIQkNDTe8r3t7eKlq0qCpWrKiiRYtmybmyQkJCgg4cOKALFy6YPvsCAgIUGBioWrVqZUlQyf3sYVir3y/i4uJ08OBBXbp0SeHh4YqIiJCnp6d8fHxUtGhRlS1bNkvm1vXr17Vnzx5dvXpVUVFRyps3r8qWLavatWtbZGUzzyx2/Phxu8936dIl7dmzRzdu3FB0dLTy5s2roKAgq+fLSvfbms0e2b2mP3HihDp27Ghqu7m5adOmTSpQoEBWDB8AAOChRXAXAAAAAAAAAAAAskxWBHfh/jN27FjNnTvX1G7Xrp0mTJiQewMCAAB4QJAHFQAAAAAAAAAAAECmRURE6Pfffzdse+aZZ3JnMAAAAA8YgrsAAAAAAAAAAAAAZNqPP/6oqKgoU7tSpUp69NFHc3FEAAAADw6CuwAAAAAAAAAAAABkyp49ezRt2jTDtkGDBuXSaAAAAB48rrk9AAAAAAAAAAAAAACO7/Tp09q+fbsk6fbt2zpy5IjWrFmjpKQk0z5VqlRRu3btcmuIAAAADxyCuwAAAAAAAAAAAABkaN++ffrggw/SfNzNzU2ffPKJnJyccm5QAAAADzjKMgIAAAAAAAAAAAC4J56envr6669VqVKl3B4KAADAA4XMXQAAAAAAAAAAAADs5unpqeLFi6tRo0Z69tlnVaJEidweEgAAwAPHKTk5OTm3BwEAAAAAAAAAAAAAAAAAMKIsIwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAckGtuDwD3r7CwsNweAjLJyclJ/v7+kqTw8HAlJyfn7oCAhxDzEMh9zEMg9zEPgdzHPARyH/MQyH3MQyD3MQ+B3Mc8BHIf8/DBERAQkKX9kbkLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IAI7gIAAAAAAAAAAAAAAAAAB0RwFwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOiOAuAAAAAAAAAAAAAAAAAHBABHcBAAAAAAAAAAAAAAAAgAMiuAsAAAAAAAAAAAAAAAAAHBDBXQAAAAAAAAAAAAAAAADggAjuAgAAAAAAAAAAAAAAAAAHRHAXAAAAAAAAAAAAAAAAADgggrsAAAAAAAAAAAAAAAAAwAER3AUAAAAAAAAAAAAAAAAADojgLgAAAAAAAAAAAAAAAABwQAR3AQAAAAAAAAAAAAAAAIADIrgLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IAI7gIAAAAAAAAAAAAAAAAAB0RwFwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAADuG8uXL1eDBg1M/y5dupTbQ0IOCA4ONj3nY8eOze3h5BjX3B4AAAAAAAAAAAAAAAAA7s2lS5fUpUuXe+6nfPnymjNnThaMCEBWILgLAAAAAAAAAAAAAICHXJUaN3N7CPelLZsomJZZu3fv1p49e0ztgQMH5uJoHjzTpk0z/Vy7dm3VqVMnF0eDe0FwFwAAAAAAAAAAAAAAwAPIxcUlR47JjD179mjGjBmmNsFdWSv171YSwV33MYK7AAAAAAAAAAAAAAAAHjC1atXS999/n9vDyBYdOnRQhw4dcnsYQI4gPyAAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOyDW3BwAAAAAAAAAAAAAAAID7x+3bt3Xs2DFduHBBUVFRSkxMlKenp/Lly6dixYqpXLly8vT0zO1hZigxMVH79+/XxYsXFRoaKk9PT1WsWFHVq1eXs3Pa+ZIiIyO1Z88ehYSEKD4+XgEBAapWrZrKlCmT6XGcPXtW169f17Vr1xQaGioPDw/lzZtXQUFBKl++vFxcXDJ7mVkiKSlJR48e1fnz5xUWFqbExEQFBASoZMmSqlKlyj2NLy4uTrt379alS5cUFRWl/Pnzq3jx4qpevbqcnJyy8CruTwR3AQAAAAAAAAAAAAAAIEPHjh3TtGnTtG3bNiUmJqa5n4uLiypWrKgOHTqoS5cupu2XLl0ytFNr0KBBmv0tXrxYRYsWNbWXL1+ujz76KM3HUxs8eLD27t0rSapVq5a+//57xcfHa86cOVq8eLFu3LhhcUyRIkX05ptv6rHHHjNsv3Xrlr777jutWrVKcXFxFsdVr15dI0eOVNmyZdO8lhQRERHavHmzNm3apL179yoqKirNfX18fPTUU0/pmWeeUf78+dPcb+zYsVq5cqXF9hkzZmjGjBlWj2nfvr3GjBmTZp+hoaGaNWuW/vzzT926dSvN8QUHB6tv377y8/NLsy9zd+7c0cyZM7Vo0SKr11+4cGH16dNHXbt2tbnPBxFlGQEAAAAAAAAAAAAAAJCu3377Tf3799fWrVvTDeyS7maiOnLkiObPn59Do7NdVFSUhgwZoqlTp1oN7JKky5cva8SIEVq+fLlp25kzZ9S3b18tXbrUamCXJB04cECDBg3SsWPHMhzH9OnT9dFHH2nLli3pBnZJdzOF/fLLL+rbt6/279+fYd9ZZd26deratasWLFiQZmBXyvh+/vlnPfPMMzp69KhNfd+8eVPPP/+8fvrppzSv/8qVK/ryyy/1zjvvKCEhIVPX8CAgcxcAAAAAAAAAAAAAAADStHv3bn355ZeGbUWLFlX16tUVGBgod3d3xcTE6MaNGzp16pROnz6tpKQki36cnJxM5fuSkpKUnJxseiy9sn5ZWZrvvffe04EDByRJpUqVUu3atRUQEKDbt29r27ZtCgkJkSQlJydr3Lhxqlatmnx8fPTqq6/q+vXrcnZ2VpUqVVS5cmV5e3vr6tWr2rJliyn4KSIiQu+//77mzJkjd3d3m8bk5+encuXKqVy5cvLz81NycrIiIyN14cIFQ1av0NBQvfnmm/rpp5+sZipzcXEx/R5TB+A5OTmlWWYyrd/7woULNX78eMNzVKRIEdWoUUOBgYFycXHRtWvXtGvXLl29elWSdOPGDb388suaPn26goKC0rzeqKgoDR06VGfOnDGMsUaNGqpUqZI8PDx0+fJl/fPPP4qMjNTGjRv1/fffp9nfg47gLgAAAAAAAAAAAAAAAKRp5syZpp89PT01evRotWzZMs39w8LCtHnzZu3cudOwvUiRItq6daskadq0aYZSgSnbs9PBgweVkJAgHx8fjRo1Ss2bNzc8npiYqClTpmjOnDmSpPj4eM2cOVNRUVG6fv26goKC9P7776tChQqG4yIiIvTuu++arvfcuXNatWqVOnXqlOZY8uXLpz59+qhVq1aqWLGinJ2d5e/vL0kKDw83BVXFxcXpt99+M5WTjIyM1Oeff64JEyZY9Dlq1CiNGjVKkrHMZf/+/TVw4ECbf0979+7VhAkTTGMoUqSIhg8frkaNGlkE2iUmJuqPP/7Q119/rdjYWMXExOjdd9/Vzz//LDc3N6v9f/fdd4bArpIlS2rs2LGqVKmSYb+YmBhNmDBBS5cu1S+//CJX14czzOnhvGoAAAAAAAAAAAAAAIAH2N69e9W4cWO7j5s1a5bKly9vaickJGjfvn2m9rPPPptuYJckBQQEKDg4WMHBwXafPzslJCTI1dVV33zzjapUqWLxuIuLi4YMGaJ9+/bp4MGDkqS1a9cqKSlJRYsW1ffff6+8efNaHOfr66uxY8eqa9eupixbq1evTje467nnnrNpzO7u7urdu7cKFSpkCtzavn27zp49q9KlS9vUhz0SExP10UcfmTJ/lSpVSlOmTFFAQIDV/V1cXBQcHKxChQrpjTfeUHJyss6dO6fVq1erY8eOFvufO3dOixcvNrXz58+vb7/9VoGBgRb7enl56Z133lFycrKWLVum+Pj4LLrK+4v1nGsAAAAAAAAAAAAAAAC4ryUmJtr9L3UZPuluFqnUJf4eeeSRnL6MLNWjRw+rgV2ppQ5KSykvOXz4cKuBXSkCAgLUtGlTU/vo0aOG39u9atmypcqWLSvpbsnI7Mp0tmHDBl28eNHUHj16dJqBXak1bNjQEPSXOoArtd9//93wGhs6dKjVwK7UXnvtNRUoUCDDMTyoCO4CAAAAAAAAAAAAAACAVV5eXob2iRMncmkkWaNLly4Z7mMe/FW4cGE1bNgww+OqVq1q+vnOnTu6fPmy/QNMR1BQkOnnI0eOZGnfKVauXGn6uUqVKoZrykirVq1MPx8/ftyUxSy1zZs3m3729/dX69atM+w3T5486tChg83jeNBQlhEAAAAAAAAAAAAAAOABU6tWLX3//ff33I+3t7dKlSqlc+fOSZJmzpypokWLqmXLlnJ2vr9yChUsWFDFihXLcD/zTFLVq1eXk5OT3cdFRkbaNK4DBw5o8+bNOnPmjM6dO6eIiAhFR0dbZFFLySImSdeuXbOpb3skJibqwIEDpnbNmjXtOr5EiRKmn5OSknTy5ElDH6Ghobp06ZKp3aBBA7m62ha69Pjjj2vWrFl2jedBQXAXAAAAAAAAAAAAAAAA0tSrVy999tlnkqTY2FiNHj1akyZN0mOPPabatWurevXqGZbWcwQFCxa0aT/zbGWZPS46Ojrd/Q8cOKDPP/9c//33n039p3b79m27j8nIxYsXDdm2fv31V82bNy/T/ZmP8ezZs4Z2+fLlbe4rKChIzs7OhgC3hwXBXQAAAAAAAAAAAAAAAEhTcHCw/vvvP/3222+mbdeuXdPixYu1ePFiSVKRIkVUu3ZtNW3aVA0bNpSbm1tuDTdNHh4eNu1nnqXL09MzU+czz7yV2oYNGzR69GglJiZmqu+4uLhMHZee8PBwQ/teA6nMM5dFREQY2gEBATb35enpKW9vb4s+HgYEdwEAAAAAAAAAAAAAACBdw4cP12OPPabZs2dr3759FoFLly9f1ooVK7RixQoVLFhQAwYMUHBwcO4M1sFdvnxZH374oSGwq0qVKnrqqadUrVo1+fj4yMfHRx4eHnJxcTHtM3bsWK1cuVJS+oFjmWVrGUlbmQeHmWcyszdoztPTk+AuAAAAAAAAAAAAAAAAwJoGDRqoQYMGunr1qnbu3Kn9+/fr0KFDOnv2rCHY6Pr16/rss8908OBBjR49OhdH7JjmzJmj2NhYU/vVV1/VM888I39/f0l3M2hZC96KiYnJ1nGZZzZ755131KlTpyzrP0+ePIb2nTt37Dre3v0fFAR3AQAAAAAAAAAAAAAAwGaFChVShw4d1KFDB0lSWFiYtm3bphUrVmjXrl2m/VasWKG6deuqXbt2uTVUh7RlyxbTz7Vr11bv3r1tOi40NDS7hiRJpuCyFBcvXszS/n19fQ3tsLAwm4+NjY1VVFRUlo7nfuGc2wMAAAAAAAAAAAAAAADA/SsgIEDt2rXTt99+q3fffdfw2LJly3JpVI7pzp07unbtmqndsGFDm45LTEzUiRMnsmtYkqRixYrJ3d3d1N67d2+W9l+6dGlD++TJkzYfe+rUKYsyjw8LMncBD7H40YXlnduDyEaRbxzN7SEAAAAAAAAAAAAAwEPlqaee0uLFi3Xs2DFJaQfwuLoaQ1YSExPl4uKS7ePLbREREYa2eTartPzzzz92lWV0cXFRYmKiJNkcFOXp6amqVatqz549kqTDhw8rJCRExYsXt/m86cmXL5+KFi2qS5cuSZK2b9+uhIQEi9eCNX///XeWjOF+ROYuAAAAAAAAAAAAAAAAZJlixYqZfo6Pj7e6T548eQxt86CnB5X5dV++fDnDY5KSkjR79my7zuPt/f+pXuz53T7xxBOG806ZMsWu82akSZMmpp/DwsK0bt26DI+Jjo7W8uXLs3Qc9xOCuwAAAAAAAAAAAAAAAGDVzZs3deXKFZv3j4+P1+HDh03tIkWKWN3PfPuRI0cyN8D7jLe3twoVKmRq//nnn7pz5066x0ydOlWHDh2y6zyFCxc2/WzP77ZDhw6GY9etW6c5c+bYde7IyEgdPWq90lbnzp3l5ORkak+ePFnXr19Pt79JkyZluM+DjOAuAAAAAAAAAAAAAAAAWHX27Fk9/fTTGjVqlDZv3pxuIFJYWJjee+89QzBYs2bNrO5bpUoVOTv/f9jKpEmTtG/fvjQzfT1IUmevunLlit555x3dunXLYr/IyEiNGzdOs2bNkiR5eXnZfI5q1aqZfj5y5IimT5+uGzduZHicq6urRo8ebSiROXnyZI0ZM0YXL15M99hDhw5pwoQJCg4O1urVq63uU6pUKXXu3NnUvn79uoYOHarjx49b7BsTE6Nx48ZpyZIlcnJykpubW4bjfxBlXLQSAAAAAAAAAAAAAAAA95W9e/eqcePGmTr2t99+M2TWSkxM1Pr167V+/Xp5eHgoKChIQUFB8vf3l4eHhyIjI3X27Fnt3btXsbGxpuMKFy6sPn36WD1H/vz59fjjj2vz5s2SpDNnzuill16Sk5OTPDw8DNmdfv31V0M2qftd3759tWLFCkVHR0uS/v33XwUHB6tZs2YqVaqUIiMjdf78ee3YsUMxMTGSpFq1aqlQoUJpBk2Z69ixo5YsWaKkpCRJ0vTp0zV9+nS5uroagqTatm2rt99+23BsnTp1NGLECH3++eem49esWaN169apQoUKeuSRR+Tv76+kpCRFRkYqJCREx44dsxqgZs2QIUO0Z88enT17VpJ07tw5Pf/886pRo4YqVqwoT09PXbp0Sf/++6+ppGTv3r21fv16u7LIPSgI7gIAAAAAAAAAAAAAAHgAJSYmZuq45OTkNB+LjY3VkSNHMiz1V6JECX399dfy8fFJc58RI0bo3LlzpiCflHObZwdLCTB6UAQGBuqjjz7SO++8YwqGi46O1sqVK63uX61aNY0bN04TJkyw+RyVKlXS0KFD9e233xp+fwkJCUpISDC1UwfjpRYcHKwiRYrogw8+UFhYmKS7z8OxY8d07NixDM+fXpYtb29vTZ48WUOGDDE990lJSdq7d6/27t1rsX/Tpk01ePBgrV+/PsPzPogI7gIAAAAAAAAAAAAA4CF3eH9+SVJ4eHi6gT14+FSuXFljxozR1q1btWfPHlOgT1qKFy+uTp06qXv37vLw8Eh33wIFCmj27Nn6888/tWXLFv33338KDw9XTEzMA/86bNSokaZOnaoJEyZYDWiSpKJFiyo4OFi9evXKVEnC3r1769FHH9WKFSt04MABXbx4UdHR0TaXvqxfv75+++03LV68WEuXLlVISEi6+xcuXFiPPvqonnjiCdWtWzfdffPnz69Zs2ZpxowZWrx4saKioiz2KVSokHr37q0ePXrYNN4HlVPygz4bkG0yesOG43JycpK/v7/iRz84aSutiXzjaG4PAUhTyjyU+E8SkFuYh0DuYx4CuY95COQ+5iGQ+5iHQO5jHgK5j3kIe1y8eFHnzp3T5cuXFRUVpcTEROXJk0cFCxZUuXLlVLJkydwe4n0nJCREBw8eVFRUlJydneXt7a0SJUqocuXKuT00gytXrujIkSMKCwtTRESEXFxc5O3traJFi6p06dKZLp0ZGxur3bt369KlS4qOjla+fPlUvHhxVa9eXc7Ozll8FdkvICAgS/sjcxcAAAAAAAAAAAAAAABsUqxYMRUrViy3h/FAKV68uEqUKOHwQZaFCxfOdABXejw8PNSoUaMs7/dBcf+FtwEAAAAAAAAAAAAAAADAQ4DgLgAAAAAAAAAAAAAAAABwQAR3AQAAAAAAAAAAAAAAAIADIrgLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IBcc3sAgKN6rFlSbg8hm93UvqdyewwAAAAAAAAAAAAAAABIC5m7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOiOAuAAAAAAAAAAAAAAAAAHBABHcBAAAAAAAAAAAAAAAAgAMiuAsAAAAAAAAAAAAAAAAAHBDBXQAAAAAAAAAAAAAAAADggAjuAgAAAAAAAAAAAAAAAAAHRHAXAAAAAAAAAAAAAAAAADgggrsAAAAAAAAAAAAAAAAAwAG55vYAHgTh4eHas2ePrly5osjISAUGBqp48eKqVauWXFxccnt4AAAAAAAAAAAAAAAAAO5DBHfdgzNnzuirr77Spk2bFB8fb/F4wYIF1aNHDw0aNEju7u7ZMoa+fftqx44dmTr2xx9/VKNGjbJ4RAAAAAAAAAAAAAAAAACyAmUZM2np0qXq0qWL1q5dazWwS5KuX7+ub7/9Vj169FBISEgOjxAAAAAAAAAAAAAAAADA/YzMXZmwefNmjRw5UklJSaZtpUuXVv369eXv76/z589r48aNunPnjiTpyJEjGjRokObPny8fH59sHZs9ZSCdnJyycSQAAAAAAAAAAAAAAMAR3LlzR0ePHtWFCxd069YtxcfHK0+ePAoMDFT58uVVokSJTPXboEED088DBgzQwIEDs2rIeIjwOkofwV12unbtml5//XVTYJeTk5PefvttPffcc3J2/v9EaKGhoRo2bJipZOJ///2nMWPGaPz48dk2tnr16mnOnDnZ1j8AAAAAAAAAAAAAALh//PPPP1q0aJG2b9+uhISENPcrXLiw2rZtq+7duytfvnw5OEIAGSG4y07ff/+9oqKiTO1XXnlFzz//vMV++fLl0/Tp09W5c2edOnVKkrRy5Uq98MILqly5co6NFwAAAAAAAAAAAACAjMSPLixJ8s7lcdxvIt84mttDsCokJEQff/yx9u7da9P+V65c0axZszR//nwNGjRIPXr0oBoY4CCcM94FKW7cuKGFCxea2iVLltSLL76Y5v4eHh4aPXq0qZ2cnKzvv/8+W8cIAAAAAAAAAAAAAAAeXjt37tTzzz9vEdiVN29eNW/eXD169FC/fv3UsWNHVa1a1RDEFRMTowkTJmjUqFGKi4vL6aEDsILMXXZYv3694uPjTe3u3bvLzc0t3WMaNmyosmXL6vTp05KkzZs3Kzo6Wnny5MnWsQIAAAAAAAAAAAAAgIfL/v37NXz4cMXGxpq2BQYGatiwYWratKlcXS3DRFKydi1dulTJycmSpA0bNighIUHjxo0jgxeQy8jcZYcNGzYY2m3btrXpuDZt2ph+jo2N1datW7N0XAAAAAAAAAAAAAAA4OEWERGhMWPGGAK76tWrp19//VUtW7a0GtglSYULF9bIkSP11Vdfyd3d3bT9r7/+0q+//prt4waQPoK77LB7927TzwUKFFCJEiVsOq5WrVqG9s6dO7N0XAAAAAAAAAAAAAAA4OH2xRdf6OrVq6Z2tWrV9Pnnn8vb29um4xs1aqSPPvrIkKlrypQpOnXqVJaPFYDtCO6y0dWrVxUREWFqP/LIIzYfW7lyZUObNz4AAAAAAAAAAAAAAJBVTp06pTVr1pja7u7uGjNmjDw9Pe3qp0mTJurYsaOpHRcXpxkzZmTZOAHYz3rOPVg4ffq0oV20aFGbjy1QoIDc3NwUHx8vSTpz5kyWji3FpUuXNHLkSB08eFDXr19XfHy8AgICVKhQIdWtW1fNmjVTnTp1suXcAAAAAAAAAAAAAAAgd8ybN8/Q7tmzp83VyMwNGTJEa9euVUxMjCRp8+bNunLligoXLmxXP1FRUdq7d6+uXr2qqKgo5cuXTxUqVFCFChUyNa7k5GSdPn1a//33n0JDQxUTEyM3Nzd5e3urcOHCKlWqlIoVK5apvhMSEnTo0CGFhIQoPDxcTk5O8vf3V1BQkCpWrGjIZnYvoqKitH//fl27dk3h4eHy9vZWs2bNVLBgwSzpPzOy89qjoqK0e/duXblyRbGxsSpYsKBKly6tSpUqZeEVPPgI7rJR6tSFkux603JyclKhQoUUEhJita+sEhISYjpHiujoaF28eFF79uzR1KlTVatWLY0aNUrVqlXLljEAAAAAAAAAAAAAAICcc+fOHUPWLicnJwUHB2e6Pz8/PzVv3lwrV66UJCUmJuqPP/7QwIEDbTr+1q1bmjhxotatW6fY2FiLx0uWLKmXX35ZzZo1s6m/uLg4/frrr1qyZImuXLmS7r4BAQFq1KiRnn/+eRUvXjzDvi9duqTp06dr06ZNio6OTrPPnj17qkePHhlmQrt06ZK6dOliar/33nvq0KGDrl27pkmTJumvv/6y+J0EBgbK3d1dr7/+umnb8OHD1bVr1wzHn9qoUaO0fv16SXczt/3xxx/y8/NLd6xZee2p3b59W999951WrVpl9TVQpkwZDRgwQK1atbK5z4cZwV02Mn8h58mTx67jU9ewTUhIUGxsrDw8PLJkbPbYu3evevXqpffff1/dunW7p76yKjIVyC68RuHIUr8+ea0CuYN5COQ+5iGQ+5iHQO5jHgK5j3kI5D7mIZD7mHuZ5wi/u6NHjxoCaKpVq5bpDFYp2rZtawrukqR9+/ZleK1OTk46deqU3nzzzXSDsM6fP6+RI0eqS5cueuutt9Lt9+bNmxo2bJhOnjxp07jDwsK0YsUKNWjQIMPMZb/++qsmT55sqsKWXp/ff/+9Vq5cqfHjx6cbNGZ+LU5OTtqxY4fee+893b59O81jGjRooMDAQF27dk2StHz5crtiOiIiIvT333+b2k2aNJG/v3+a+2fHtac4e/ashg4dquvXr6e5z5kzZ/Tee+/pwIEDevPNNw2POTk5OcS8ciQEd9nIPLjL3sAs8/2joqKyLLjL399fLVq00OOPP66KFSuqUKFC8vT01O3bt3Xy5Elt2rRJCxYsUGRkpCQpPj5eY8aMkb+/v1q3bn1P532w3cztAeAePfivUTwo0ouYB5AzmIdA7mMeArmPeQjkPuYhkPuYh0DuYx4CuSf9EA+kxRHuSZ44ccLQrlu37j2Pq3HjxnJyclJycrIk6ciRI/Lx8ZGra9phJgkJCXr33XdNgV3lypVTvXr15Ofnp5s3b2rr1q26ePGiaf/Fixcrb968euedd9Ls85VXXjEEdrm7u6tOnToqV66c8ubNq8TEREVGRurMmTM6fPiwwsPDJd1NwJPe72DcuHGaOXOmYVvZsmVVs2ZNBQYGSrpbPe3ff//VzZt3YwfOnTunl156SYsXLzbtYy4lLiPF9evXNWHCBEVERMjJyUnVqlVTjRo15Ovrq5s3b2r37t3y9vZWvnz51KVLF02ZMkWSdOzYMV29elUVK1ZM8xpSW7lypeLi4kztHj16pHn92XXtknTlyhWLwC5XV1c1aNBAFSpUkKurq86cOaMtW7YoJiZGCxYssCjR6Onp6RDzypEQ3GUj8zRxbm5udh3v7u6ebn+Z9corr6hGjRpWA8Xy5cun+vXrq379+howYIBef/117dixQ5KUlJSkkSNHqm7dugoICMiSsQAAAAAAAAAAAAAAgJx19OhRQ7ty5cr33KePj49Kliypc+fOSZJiYmJ07tw5BQUFpXnML7/8ori4OPn6+urjjz9WmzZtDI8nJyfrl19+0aeffmrKGDVr1iw1b95cDRo0sOhv586dphgHSWratKk+/fRT5c+f3+r5k5KSdODAAS1atCjdEoJ//PGHIbipUqVKGjNmjOrUqWOxb1xcnGbOnKmJEycqMTFR169f1/Dhw/XTTz+l2X9q06ZNU2JioipWrKjPPvvM6nOTEpSVOrhLuhv8ll7gW2qLFy82/VyoUCE99thjVvfL7mt///33DYFdNWrU0BdffKFSpUoZ9gsNDdV7772n9evX67PPPrPpGh9mBHfZyDx4KqPUdOZSR0ha6y+z6tWrZ9N+BQoU0NSpU9W7d28dOXJE0t2I0WnTpumtt97K1LlTIl4BR8VrFI7MycnJ9A20W7dumb71ACDnMA+B3Mc8BHIf8xDIfcxDIPcxD4HcxzwEcp+Tk5Py5PYg7lOOcE/yxo0bhraPj0+WjCt//vym4C5JunDhQpqBVdLduAgXFxd9+eWXqlmzptUxPPnkk3JxcdH7779v2va///1Pc+fOtdh3w4YNpp99fHz0wQcfyMXFJd1rK126tKnMn7X9IiMjDeeuUaOGJk6cKE9PzzT77dmzpzw8PExBSNu3b9e6detUt25di33NSy8mJiaqRIkS+vbbb5U3b940zxEdHS1/f3/VrVtXu3btkiQtXbpUAwcOTDdbmiSdPn1aBw8eNLXbtWtntQRkdl/79u3btWnTJlO7bNmyGj9+vNXXo7Ozs8aOHavo6Gj9+++/hsfu3LnjEPPqXmR15jGCu2yUJ4/xo8zezFvm+3t7e9/zmOzl5eWl999/Xz169DBtW7lyZaaDu1hYw9HxGsX9Ijk5mdcrkMuYh0DuYx4CuY95COQ+5iGQ+5iHQO5jHgK43zjCe5Z5II+3t3eWjMvX19fQtiUAt1u3bqpRo0a6+7Vp00Zr1qzR1q1bJUn//fef9u3bpxo1ahj2Cw0NNf1cqlQpeXl53fN1LVq0SFFRUZLuJuX54IMP5OHhkWG/wcHBWr58uQ4dOmTqx1q2K2v9DB8+XL6+vjaNvUuXLqbgrrCwMG3dulVNmjRJ95jly5cb2u3bt7d6ruy+9tTZwyTprbfeSve16OLiopEjR6p79+6GmBrWApacc3sA9wvz4K6UF7ytUu/v6uqaZZm77FWzZk2VK1fO1L58+bLOnj2bK2MBAAAAAAAAAAAAAAD3Jjo62tD28vLKkn7NSxuan8eabt262dR36qQ0kgwZn1Kkvo7z58/rzp07NvWdnpUrV5p+fvzxx1WkSBGbj23ZsqXp5z179tgUgFS8eHHVr1/f5nO0bdvWEJ9iHrhlLjExUatXrza1a9asqZIlS1rdNzuvPT4+Xv/884+pXaFCBdWsWTPDfgsVKqRmzZrZPI6HFcFdNipUqJChffXqVZuPTU5ONuxv3ldOM59Aly5dyp2BAAAAAAAAAAAAAACAe2KerCYmJiZL+jUPpjI/j7myZcuqWLFiNvVdt25dQ3+HDx+22Kdy5cqmnyMiIvTuu+/q2rVrNvVvTVhYmCH5jS3BR6mVKFHC9HN4eLiuX7+e4TG1atWy6xze3t5q27atqf3PP/8oLCwszf3//fdf3bx509Tu0KGD1f2y+9pPnDihuLg4U7tx48Y29/3444/bNZaHEWUZbRQUFGRoX7x40eZjb9y4ofj4eFO7bNmyWTauzDCvgZveGwEAAAAAAAAAAAAAAHBcefPmNbTtrUSWlsjIyHTPYy51FbGMODs7KygoSAcPHpQkqxXHmjZtqiJFiujy5cuS7gY6de7cWbVr11aDBg1Uo0YNVaxYUW5ubjad88SJE4b2+PHj9fXXX9s8ZvNsVbdu3VJgYGC6x5QqVcrm/lM8/fTTphKHCQkJWr16tXr16mV13xUrVph+zpMnj1q0aGF1v+y+dvPnr3z58jb3XaFCBZv3fVgR3GWjwMBA+fr6KiIiQpJ09OhRm489cuSIoZ3bwV3mUbq5VSISAAAAAAAAAAAAAADcGz8/P0PbloxStjDPkmV+HnP58uWzq//U+0dGRio5OVlOTk6mbe7u7vr888/1xhtvmK4pMTFRO3fu1M6dOyXdjXeoUqWK6tWrp9atW6ebOSw8PNzQTkpKsmu85syD36zx8fGxu9+6deuqRIkSunDhgqS7pRmtBXfdunVLW7ZsMbVbtGiRZna17L72lFiaFAEBATb3Ze/r5mFEWUY71KlTx/TzzZs3df78eZuO27Nnj6H96KOPZum47JXyBpCCiQIAAAAAAAAAAAAAwP3JPGPWsWPH7rnPqKgohYSEmNqenp6G0nzWeHl52XUOT09P089JSUkWZSCluxmgfv75Z/Xp00f+/v4Wj8fGxmrPnj2aMmWKunbtqpEjR5oyfZkzD0C6V7YESLm6Zi7nUuryiqdOnbL6nP7555+GKnJplWSUsv/ao6OjDW17XgupXwewjsxddmjZsqU2bdpkaq9evVovvvhihsf9+eefpp89PDzsqi2a1WJiYkwRrNLdNxJ70uEBAAAAAAAAAAAAAADHUb16dUP70KFD99znkSNHDKX4qlSpkmGgknkVsYykDuZydnZOM8jHz89PQ4cO1UsvvaT9+/dr7969OnTokA4ePGgoQZmcnKxNmzZp9+7dmjx5skW5P/P+J06cqHr16tk15pzSvn17/fDDD6YgquXLl6tSpUqGfVKXZCxevLhq1qyZZn/Zfe3mGcPseS1YC+qDEZm77NCiRQtDrdaFCxcaoiCt+ffff3XmzBlTu2nTpmmmwcsJs2fPNqTHq1Gjhnx9fXNtPAAAAAAAAAAAAAAAIPOqVKkiDw8PU/vAgQNpZq+yVeokNpLSDRxKERYWZtc5QkNDTT/7+PgYSjJa4+rqqjp16uiFF17QhAkTtGbNGk2fPt0iq1dERIRGjx6txMREw/Hmmb8uXrxo13hzUmBgoCH4as2aNYb4lP/++0/Hjx83tdPL2iVl/7Wbx53Y81pI/TqAdQR32aFAgQLq3r27qX3+/HlNnTo1zf1jY2P10UcfmdpOTk4aPHhwmvuHhISoYsWKpn8tWrRIdzypJ6ottmzZom+//dawrV+/fnb1AQAAAAAAAAAAAAAAHIenp6dat25taicnJ+v333/PdH+3b9/Whg0bTG0XF5cMg4ck6eTJkzafIykpSadOnTK1S5cubdcYU8ZVtWpVDR06VAsXLlRQUJDpsXPnzmnfvn2G/cuUKWNo79271+5z5qTUv/Pbt2/r77//NrWXL19u+tnZ2Vnt27dPt6/svnbz58+e14I9+z6sCO6y06BBg+Tt7W1qT5o0ST/++KNFPdHQ0FC98MIL+u+//0zb2rdvr8qVK2fZWPr06aMXX3xRa9euVWxsbJr73b59WxMnTtSgQYMMkZz16tXTE088kWXjAQAAAAAAAAAAAAAAOa9Hjx6G9rx58zKdnen7779XdHS0qd20aVMVKVIkw+POnDmjS5cu2XSO3bt3G85RpUoV+weaiq+vr0WyHfOgoWLFiqlo0aKm9j///GOofOZomjRporx585raKQFdCQkJhsxq9erVU2BgYLp9Zfe1V6hQQe7u7qb21q1bbT42ddAarEu/ICosFCpUSOPHj9fgwYOVlJSk5ORkffbZZ5o3b54aNGggf39/nTt3Ths3bjTUBS1XrpzGjh2bpWNJTk7W5s2btXnzZnl5ealixYoqV66c/P395enpqYiICP3333/as2ePRT3TMmXKaNKkSVk6HgAAAAAAAAAAAAAAkPPKly+vli1bav369ZLuVhr78MMPNXHiRHl6etrcz9atW7V06VJT293dXf3797fp2OTkZC1YsECvvfZahvvOnz/f0G7WrJnNY0xLsWLFDO3UyW9StG7dWrNnz5YkRUZGavbs2RoyZMg9nzs7uLu764knntBvv/0mSdq+fbtu3LihI0eOGMoe2pJVTcrea3dzc1PDhg21efNmSdKJEye0f/9+1ahRI93jrl27pk2bNmXJGB5kZO7KhGbNmunTTz+Vl5eXadvZs2c1b948TZkyRatWrTIEdj3yyCP64Ycf5OPjk21jiomJ0b59+/Tbb79p+vTp+vbbbzV79mxt3brVIrCrTZs2mjdvnkVNVQAAAAAAAAAAAAAAcH966623VLBgQVP7wIEDGjlypCFDVnq2bdumd99911C57KWXXlK5cuVsHsNvv/2mgwcPprvP2rVrtWXLFlM7KCjIahDQsWPHlJiYaPO5zcswWss21rt3b+XJk8fU/vnnn7V27VqbzyFJN2/eNJSUzE6pA7cSExO1atUqQ0nGvHnzqkmTJjb1ld3X3qVLF0P7888/V1RUVJp9JSYmaty4cYb4GlhHcFcmBQcHa/HixWrVqpXc3Nys7lOwYEENGTJECxYsUPHixbN8DIMGDVL9+vUNky8t7u7uatmypWbNmqWJEycS2AUAAAAAAAAAAAAAwAPEz89PY8eOlYeHh2nbtm3b1Lt3b23YsEEJCQlWj7t27ZrGjRun119/XbGxsabtTZo0Ua9evWw+v7u7uxISEvTmm29azcaUnJysJUuWWFQ9e/311632980336hbt26aNWuWzp8/n+65N23aZKhe5uHhoYYNG1rs5+fnpxEjRhjGNGbMGH399de6efNmmv0nJiZq165d+uSTT9SlSxft3Lkz3fFklUqVKhmC6xYvXqx//vnH1H7iiScM5RDTk93XXr9+fTVq1MjUPnXqlF577TWr5UHDw8P17rvvauvWrTaP/2FGWcZ7ULZsWU2ePFlhYWHas2ePrly5oqioKBUoUEAlSpRQ7dq15eLiYnN/xYsX1/Hjx23ef+DAgRo4cKCSkpJ07tw5nTt3TleuXFFERITi4+OVJ08e+fn5qUyZMqpcuTITAgAAAAAAAAAAAACAB1itWrX0+eef69133zVlTbpy5Yreffdd5c2bV3Xr1lVgYKC8vLx08+ZNnTlzRocOHVJycrKhn+bNm+vDDz+Uk5OTzefu0qWLtmzZopCQEI0cOVJly5ZV7dq1lTdvXoWGhmr79u26fPmy4ZiePXuqbt26afZ56dIlTZkyRVOmTFGhQoVUsWJFFSlSRD4+PkpMTNT169e1f/9+hYSEGI4bPHiwvL29rfbZrl07XbhwQTNnzpR0N8hp/vz5WrRokSpXrqwKFSrIz89P8fHxioiI0NmzZ3XixIl0s1Blpw4dOmjChAmSZPH7s7UkY4rsvvaRI0eqf//+unHjhiTp4MGD6tGjh+rWraugoCC5uLjowoUL+vfff00Zu1599VV9+eWXdl3Hw4bgriwQEBCgli1b5tr5nZ2dVaZMGZUpUybXxgAAAAAAAAAAAAAAAHJf/fr19eOPP+rjjz/W/v37Tdtv376tDRs2pHusp6enBg0apJ49e9oV2CVJ3t7e+uyzz/TGG2/o2rVrOn36tE6fPp3m/p07d9awYcNs7v/q1au6evVquvs4Ozurf//+6tmzZ7r7vfjiiypRooQ+//xzxcTESJISEhJ04MABHThwIMOxpFXhLTu0bdtWkydPVnx8vGF7uXLlVKlSJbv7y85rDwwM1KRJk/TKK6+YArwSEhK0bds2bdu2zWL/rl27qmvXrgR3ZYDgLgAAAAAAAAAAAAAAHnJu/7si6W65NPMsTrj/lCxZUj/88IO2bt2qRYsWaceOHWmWZZSkQoUKqW3bturevbvy58+f6fOWK1dOP/30kyZMmKCNGzcayjymKFGihF5++WU1b9483b5ef/11rV+/Xtu3b9fJkyeVmJiY5r7u7u5q2LChnn/+eZsDntq1a6eGDRvq119/1cqVK3X9+vV09y9RooQaNGigNm3aqGrVqjadIyv4+/urcePGFqUu7c3alVp2XnuZMmX0yy+/aPLkyVq9erXV10CpUqXUv39/tWnTJtPX8DBxSuZdGZkUFhaW20PIVo81S8rtIWS7fU9Vye0hZKvIN47m9hCANDk5Ocnf318S/0kCcgvzEMh9zEMg9zEPgdzHPARyH/MQyH3MQyD3MQ8ffDExMTp69KjOnz+v27dvKyEhQV5eXgoMDFT58uVVsmTJLD9nRESE9u7dq2vXrik6OloBAQEqX758prJNxcTE6NSpUwoJCVFoaKju3LkjNzc3+fr6qnTp0ipfvnyaZRhtde7cOZ04cUK3bt1SRESE3N3d5e3trWLFiqls2bL3FPRmi9ych9l17VFRUdq1a5euXLmi2NhYFSxYUKVLl9YjjzySxVfgWAICArK0PzJ3AQAAAAAAAAAAAAAAPMC8vLxUu3Zt1a5dO8fO6evrqyZNmmRJX15eXqpatWq2ZswqVaqUSpUqlW39O7LsunZvb281bdo0y/t92Djn9gAAAAAAAAAAAAAAAAAAAJYI7gIAAAAAAAAAAAAAAAAAB0RwFwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOiOAuAAAAAAAAAAAAAAAAAHBABHcBAAAAAAAAAAAAAAAAgAMiuAsAAAAAAAAAAAAAAAAAHBDBXQAAAAAAAAAAAAAAAADggAjuAgAAAAAAAAAAAAAAAAAHRHAXAAAAAAAAAAAAAAAAADgggrsAAAAAAAAAAAAAAAAAwAER3AUAAAAAAAAAAAAAAAAADojgLgAAAAAAAAAAAAAAAABwQAR3AQAAAAAAAAAAAAAAAIADIrgLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IAI7gIAAAAAAAAAAAAAAAAAB0RwFwAAAAAAAAAAAAAAAAA4IIK7AAAAAAAAAAAAAAAAAMABEdwFAAAAAAAAAAAAAAAAAA6I4C4AAAAAAAAAAAAAAAAAcEAEdwEAAAAAAAAAAAAAAACAAyK4CwAAAAAAAAAAAAAAAAAcEMFdAAAAAAAAAAAAAAAAAOCACO4CAAAAAAAAAAAAAAAAAAdEcBcAAAAAAAAAAAAAAAAAOCCCuwAAAAAAAAAAAAAAAADAARHcBQAAAAAAAAAAAAAAAAAOiOAuAAAAAAAAAAAAAAAAAHBABHcBAAAAAAAAAAAAAAAAgAMiuAsAAAAAAAAAAAAAAAAAHBDBXQAAAAAAAAAAAAAAAADggAjuAgAAAAAAAAAAAAAAAAAHRHAXAAAAAAAAAAAAAAAAADgggrsAAAAAAAAAAAAAAAAAwAER3AUAAAAAAAAAAAAAAAAADojgLgAAAAAAAAAAAAAAAABwQAR3AQAAAAAAAAAAAAAAAIADIrgLAAAAAAAAAAAAAAAAABwQwV0AAAAAAAAAAAAAAAAA4IAI7gIAAMD/sXen0XZVdbrwn3XOyUlITxKIxARDSIpG+sYOSywiKOq1oFBRIo1KgbReLBUYgr3GawNFgYAMKEqgRqlIU4UgFNJdRYoutIbGQCAJaQhJOGlIf9b7IW/2TUiCafZZex/8/cbIYM695/rP/3ac5adnzAkAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE1IuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0IeEuAAAAAAAAAACAJiTcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATUi4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANCHhLgAAAAAAAAAAgCYk3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAE2prdANvBq+++momTJiQmTNnZuHChdl2220zfPjw7L333mltbW10ewAAAAAAAAAAQDck3LUFJk+enJ/85Ce5++67s3z58nW+32abbXLkkUfmxBNPTHt7ewM6XOXKK6/MD37wg7U+e8c73pGrr766QR0BAAAAAAAAAAB/iWsZN9N//ud/5h/+4R9y++23rzfYlSSzZ8/ORRddlCOPPDLTpk2ruMNVpk2bln/5l39pyN4AAAAAAAAAAMDmc3LXZrjnnnty1llnpbOzs/bZyJEj8853vjMDBw7MlClTctddd2XJkiVJkokTJ+bEE0/ML3/5y/Tt27fSXr/xjW/ktddeq3RPAAAAAAAAAABgywl3baKXX345Z5xxRi3YVRRFzjzzzBx77LFpafl/B6HNnTs3X/ziF/PAAw8kSSZNmpSvf/3rOe+88yrr9cYbb8wf/vCHJKuuiJw9e3ZlewMAAAAAAAAAAFvGtYyb6JJLLsmiRYtq89NOOy2f/exn1wp2JcmgQYNy+eWXZ8cdd6x9dsstt2TixImV9Dl37tz84Ac/SLIqgHb22WdXsi8AAAAAAAAAAFAfwl2b4JVXXsm1115bm2+//fY54YQTNri+Z8+eOffcc2vzsixzySWXdGmPq33/+9/PvHnzkiRHHnlk9txzz0r2BQAAAAAAAAAA6kO4axPccccdWb58eW3+yU9+Mj169HjDZ9797ndn1KhRtfk999yT1157rct6TJLf//73uemmm5Ksuo7xn/7pn7p0PwAAAAAAAAAAoP6EuzbBnXfeudb8Qx/60EY998EPfrA2Xrp0ae6999669rWm1157Ld/4xjdq87PPPjv9+/fvsv0AAAAAAAAAAICuIdy1CR5++OHaeMiQIRkxYsRGPbf33nuvNX/wwQfr2tea/vmf/zkvvfRSkuS9731vPvKRj3TZXgAAAAAAAAAAQNcR7tpIs2bNyoIFC2rzXXbZZaOf3XXXXdeaP/fcc3Xra02PP/54rrnmmiRJz5491zrBCwAAAAAAAAAA6F6EuzbS888/v9Z82LBhG/3skCFD0qNHj9p88uTJdetrtRUrVuTcc8/NypUrkyQnnXRStt9++7rvAwAAAAAAAAAAVEO4ayPNmjVrrflb3vKWjX62KIoMHTp0g7Xq4fLLL8/TTz+dJNlxxx3z+c9/vu57AAAAAAAAAAAA1WlrdAPdxWuvvbbWvHfv3pv0fJ8+fWrjFStWZOnSpenZs2ddenvhhRdy8cUXJ1kVJPvWt76V9vb2utR+I0VRdPkesCX8jdLM1vz79LcKjeE9hMbzHkLjeQ+h8byH0HjeQ2g87yE0nvcQGs97yIYId22k14e7NjWY9fr1ixYtqku4qyzLnHvuuVm6dGmS5B/+4R+y//77b3HdjTFw4MBK9mmcOY1ugC305v8b5c1iwIABjW4B/up5D6HxvIfQeN5DaDzvITSe9xAaz3sIjec9hMbzHrIm1zJupNXhqdV69OixSc+//iSt19fbXL/+9a/zwAMPJEm23nrrfOUrX6lLXQAAAAAAAAAAoLGc3LWRXn/K1vLlyzfp+WXLlr1hvc0xe/bs/PCHP6zNzzzzzGy99dZbXHdjvfrqq5XtBZvD3yjNrCiKWuK+o6MjZVk2uCP46+M9hMbzHkLjeQ+h8byH0HjeQ2g87yE0nvcQGs97+OZR71vGhLs2Uu/evdeab+rJW69f36dPny3u6Tvf+U7mz5+fJHnHO96Rww8/fItrbgr/R0Kz8zdKd1GWpb9XaDDvITSe9xAaz3sIjec9hMbzHkLjeQ+h8byH0HjeQ9bkWsaN9Ppw16JFizbp+TXXt7W1bfHJXXfccUduu+22JKuuiPzWt761RfUAAAAAAAAAAIDmIty1kYYOHbrWfNasWRv9bFmWa61/fa3N8YMf/KA2PuGEEzJq1KgtrgkAAAAAAAAAADQP1zJupB133HGt+UsvvbTRz77yyitZvnx5bV6PINa8efNq40svvTSXXnrpJj3/wAMPZNddd63N999///z85z/f4r4AAAAAAAAAAID6EO7aSNtuu2369euXBQsWJEmeeuqpjX524sSJa83rfcrWypUrt/i5zs7OerUDAAAAAAAAAADUgWsZN8G+++5bG8+ZMydTpkzZqOcmTJiw1nz//feva18AAAAAAAAAAMCbj5O7NsHYsWNz99131+a33nprTjjhhL/43G233VYb9+zZMwcccMAW9/LQQw9t0vpp06Zl7Nixtfk73vGOXH311VvcBwAAAAAAAAAA0DWc3LUJDjrooPTo0aM2v/baa7N8+fI3fOa+++7L5MmTa/MDDzwwvXv37rIeAQAAAAAAAACANwfhrk0wZMiQfPKTn6zNp0yZkssuu2yD65cuXZrvfve7tXlRFDnppJM2uH7atGnZaaedav8OOuig+jQOAAAAAAAAAAB0O8Jdm+jEE09Mnz59avMLL7wwV155ZTo7O9daN3fu3Bx//PGZNGlS7bMPf/jD2XXXXSvrFQAAAAAAAAAA6L7aGt1AdzN06NCcd955Oemkk9LZ2ZmyLPODH/wgv/jFL/Kud70rAwcOzIsvvpi77rorS5YsqT03evTofPvb325g5wAAAAAAAAAAQHci3LUZ3v/+92f8+PH55je/mcWLFydJXnjhhbzwwgvrXb/LLrvkoosuSt++fSvsEgAAAAAAAAAA6M5cy7iZDjvssFx//fX5wAc+kB49eqx3zTbbbJNTTjklv/rVrzJ8+PCKOwQAAAAAAAAAALozJ3dtgVGjRuWnP/1p5s2blwkTJmTmzJlZtGhRhgwZkhEjRmSfffZJa2vrRtcbPnx4nnnmmS7ptStrAwAAAAAAAAAA9SfcVQdbb711xo4d2+g2AAAAAAAAAACANxHXMgIAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmlBboxt47bXX8thjj2XixImZM2dOFi5cmOXLl29SjaIo8v3vf7+LOgQAAAAAAAAAAKhew8Jds2fPzgUXXJCbb745S5Ys2ew6ZVkKdwEAAAAAAAAAAG86DQl33X///Tn99NMzf/78lGWZZNXpWwAAAAAAAAAAAKxSebjr+eefz8knn5xFixYlWRXqKsuyFvICAAAAAAAAAACgAeGuH//4x1m0aFHtpK6WlpZ84AMfyN/93d9l1KhRGTBgQNraGnZbJAAAAAAAAAAAQFOoNEU1d+7c3HXXXbXTugYPHpyf/exn2W233apsAwAAAAAAAAAAoOlVGu566KGHatcvFkWRH/7wh4JdAAAAAAAAAAAA69FS5WazZs1KsirYNWLEiBxwwAFVbg8AAAAAAAAAANBtVBruWrx4cW288847V7k1AAAAAAAAAABAt1JpuGubbbapjXv06FHl1gAAAAAAAAAAAN1KpeGuESNG1MZz5sypcmsAAAAAAAAAAIBupdJw1z777JMhQ4akLMs8/vjjWbFiRZXbAwAAAAAAAAAAdBuVhrtaWlry8Y9/PEmyePHi3HjjjVVuDwAAAAAAAAAA0G1UGu5KkpNPPjl/8zd/k7Is85Of/CTTpk2rugUAAAAAAAAAAICmV3m4q729PRdeeGGGDx+eefPm5aijjsp9991XdRsAAAAAAAAAAABNra3qDR988MEkyZe//OV861vfyssvv5zPfe5z2XPPPXPggQdm9OjR6d+/f1paNi13tv/++3dFuwAAAAAAAAAAAA1Rebjr6KOPTlEUtXlRFCnLMo899lgee+yxzapZFEUmTpxYrxYBAAAAAAAAAAAarvJw12plWdZCXqv/W5Zlo9oBAAAAAAAAAABoKg0Jd60OcQlzAQAAAAAAAAAArF/l4a5TTz216i0BAAAAAAAAAAC6HeEuAAAAAAAAAACAJtTS6AYAAAAAAAAAAABYl3AXAAAAAAAAAABAExLuAgAAAAAAAAAAaELCXQAAAAAAAAAAAE2ordENrGn27Nl54oknMmfOnHR0dKQoivTv3z+DBw/O7rvvnm222abRLQIAAAAAAAAAAFSi4eGuefPm5T/+4z9yww03ZNq0aW+4dvjw4Tn88MPzqU99KoMGDaqoQwAAAAAAAAAAgOo19FrGa6+9NgcddFAuvPDCTJ06NWVZvuG/qVOn5sILL8zYsWPzq1/9qpGtAwAAAAAAAAAAdKmGndz19a9/Pddee23KskySFEWRJLX56635/eLFi/ONb3wjjz/+eL773e9W0zAAAAAAAAAAAECFGhLuuuiii2onbxVFUTuZa9CgQdljjz0yatSo9OvXL0myYMGCTJ48OY8//njmzJmzVsjruuuuy7bbbpvTTz+9ET8DAAAAAAAAAACgy1Qe7nruuedyySWXrBXS2mWXXfK///f/zt/+7d+mpWX9N0V2dnbm97//fS644IJMnDixFgr72c9+lo985CPZcccdq/wZAAAAAAAAAAAAXWr9SaoudOGFF2blypW16xc/85nP5LrrrsuBBx64wWBXkrS0tOTAAw/Mr3/96xx99NEpyzJFUaSzszMXXnhhVe0DAAAAAAAAAABUotJw17Jly3LPPfekKIoURZGDDz4455xzzhuGul6vpaUlX/va13LIIYfUrnO85557smzZsi7sHAAAAAAAAAAAoFqVhrseeeSRLF68uHbq1tlnn73Ztc4+++za1Y5LlizJhAkT6tUmAAAAAAAAAABAw1Ua7nrppZeSJEVRZJdddsl222232bW22267vP3tb6/Np0+fvsX9AQAAAAAAAAAANItKw11z586tjUeMGLHF9YYPH77e2gAAAAAAAAAAAN1dpeGu1tbW2njlypVbXK+zs3O9tQEAAAAAAAAAALq7SsNdW2+9dW38wgsvbHG9NWusWRsAAAAAAAAAAKC7qzTctf322ydJyrLMpEmT8txzz212reeeey7PPvvsOrUBAAAAAAAAAADeDCoNd+25557p169fiqJIknz3u99NWZabXKcsy3zve9+rzfv27Zs999yzbn0CAAAAAAAAAAA0WqXhrtbW1hx88MG1QNf//M//5J/+6Z+yZMmSja6xdOnSfOUrX8kf//jHFEWRoihy8MEHp7W1tavaBgAAAAAAAAAAqFyl4a4kOfXUU9Pe3p5k1Qlcv/3tb/ORj3wk1157bRYtWrTB5xYtWpRf//rX+ehHP5qbb745RVGkLMv06NEjp5xySlXtAwAAAAAAAAAAVKKt6g2HDRuWM888M9/5zndqAa2XXnopX//61/Otb30rY8aMyciRI9OvX78kycKFC/PCCy/k2WefzcqVK2unfq0+tevMM8/MW9/61qp/BgAAAAAAAAAAQJeqPNyVJOPGjcu8efNy0UUXpSiKJKtO8VqxYkWeeuqpPP3002utXx3oSlILhJVlmZNPPjnjxo2rtHcAAAAAAAAAAIAqVH4t42qnnnpqfvazn2XIkCHrnMb1emt+XpZlhgwZkksuuSSnn356pT0DAAAAAAAAAABUpSEnd6124IEH5o477shNN92UG2+8MU888USWLFmy3rW9evXK7rvvnsMOOyz/63/9r7S3t1fcLQAAAAAAAAAAQHUaGu5Kkvb29hxxxBE54ogjsmLFikyaNClz5sxJR0dHkmTAgAEZPHhwRo8enba2hrcLAAAAAAAAAABQiaZKS7W1tWXnnXdudBsAAAAAAAAAAAAN19LoBgAAAAAAAAAAAFiXcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQsJdAAAAAAAAAAAATaitnsUuuuiidT479dRT/+Kaenj9PgAAAAAAAAAAAN1Z3cNdRVGs9dn6wl2vX1MPwl0AAAAAAAAAAMCbSZddy1iWZVeVbsg+AAAAAAAAAAAAVarryV3JxoWtBLIAAAAAAAAAAADeWF3DXVdddVVd1gAAAAAAAAAAAPy1q2u46x3veEdd1gAAAAAAAAAAAPy1a2l0AwAAAAAAAAAAAKxLuAsAAAAAAAAAAKAJCXcBAAAAAAAAAAA0obaqNxw7dmySpCiK/Pu//3uGDh26WXVmzZqVo446qlbrd7/7Xd16BAAAAAAAAAAAaLTKw10vvfRSklWBrJUrV252nRUrVqxVCwAAAAAAAAAA4M3EtYwAAAAAAAAAAABNSLgLAAAAAAAAAACgCXXbcNeKFStq47a2ym+XBAAAAAAAAAAA6FLdNtz1yiuv1MZ9+vRpYCcAAAAAAAAAAAD1123DXX/4wx+SJEVR5C1veUuDuwEAAAAAAAAAAKivLrnPcPr06Ru1btasWZtUd9myZZk9e3b+8Ic/5Morr6x9vssuu2xSHQAAAAAAAAAAgGbXJeGugw46KEVRvOGasixz1FFHbfYeZVnWxgcffPBm1wEAAAAAAAAAAGhGXRLuWm3NANbmfL8hRVGkKIqUZZm99torf/d3f7dZdQAAAAAAAAAAAJpVS6Mb2ByrQ2GHHHJILr300r94ShgAAAAAAAAAAEB30yUndx1++OEb/O6GG25Isur0rYMPPjh9+vTZ6Lrt7e3p379/dtxxx+y///5561vfusW9AgAAAAAAAAAANKMuCXeNHz9+g9/dcMMNtZO2zjrrrAwbNqwrWgAAAAAAAAAAAOjWGnIt4+prFQEAAAAAAAAAAFi/Ljm5642searX1ltvXfX2AAAAAAAAAAAA3ULl4a7DDz+86i0BAAAAAAAAAAC6nYZcywgAAAAAAAAAAMAbE+4CAAAAAAAAAABoQsJdAAAAAAAAAAAATait0Q0kySOPPJJHHnkkzz33XObPn58FCxaks7Nzo58viiI///nPu7BDAAAAAAAAAACAajU03PXLX/4yV1xxRaZOnbrZNcqyTFEUdewKAAAAAAAAAACg8RoS7lq8eHG+9KUv5e67705ZlklSC2itnq/52Zr+0vcAAAAAAAAAAABvBg0Jd51zzjm56667kqwKaJVluU7IK1k7yLXamiGw9X0PAAAAAAAAAADwZlB5uOvuu+/OzTffXAtp9e3bNyeffHIOOeSQrFy5MoccckiSVSGup59+OgsXLszLL7+cRx55JDfccEMeeuihFEWRwYMH5//8n/+T9773vVX/BAAAAAAAAAAAgC7XUvWGV1xxRZJVJ2/16dMnV199dT772c/mrW99a1pbW9dZ37dv34waNSpHHHFErrnmmlx00UXp379/5s6dmy984Qu5/fbbq/4JAAAAAAAAAAAAXa7ScNfChQvz8MMPpyiKFEWRU045JTvvvPMm1fjABz6Qyy+/PL169cqKFSvy1a9+NVOnTu2ijgEAAAAAAAAAABqj0nDXY489ls7OzpRlmba2tnz84x/frDq77757Tj755CTJkiVLcskll9SzTQAAAAAAAAAAgIarNNw1ffr0JElRFBkzZkz69ev3hutXrFixwe/GjRuX9vb2lGWZ22+/PcuWLatrrwAAAAAAAAAAAI1Uabhr/vz5tfHw4cPX+b6trW2t+dKlSzdYq3fv3tljjz2SrLruccKECXXqEgAAAAAAAAAAoPEqDXetXLmyNt5qq63W+b5Pnz5rzefOnfuG9bbddtvaeObMmVvYHQAAAAAAAAAAQPOoNNy1ZnjrtddeW+f73r17p6Xl/7X0lwJbZVnWxnPmzKlDhwAAAAAAAAAAAM2h0nDX0KFDa+N58+at20xLS0aMGFGbP/nkk29Yb/LkybVxURR16BAAAAAAAAAAAKA5VBru2mGHHZKsOnFr0qRJ612z00471ca33XbbBms999xzeeaZZ2qhrsGDB9exUwAAAAAAAAAAgMaqNNw1atSo9O/fP0nS0dGRl156aZ01Bx54YJJVAbDHHnss//mf/7nOmiVLluRrX/tayrKsXc241157dV3jAAAAAAAAAAAAFas03FUURfbbb7/a/J577llnzcEHH5zevXunKIqUZZmzzz47Z599dm677bb88Y9/zDXXXJPDDjssjz32WIqiSFEU2XXXXfO2t72typ8CAAAAAAAAAADQpdqq3nDs2LG58847kyS33HJLjjrqqLW+79+/f77whS/kvPPOS1EU6ezszI033pgbb7yxtqYsy1r4q6WlJWeccUaVPwEAAAAAAAAAAKDLVXpyV7LqZK4xY8Zk9OjR6ejoyPTp09dZc/zxx+eQQw6phbiS1K5gXDPYlSSnn3563vve91b6GwAAAAAAAAAAALpa5Sd39e/fPzfddNMbrmlpacn555+fK6+8Mj/72c+yYMGCtb4vyzLDhg3LV77ylRx66KFd2S4AAAAAAAAAAEBDVB7u2litra05/vjjc+yxx+bBBx/MCy+8kAULFqR///7Zeeeds+eee6alpfKDxwAAAAAAAAAAACrRtOGu1Xr06JH3vOc9ec973tPoVgAAAAAAAAAAACrj6CsAAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBNqq2ex6dOn17PcJhk2bFjD9gYAAAAAAAAAAKi3uoa7DjrooBRFUc+SG6UoikycOLHyfQEAAAAAAAAAALpKXcNdq5Vl2RVlAQAAAAAAAAAA/mq0NLoBAAAAAAAAAAAA1lXXk7sOP/zwepYDAAAAAAAAAAD4q1XXcNf48ePrWQ4AAAAAAAAAAOCvlmsZAQAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNSLgLAAAAAAAAAACgCQl3AQAAAAAAAAAANKG2qjc85phj6l6zKIr8/Oc/r3tdAAAAAAAAAACARqk83PXAAw+kKIq61SvLsq71AAAAAAAAAAAAmkHl4a4tVZZlbSzUBQAAAAAAAAAAvFk1JNy1ZkBrU60OdJVluUV1AAAAAAAAAAAAmlnl4a6nn356k9Z3dnamo6MjkyZNyl133ZVrr702CxYsyIABA/LjH/84f/u3f9tFnQIAAAAAAAAAADROS6Mb+EtaWlqy9dZbZ//9989Xv/rV/Pa3v81+++2Xjo6OnHTSSfnd737X6BYBAAAAAAAAAADqrunDXa83ZMiQXHbZZRkzZkxWrFiRr3zlK5k6dWqj2wIAAAAAAAAAAKirbhfuSpLevXvnrLPOSpIsWbIk//Iv/9LgjgAAAAAAAAAAAOqrW4a7kuSAAw7IkCFDUpZlbr/99ixcuLDRLQEAAAAAAAAAANRNtw13Jcnb3/72JMnSpUvz8MMPN7gbAAAAAAAAAACA+unW4a7+/fvXxjNmzGhgJwAAAAAAAAAAAPXVrcNdCxYsqI3nz5/fwE4AAAAAAAAAAADqq9uGu1auXJlHH320Nu/Xr1/jmgEAAAAAAAAAAKizbhvu+vd///e8+uqrtfnIkSMb1gsAAAAAAAAAAEC9dbtwV1mWueqqq/LDH/4wRVEkSXr16pV99923wZ0BAAAAAAAAAADUT1vVG954442b/MyKFSuyYMGCTJo0Kf/3//7fvPLKKynLMklSFEWOPPLItLe317lTAAAAAAAAAACAxqk83HXWWWfVTtzaHGuGusqyzKhRo3LKKafUqz0AAAAAAAAAAICm0LBrGcuy3KR/q60OhpVlmb322itXXHFF+vXr16ifAQAAAAAAAAAA0CUqP7kryVphrU19prW1NXvttVc+8YlP5GMf+1haWhqWTwMAAAAAAAAAAOgylYe7xo8fv8nPtLa2pm/fvhk8eHB22mmn9OrVqws6AwAAAAAAAAAAaB6Vh7sOP/zwqrcEAAAAAAAAAADodtxpCAAAAAAAAAAA0ISEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQm2NbmC1p556Kg8//HCeeOKJzJkzJx0dHSmKIv3798/gwYOz++67Z999980uu+zS6FYBAAAAAAAAAAC6XMPDXdddd12uuuqqPPvss2t9XpZlkqQoiiTJf/3XfyVJxowZk2OPPTZHHHFEtY0CAAAAAAAAAABUqGHXMr700ks5+uijc8455+TZZ59NWZa1QFeyKtS1OtiVpPb9s88+m3POOSdHH310XnrppUa0DgAAAAAAAAAA0OUaEu6aMmVKjjrqqDz00EPrnNC1OsT1+n+r1xRFkbIs8+CDD2bcuHGZOnVqI34CAAAAAAAAAABAl6r8WsalS5fm85//fGbNmrVWWGvw4ME59NBDs8cee2TkyJHp27dvkmThwoV54YUX8vjjj+e3v/1t5syZU3tm5syZ+fznP5+bbropPXv2rPqnAAAAAAAAAAAAdJnKw10XX3xxpk6dWgtobbXVVvniF7+Yo48+Oq2tret9Zo899sjHPvaxnH322bn66qtzwQUXZMmSJSnLMlOnTs3FF1+cM844o+JfAgAAAAAAAAAA0HUqvZZx5cqV+eUvf1kLdvXt2zf/9m//luOOO26Dwa41tba25rjjjsuVV16Z3r171+r88pe/zMqVKyv4BQAAAAAAAAAAANWoNNz10EMP5dVXX02SFEWRL3/5y9lzzz03uc5ee+2VL3/5yynLMknS0dGRhx56qJ6tAgAAAAAAAAAANFSl4a4pU6YkScqyTL9+/fLxj398s2t9/OMfT//+/depDQAAAAAAAAAA8GZQabhr3rx5SVad2rX77runra1ts2v16NEju++++zq1AQAAAAAAAAAA3gwqDXcNHDiwNt56663rWm/NMQAAAAAAAAAAQHdXabhr6NChtXE9Ttrq6OhYb20AAAAAAAAAAIDurtJw1z777JOePXumLMs88cQTWbFixWbXWr58eR5//PEkSXt7e/bZZ596tQkAAAAAAAAAANBwlYa7+vXrl4MOOihJsmDBglx33XWbXeu6667L/PnzUxRF3v/+96dfv371ahMAAAAAAAAAAKDhKg13Jcnpp5+eXr16JUl+9KMf1U7f2hSPP/54fvzjH6coirS3t+f000+vd5sAAAAAAAAAAAANVXm4a4cddsiPf/zjtLW1ZeHChTnuuONyzTXXpLOz8y8+29nZmauvvjrHHXdcFi5cmNbW1vzoRz/KjjvuWEHnAAAAAAAAAAAA1WmresPp06dn1113zfjx4/Od73wnHR0d+d73vpdLL700hx56aPbcc8+MHDkyffv2TVEUWbBgQV544YU8+uijufXWWzNnzpyUZZkBAwbknHPOyW677Zbp06dv1N7Dhg3r4l8HAAAAAAAAAABQH5WHuw466KAURVGbF0WRsizzyiuv5Jprrsk111yzwWfLsqw9M3/+/Hz1q1/d6H2LosjEiRM3v3EAAAAAAAAAAIAKVR7uWq0sy1rIa/V/V4e3NmTNUNjGrAcAAAAAAAAAAOiuGhbuSjY9nCXMBQAAAAAAAAAA/LWoPNx1+OGHV70lAAAAAAAAAABAt1N5uGv8+PFVbwkAAAAAAAAAANDttDS6AQAAAAAAAAAAANYl3AUAAAAAAAAAANCEhLsAAAAAAAAAAACakHAXAAAAAAAAAABAE2prdANr6uzszJ///OfMnTs3r776aoqiyIABAzJo0KCMHj06ra2tjW4RAAAAAAAAAACgEg0Pd61YsSI333xzbrjhhjz22GNZsmTJetf16tUre+65Zw4//PB85CMfSVtbw1sHAAAAAAAAAADoMg1NSN1777352te+llmzZiVJyrLc4NrFixfn/vvvz/3335/zzz8/3/3ud/Pe9763qlYBAAAAAAAAAAAq1dKojX/2s5/lH//xHzNz5sxaqKsoihRFsc7aNT8vyzIzZ87MCSeckIsvvrjSngEAAAAAAAAAAKrSkJO7fvWrX+X8889PkrVCW62trRk1alRGjRqVfv36JUkWLFiQyZMn57nnnsvKlStr6zs7O3PhhRdm8ODBOfLIIxvxMwAAAAAAAAAAALpM5eGumTNn5nvf+95aoa6hQ4fmhBNOyMc+9rFaqOv1FixYkJtuuimXXXZZZs6cmaIoUpZlvv/97+d973tftttuuyp/BgAAAAAAAAAAQJeq/FrGiy66KEuXLq3Nx44dm5tvvjnjxo3bYLArSfr165ejjjoqt9xySw455JCUZZmiKLJs2TLXMwIAAAAAAAAAAG86lYa7Vq5cmdtuu612atd+++2XCy+8MH379t3oGr17984///M/Z//9909ZlinLMrfeems6Ozu7qm0AAAAAAAAAAIDKVRruevzxx7NgwYKUZZkk+cY3vpGWlk1voaWlJd/4xjdq84ULF+bRRx+tV5sAAAAAAAAAAAANV2m468UXX0ySFEWR0aNHZ/To0Ztda/To0RkzZkxtPmXKlC3uDwAAAAAAAAAAoFlUGu6aN29ebTxy5MgtrrfDDjustzYAAAAAAAAAAEB3V2m4a+XKlbVxa2vrFtdb80rHNWsDAAAAAAAAAAB0d5WGuwYNGlQbT506dYvrTZs2bb21AQAAAAAAAAAAurtKw13Dhg1LkpRlmaeeeiozZszY7FozZ87Mn/70p3VqAwAAAAAAAAAAvBlUGu7aZ5990qtXrxRFkbIs88Mf/nCza/3oRz9KWZZJkl69emWfffapV5sAAAAAAAAAAAANV2m4q729Pe973/tSlmXKssytt966WQGvn/zkJ7n55ptTFEWKosjf/u3fpr29vQs6BgAAAAAAAAAAaIxKw11Jcvrpp6elpaV2eteVV16ZT33qU7nvvvv+4rP33XdfPvWpT+Xyyy+vPd/S0pLTTjutgs4BAAAAAAAAAACq01b1hqNHj84//uM/5mc/+1ktoPXoo4/mc5/7XIYMGZI999wzI0eOTL9+/VIURRYsWJAXXnghjz76aF555ZUkSVmWtVO7Pv/5z2fMmDFV/wwAAAAAAAAAAIAuVXm4K0nOOOOMvPzyy7nhhhtSFEWSVYGt2bNn54477ljvM2VZJkkt1FWWZQ477LB86UtfqqxvAAAAAAAAAACAqjQk3JUk48ePz2677ZYf/ehHWbJkSS3ktdqaYa41/1uWZXr27JmvfvWrGTduXLVNAwAAAAAAAAAAVKRh4a4kGTduXD70oQ/l3//933PjjTdm+vTp66xZHfJKkmHDhuWwww7LUUcdlSFDhlTZKgAAAAAAAAAAQKUaGu5KksGDB+f000/P6aefnlmzZuWJJ57I3Llz09HRkbIsM3DgwAwaNCi77757hg4d2uh2AQAAAAAAAAAAKtHwcNeahg4d2i0DXK+++momTJiQmTNnZuHChdl2220zfPjw7L333mltba2sj2nTpuXFF1/MjBkz0tHRkaVLl2arrbbKgAEDMnr06Oy8885pb2+vrB8AAAAAAAAAAGDzVRbumjNnTp577rnMmzcvSbL11ltn1KhR3fp6xcmTJ+cnP/lJ7r777ixfvnyd77fZZpsceeSROfHEE7skVLVs2bJccsklmTBhQp588sksXLjwDddvtdVWOfTQQ/P5z38+o0ePrns/AAAAAAAAAABA/XRpuKssy1x//fW5+uqr88wzz6x3zZgxY3L00UfniCOOSEtLS1e2U1f/+Z//mW9+85t57bXXNrhm9uzZueiii3LnnXfmwgsvzPDhw+vaw8KFC3PxxRdv9PrFixfn+uuvz0033ZTTTjstJ554Yl37AQAAAAAAAAAA6qfLwl2vvvpqvvCFL+Sxxx5LsirotT7PPvtsvv71r+faa6/NpZdemkGDBnVVS3Vzzz335KyzzkpnZ2fts5EjR+ad73xnBg4cmClTpuSuu+7KkiVLkiQTJ07MiSeemF/+8pfp27dvl/U1YMCA7LTTTtlhhx0yYMCAtLe3Z/78+fnzn/+chx56qHa62PLly3Peeedl0aJF+dKXvtRl/QAAAAAAAAAAAJuvS8Jdy5Yty9FHH51JkyalLMsURZGiKDa4vizLPP744zn22GPz61//Oj179uyKturi5ZdfzhlnnFELdhVFkTPPPDPHHnvsWiePzZ07N1/84hfzwAMPJEkmTZqUr3/96znvvPPq1ktRFHn729+eD33oQ3nf+96XnXbaaYP/O8+dOzc/+tGPcv3119c+u+yyy/K+970v++23X916AgAAAAAAAAAA6qNL7kE8//zz8+c//zlJamGjsizX+2/NNZMmTcr555/fFS3VzSWXXJJFixbV5qeddlo++9nPrnOl5KBBg3L55Zdnxx13rH12yy23ZOLEiXXrZeutt87111+fE044ITvvvPMbBugGDRqU8ePH54gjjqh9VpZl/u3f/q1u/QAAAAAAAAAAAPVT93DXggUL8otf/GKtUNewYcNy7rnn5tZbb81jjz2Wxx57LLfeemvOPffcDB8+vHa6V1mW+cUvfpEFCxbUu626eOWVV3LttdfW5ttvv31OOOGEDa7v2bNnzj333Nq8LMtccsklXdrjX/LlL385ra2ttfkf/vCHBnYDAAAAAAAAAABsSN3DXbfccksWL15cmx9wwAH5r//6r4wbNy4jR45Mz54907Nnz4wcOTLjxo3Lf/3Xf+W9731v7RSvpUuX5uabb653W3Vxxx13ZPny5bX5Jz/5yfTo0eMNn3n3u9+dUaNG1eb33HNPXnvttS7r8S8ZNGjQWv0sXrw48+bNa1g/AAAAAAAAAADA+tU93DVhwoQkq06pGjRoUC644IL06dNng+u32mqr/PM//3OGDBlSO+1rdY1mc+edd641/9CHPrRRz33wgx+sjZcuXZp77723rn1tqr59+641Xx2sAwAAAAAAAAAAmkfdw10TJ05MkhRFkU984hPrBInWp2/fvvnEJz5RCxk99dRT9W6rLh5++OHaeMiQIRkxYsRGPbf33nuvNX/wwQfr2temmj59em3ct2/fDBw4sHHNAAAAAAAAAAAA61X3cNfcuXNr43e+850b/dw73vGOJKtOkVqzRrOYNWtWFixYUJvvsssuG/3srrvuutb8ueeeq1tfm+qBBx7IrFmzavMDDzwwLS11/zMAAAAAAAAAAAC2UN1TPWsGoIYOHbrRz625ds0azeL5559faz5s2LCNfnbIkCHp0aNHbT558uS69bUpZsyYka997Wu1eY8ePXLSSSc1pBcAAAAAAAAAAOCNtdW74LJly2rjXr16bfRzPXv2rI2XL19e157qYc3TrpLkLW95y0Y/WxRFhg4dmmnTpq23VldatGhRnn/++dx55525+uqra8G5tra2/OAHP8iYMWMq6wUAAAAAAAAAANh4dQ93vVm99tpra8179+69Sc/36dOnNl6xYkWWLl26VqCtHpYtW5a99tqrNi/LMp2dneus22effXL22Wdnjz322KL9iqLYouehq/kbpZmt+ffpbxUaw3sIjec9hMbzHkLjeQ+h8byH0HjeQ2g87yE0nveQDRHu2kivD3dtajDr9esXLVpU93BXWZZZuXLlG6756Ec/mlNPPTU77LDDFu83cODALa7R3OY0ugG20Jv/b5Q3iwEDBjS6Bfir5z2ExvMeQuN5D6HxvIfQeN5DaDzvITSe9xAaz3vImloa3UB3sXTp0rXmPXr02KTn29vb37BeVX7zm9/kwx/+cM4888zaFY0AAAAAAAAAAEDz6dKTu95Mx8S9/pSt5cuXb9Lzy5Yte8N69dCzZ88888wztfmKFSvS0dGRZ599NnfccUeuu+66vPbaa+ns7MyNN96Yp59+OlddddVmJz5fffXVOnUOXcPfKM2sKIra//92dHSkLMsGdwR/fbyH0HjeQ2g87yE0nvcQGs97CI3nPYTG8x5C43kP3zzqfctYl4S7Voe6Pv3pT6e1tXWjnnn9dYJjx47dpP1+97vfbXyDm6F3795rzTf15K3Xr+/Tp88W9/SXtLW1ZfDgwXn3u9+dd7/73TnuuONyyimn5Omnn06SPP300/n2t7+dn/zkJ5tV3/+R0Oz8jdJdlGXp7xUazHsIjec9hMbzHkLjeQ+h8byH0HjeQ2g87yE0nveQNXXZyV1lWWbmzJmb/exLL7200eurOCHs9eGuRYsWbdLza65va2vrkpO7/pLhw4fniiuuyIc//OF0dHQkWXVN4xe+8IWMGTOm8n4AAAAAAAAAAIANa+mqwkVRVPKvKkOHDl1rPmvWrI1+tizLtda/vlaVhgwZknHjxq312X//9383qBsAAAAAAAAAAGBDuiTctfp4uCr+VWXHHXdca74pJ4u98sorWb58eW0+atSouvW1OQ444IC15s8880yDOgEAAAAAAAAAADak7tcyXnXVVfUu2RS23Xbb9OvXLwsWLEiSPPXUUxv97MSJE9eaNzrcNXjw4LXmCxcubFAnAAAAAAAAAADAhtQ93PWOd7yj3iWbxr777pu77747STJnzpxMmTIl22+//V98bsKECWvN999//65ob6O9PszVv3//BnUCAAAAAAAAAABsSJdcy/hmNXbs2LXmt95660Y9d9ttt9XGPXv2XOdaxKq9/iSx7bbbrkGdAAAAAAAAAAAAGyLctQkOOuig9OjRoza/9tprs3z58jd85r777svkyZNr8wMPPDC9e/fush7/krIs8+tf/3qtz97znvc0qBsAAAAAAAAAAGBDhLs2wZAhQ/LJT36yNp8yZUouu+yyDa5funRpvvvd79bmRVHkpJNO2uD6adOmZaeddqr9O+igg96wn8cff3wTul/lggsuWOu57bbbLu985zs3uQ4AAAAAAAAAANC1hLs20Yknnpg+ffrU5hdeeGGuvPLKdHZ2rrVu7ty5Of744zNp0qTaZx/+8Iez66671q2Xz3/+8/nc5z6XW265JYsXL37DtZMmTcqpp56aSy65ZK3PzzrrrLS3t9etJwAAAAAAAAAAoD7aGt1AdzN06NCcd955Oemkk9LZ2ZmyLPODH/wgv/jFL/Kud70rAwcOzIsvvpi77rorS5YsqT03evTofPvb365rL2VZ5t577829996b9vb2jBkzJjvttFMGDhyYPn365LXXXsvs2bMzceLEtUJmq5122mn50Ic+VNeeAAAAAAAAAACA+hDu2gzvf//7M378+Hzzm9+snZj1wgsv5IUXXljv+l122SUXXXRR+vbt22U9LVu2LH/605/ypz/96S+u7d+/f84888x8/OMf77J+AAAAAAAAAACALeNaxs102GGH5frrr88HPvCB9OjRY71rttlmm5xyyin51a9+leHDh9e9h/Hjx+eII47I9ttvv1HrR44cmTPOOCO33nqrYBcAAAAAAAAAADQ5J3dtgVGjRuWnP/1p5s2blwkTJmTmzJlZtGhRhgwZkhEjRmSfffZJa2vrRtcbPnx4nnnmmY1ef/DBB+fggw9OksybNy+TJk3KtGnTMm/evCxZsiS9evVK3759M3To0Oy2224ZPHjwJv9GAAAAAAAAAACgMYS76mDrrbfO2LFjG97D/vvvn/3337+hfQAAAAAAAAAAAPXhWkYAAAAAAAAAAIAmJNwFAAAAAAAAAADQhIS7AAAAAAAAAAAAmpBwFwAAAAAAAAAAQBMS7gIAAAAAAAAAAGhCwl0AAAAAAAAAAABNqK3KzWbPnp3HH3+8Nt93330zcODAKlsAAAAAAAAAAADoFioNd/33f/93vvvd7yZJevXqlXvvvbfK7QEAAAAAAAAAALqNSsNdCxYsSFmWSZLdd989vXv3rnJ7AAAAAAAAAACAbqOlys0GDBiQJCmKIttss02VWwMAAAAAAAAAAHQrlYa71gx0LV68uMqtAQAAAAAAAAAAupVKw1277rpriqJIkrzwwgtVbg0AAAAAAAAAANCtVBruGjZsWPbcc8+UZZnJkydn8uTJVW4PAAAAAAAAAADQbVQa7kqS448/vjb+4Q9/WPX2AAAAAAAAAAAA3ULl4a4PfOADOeKII1KWZe6+++5861vfyooVK6puAwAAAAAAAAAAoKlVHu5Kkm9/+9s55phjUpZlfvGLX+Swww7Lddddl3nz5jWiHQAAAAAAAAAAgKbTVvWGxxxzTG3cp0+fLFq0KJMmTco555yTJHnLW96SQYMGpU+fPhtdsyiK/PznP697rwAAAAAAAAAAAI1SebjrgQceSFEUtXlRFCnLMmVZJklmzJiRGTNmrLXmjZRludFrAQAAAAAAAAAAuovKw13rI5wFAAAAAAAAAACwtoaEu1af0gUAAAAAAAAAAMD6VR7uevrpp6veEgAAAAAAAAAAoNtpaXQDAAAAAAAAAAAArEu4CwAAAAAAAAAAoAkJdwEAAAAAAAAAADQh4S4AAAAAAAAAAIAmJNwFAAAAAAAAAADQhNoa3UCSPPXUU7njjjvy8MMPZ8qUKeno6MiiRYtSFEUmTpy4zvr58+dn4cKFSZL29vYMGTKk6pYBAAAAAAAAAAC6VEPDXc8880zGjx+f+++/v/ZZWZZ/8bn7778/p59+epJkq622yr333putttqqy/oEAAAAAAAAAACoWsOuZbz++utz5JFH5v77718n0FUUxRs+O3bs2Gy33XYpyzKLFy/Obbfd1pWtAgAAAAAAAAAAVK4h4a7bbrstX/va17JkyZLaZ2VZZrvttssuu+zyF0/vamlpyYc//OHa/M477+yyXgEAAAAAAAAAABqh8nDXyy+/nLPOOivJ/zuh66ijjsrtt9+eO++8MxdeeOFG1Rk7dmySVaGwBx98sGuaBQAAAAAAAAAAaJC2qjf86U9/msWLFydJWltbc9555+WDH/xg7fu/dCXjarvvvnva2tqyYsWKvPrqq5k6dWpGjBjRJT0DAAAAAAAAAABUrdKTu1auXJmbb745RVGkKIocf/zxawW7NkVbW1tGjRpVmz///PP1ahMAAAAAAAAAAKDhKg13Pfroo1m4cGHKskxbW1v+8R//cYvqveUtb6mNZ86cuaXtAQAAAAAAAAAANI1Kw11TpkxJsurqxd133z19+/bdonprPr9w4cItqgUAAAAAAAAAANBMKg13zZ07tzbebrvttrheURS18cqVK7e4HgAAAAAAAAAAQLOoNNxV7zBWR0dHbdyvX78trgcAAAAAAAAAANAsKg13DRo0qDZ++eWXt7jen//859p44MCBW1wPAAAAAAAAAACgWVQa7lp9FWNZlnnqqaeyfPnyza41efLkzJo1qzbfaaedtrg/AAAAAAAAAACAZlFpuGvvvfdOr169UhRFlixZkptvvnmza1199dW18eDBgzNq1Kh6tAgAAAAAAAAAANAUKg13tbe3513velfKskxZljn//PMzf/78Ta7z8MMP55e//GWKokhRFDnkkEO6oFsAAAAAAAAAAIDGqTTclSQnnXRSkqQoisyaNSuf+9znMmfOnI1+/n/+539y8sknp7OzM2VZprW1NZ/73Oe6ql0AAAAAAAAAAICGqDzcteeee+YjH/lIyrJMURR58sknc+ihh+anP/1pnn/++XR2dq7zzMqVK3PffffljDPOyGc/+9l0dHTUnj/66KMzfPjwqn8GAAAAAAAAAABAl2prxKbf+973Mnny5EycODFFUWT+/Pm56KKLctFFF6VHjx5rrT300EMzbdq0rFixIklqoa6yLLP33nvny1/+ciN+AgAAAAAAAAAAQJeq/OSuJOnVq1cuv/zyvOtd76qFtZJVwa1ly5atNZ88eXKWL1+esiyTpBbsOuCAA3LZZZeltbW1ET8BAAAAAAAAAACgSzUk3JUkgwYNypVXXpkvf/nL2XrrrdcKb63+75r/klVhr379+uWMM87IZZddlr59+zaqfQAAAAAAAAAAgC7VkGsZVyuKIscff3yOPvro/OY3v8kf//jHPPzww3n55ZfT2dlZWzdgwIDsvffeee9735u///u/T79+/RrYNQAAAAAAAAAAQNdraLhrtZ49e+aII47IEUcckWTVCV0dHR1Zvnx5Bg4cmB49ejS4QwAAAAAAAAAAgGo1Rbjr9YqiyMCBAxvdBgAAAAAAAAAAQMO0NLoBAAAAAAAAAAAA1iXcBQAAAAAAAAAA0ISEuwAAAAAAAAAAAJpQW6MbWNNrr72WhQsXZsWKFZv87LBhw7qgIwAAAAAAAAAAgMZoaLhr6tSpueGGG3Lffffl6aefzpIlSzarTlEUmThxYp27AwAAAAAAAAAAaJyGhLuWLVuWn/zkJ7nmmmvS2dmZJCnLshGtAAAAAAAAAAAANKXKw13Lli3LF77whdx33321QFdRFCmKQsALAAAAAAAAAADg/1d5uOuSSy7JH//4x3UCXSNHjszb3va29OvXL21tDb0tEgAAAAAAAAAAoOEqTVEtWbIkV1555Vqhrk9/+tM54YQTst1221XZCgAAAAAAAAAAQFOrNNx1//33Z8mSJbVTu0477bScfPLJVbYAAAAAAAAAAADQLbRUudnUqVOTJGVZZuDAgTnxxBOr3B4AAAAAAAAAAKDbqDTctXDhwiRJURTZa6+90traWuX2AAAAAAAAAAAA3Ual4a7+/fvXxn369KlyawAAAAAAAAAAgG6l0nDXmDFjauN58+ZVuTUAAAAAAAAAAEC3Umm4a6+99kr//v1TlmUee+yxrFy5ssrtAQAAAAAAAAAAuo1Kw109evTIpz/96STJokWLcv3111e5PQAAAAAAAAAAQLdRabgrSU466aTssMMOKcsyP/7xj/P8889X3QIAAAAAAAAAAEDTqzzc1atXr1x++eUZNmxYOjo68ulPfzq/+c1vqm4DAAAAAAAAAACgqbU1YtO3vvWt+fWvf52zzz4799xzT77yla/k/PPPzwEHHJBRo0alf//+aWnZtNzZYYcd1jXNAgAAAAAAAAAANEBDwl1JsvXWW+fQQw/No48+mo6Ojrz00ku59tprN7uecBcAAAAAAAAAAPBm0pBw14wZM3LaaaflT3/6U5KkKIrad2VZbnSdoihSluVazwMAAAAAAAAAALwZVB7umjt3bsaNG5cZM2asFczalFDXapvzDAAAAAAAAAAAQHdQebhr/PjxmT59eoqiqJ28NWLEiLznPe/JyJEj07dv37S1Ney2SAAAAAAAAAAAgKZQaYpq9uzZueWWW2qhrt69e+d73/teDj300CrbAAAAAAAAAAAAaHqVhrsefPDBrFy5MklSFEV++MMf5gMf+ECVLQAAAAAAAAAAAHQLLVVuNn369CSrgl0jRowQ7AIAAAAAAAAAANiASsNdra2ttfHOO+9c5dYAAAAAAAAAAADdSqXhrqFDh9bGPXr0qHJrAAAAAAAAAACAbqXScNeoUaNq4xkzZlS5NQAAAAAAAAAAQLdSabhr5513zpgxY1KWZZ544oksWLCgyu0BAAAAAAAAAAC6jUrDXUnymc98JkmyYsWKXHbZZVVvDwAAAAAAAAAA0C1UHu468sgj8/73vz9lWeaKK67ITTfdVHULAAAAAAAAAAAATa/ycFeSXHDBBTnkkEPS2dmZr371q/na176WKVOmNKIVAAAAAAAAAACAptRW9YZnn312kqRPnz4ZMGBAOjo6cv311+f666/P9ttvn1GjRmXAgAEpimKjaxZFke9///td1TIAAAAAAAAAAEDlKg933XDDDWsFt4qiSFmWSZIXX3xxk0/wKstSuAsAAAAAAAAAAHjTqTzctT6bckoXAAAAAAAAAADAX4OGhLtWn9QFAAAAAAAAAADA+lUe7rrjjjuq3hIAAAAAAAAAAKDbqTzc9da3vrXqLQEAAAAAAAAAALqdlkY3AAAAAAAAAAAAwLqEuwAAAAAAAAAAAJqQcBcAAAAAAAAAAEATEu4CAAAAAAAAAABoQm2NbmC1hx56KBMmTMgTTzyROXPmpKOjI0VRpH///hk8eHB233337LPPPtlvv/0a3SoAAAAAAAAAAECXa2i4qyzL/Md//Ed+/vOfZ8qUKet8lyRFUSRJfve73yVJRowYkeOOOy6f/vSna98BAAAAAAAAAAC82TTsWsZZs2blmGOOyXe+8528+OKLKcuyFuhKVoW61gxvrf5+ypQp+c53vpPPfOYzmTlzZiNaBwAAAAAAAAAA6HINCXfNmTMn48aNy0MPPZSyLNcKcq0Ocb3+X/L/Al9lWebhhx/OZz7zmcyZM6cRPwEAAAAAAAAAAKBLNeRaxlNOOSXTpk1bK6y1zTbb5KMf/Wj23nvvjBo1Kv369UuSLFiwIJMnT86ECRNy88035+WXX649M23atJxyyin5xS9+0YifAQAAAAAAAAAA0GUqD3fdfPPNefTRR2sBrV69euWLX/xijjnmmLS2tq6zfujQoRk9enQOPvjgfOUrX8lVV12VCy64IEuWLElZlnnsscfym9/8Jh/96Eer/ikAAAAAAAAAAABdpvJrGa+44ookq65f3GqrrXL55Zfns5/97HqDXa/X0tKS4447Lpdffnm22mqrWkBsdU0AAAAAAAAAAIA3i0rDXbNnz87EiRNr1zF+6Utfyn777bfJdfbdd9+cccYZKcsySfL0009n9uzZ9W4XAAAAAAAAAACgYSoNdz366KNJVp3a1bt37xx55JGbXevII49Mnz591qkNAAAAAAAAAADwZlBpuOuVV15JkhRFkT333DPt7e2bXau9vT177bXXOrUBAAAAAAAAAADeDCoNd82fP782HjRo0BbXGzhwYG28YMGCLa4HAAAAAAAAAADQLCoNd/Xt27c27ujo2OJ6a4bF1ryiEQAAAAAAAAAAoLurNNy1+rSusizz5JNPprOzc7NrdXZ25k9/+tM6tQEAAAAAAAAAAN4MKg137bbbbkmSoijy6quv5re//e1m17r11lszd+7cdWoDAAAAAAAAAAC8GVQa7hoxYkTe9ra3JVl1etf48eMzderUTa4zderUfP/7309RFEmS7bffPiNGjKhrrwAAAAAAAAAAAI1UabgrSY4++uiUZZmiKPLKK6/kqKOOyj333LPRz//+97/PuHHjMmfOnFqdz3zmM13YMQAAAAAAAAAAQPXaqt7wyCOPzNVXX50pU6akKIrMnj07X/jCF7LXXnvlYx/7WPbee+/ssMMO6dmzZ5Jk2bJlmTx5ch555JHcdNNNmTBhQi3Ulaw6tetTn/pU1T8DAAAAAAAAAACgS1Ue7urRo0cuvvjiHHXUUZk/f36KokhZlnn00Ufz6KOP1ta1tramKIqsWLFiredXB7vKssyAAQNy8cUXp0ePHhX/CgAAAAAAAAAAgK5V+bWMSbLjjjvmX//1XzN8+PC1TuEqy7L2b8WKFVm+fPlanyWpBbuGDx+eK664IjvuuGMjfgIAAAAAAAAAAECXaki4K0ne/va358Ybb8yxxx6b3r17rxXeWt+/ZFX4q3fv3jn22GNz4403ZrfddmtU+wAAAAAAAAAAAF2q8msZ19SnT5+cffbZOe2003L77bfn4YcfzpNPPpk5c+Zk/vz5SZL+/ftn8ODB2W233bLvvvvm4IMPTt++fRvZNgAAAAAAAAAAQJdraLhrtb59++bwww/P4Ycf3uhWAAAAAAAAAAAAmkLDrmUEAAAAAAAAAABgw4S7AAAAAAAAAAAAmlDl1zIec8wxSZKiKHLeeedl8ODBm1XnlVdeyZe+9KVarZ///Od16xEAAAAAAAAAAKDRKg93PfDAAymKIkmydOnSza6zdOnSPPDAA0lSqwcAAAAAAAAAAPBm0ZBrGcuybMS2AAAAAAAAAAAA3UZDwl0AAAAAAAAAAAC8sW4b7lq5cmVt3Nra2sBOAAAAAAAAAAAA6q/bhrvmzZtXG/fu3buBnQAAAAAAAAAAANRftw13Pfjgg0mSoiiy7bbbNrgbAAAAAAAAAACA+mpr5OZFUWzS+uXLl2f27Nm59957c+mll9Y+/5u/+Zt6twYAAAAAAAAAANBQXRLu2mWXXf7imrIsc9BBB232HmVZ1sZbUgcAAAAAAAAAAKAZdUm4a83gVT3WrU9RFCnLMqNGjcoHP/jBza4DAAAAAAAAAADQjFq6qvCmXrm4qcqyzG677ZZLL700PXr06NK9AAAAAAAAAAAAqtYlJ3ftv//+G/zuwQcfTLIq/LXHHnukvb19o2oWRZH29vb0798/o0aNyrve9a7st99+dekXAAAAAAAAAACg2XRJuOvqq6/e4Hc777xz7VSv888/P8OGDeuKFgAAAAAAAAAAALq1LruW8Y2UZdmIbQEAAAAAAAAAALqNLjm5642ceuqptXH//v2r3h4AAAAAAAAAAKBbaGi4CwAAAAAAAAAAgPVryLWMAAAAAAAAAAAAvLHKT+7aXE8++WSmTZuW9vb27Ljjjnnb297W6JYAAAAAAAAAAAC6TOXhrqVLl+bll1+uzYcNG5bW1tYNrr/jjjvyve99LzNmzFjr87322ivf+c53Mnr06C7rFQAAAAAAAAAAoFEqv5bxX//1X3PIIYfkkEMOyTHHHJOWlg23cMstt+S0007LjBkzUpblWv8eeeSRfOITn8iTTz5ZYfcAAAAAAAAAAADVqDzc9bvf/S5lWSZJjjjiiBRFsd51HR0d+cY3vpHOzs4kWWtdURQpiiKLFy/OaaedlqVLl3Z94wAAAAAAAAAAABWqNNy1ZMmSPP3007Wg1t/93d9tcO3VV1+dBQsWpCiKlGWZbbfdNp/5zGdy3HHHZbvttqsFxGbOnJmrrrqqkv4BAAAAAAAAAACqUmm469lnn83KlStTlmW22mqrvP3tb9/g2ptuuqkW7Nphhx3ym9/8Juecc07OOuus3HTTTdl9992TJGVZ5oYbbqjqJwAAAAAAAAAAAFSi0nDXtGnTkqy6VnH06NEbXPfcc8/lxRdfrK09/fTT069fv9r3ffr0ybnnnlubT548OTNmzOiirgEAAAAAAAAAAKpXabjrlVdeqY232WabDa57+OGHk6w6lat37945+OCD11mzxx575C1veUtt/swzz9SxUwAAAAAAAAAAgMaqNNy1ZMmS2rhPnz4bXDdhwoQkq07teve73522trb1rhszZkxtPH369Dp1CQAAAAAAAAAA0HiVhrvKsqyNV6xYscF1jzzySG283377bXDdwIEDa+OFCxduWXMAAAAAAAAAAABNpNJw15qnda15ReOaZs+enRdffLE233vvvTdYb+XKlfVrDgAAAAAAAAAAoIlUGu4aOnRoklUneD377LPrXXPPPffUxu3t7dl11103WG/+/Pm18VZbbVWnLgEAAAAAAAAAABqv0nDXTjvtVBt3dHTk97///Tprrr/++iRJURTZY4890qNHjw3Wmzp1am08ZMiQOnYKAAAAAAAAAADQWJWGu7bffvu87W1vS1EUKcsy3/rWt9YKaP3rv/5rJkyYUJuPHTt2g7UWLVqUKVOmrFUbAAAAAAAAAADgzaKt6g0/8YlP5Mc//nGKosi0adNy6KGHZuedd87cuXMzY8aMWvCrZ8+e+djHPrbBOg888EDKskyStLa2ZsyYMVX9BAAAAAAAAAAAgC5X6cldSXLMMcdk1KhRSVZdvbhixYr86U9/yvTp02thraIoctxxx2XQoEEbrHP77bfX1u68885pb2/v+uYBAAAAAAAAAAAqUnm4q729PVdccUVGjRpVC3OVZZmiKGrjgw8+OKeffvoGayxatCj//d//XXvm3e9+d9c3DgAAAAAAAAAAUKHKr2VMku222y433nhjrrvuutx5552ZPn16kmTUqFH56Ec/mkMOOeQNn7/hhhuycOHC2vzAAw/s0n4BAAAAAAAAAACq1pBwV5L06NEjn/rUp/KpT31qk5/9+Mc/nr//+7+vzfv161fP1gAAAAAAAAAAABquYeGuLdGrV6/06tWr0W0AAAAAAAAAAAB0mZZGNwAAAAAAAAAAAMC6hLsAAAAAAAAAAACakHAX8P+xd+fRVVb3/vg/BxKGMAphkEkF64CK4lC1VqHiVO1yQsE6IdWKihNqL3q/xTq0arlV7xWo1aJWrdcBqzhRhzpQtbaKSJFBKYgMXgmTTEFCIOf3hz9POQiYwEnOk/B6rZW1zj7n2c95Z5ktkLyzNwAAAAAAAAAACaTcBQAAAAAAAAAAkEAFNf2Gffr0yfk9U6lU/OUvf8n5fQEAAAAAAAAAAPKlxstdn332WaRSqUin0zm7ZyqVytm9AAAAAAAAAAAAkqDGy11f29ZCVjqdznlJDAAAAAAAAAAAIClqvNzVoUOHKl1fUVERy5cvjy+//DIi/l0Ka9y4ceywww45zwcAAAAAAAAAAJAENV7ueu2117Zq3ueffx6vvfZa/OEPf4h58+bF+vXr4+KLL47TTz89xwkBAAAAAAAAAADyr16+A1TWjjvuGGeddVY899xz8cMf/jDWrl0b119/fTz66KP5jgYAAAAAAAAAAJBztabc9bVGjRrFb37zm9h///0jnU7Hr371q5g2bVq+YwEAAAAAAAAAAORUrSt3RUTUr18/rr322oiIWL9+fYwcOTLPiQAAAAAAAAAAAHKrVpa7IiJ69OgRHTp0iHQ6HX/9619j6dKl+Y4EAAAAAAAAAACQM7W23BURsfvuu0fEV7t3ffDBB3lOAwAAAAAAAAAAkDu1utzVtGnTzOMFCxbkMQkAAAAAAAAAAEBu1epy14ZHMZaWluYxCQAAAAAAAAAAQG7V2nJXWVlZTJo0KTNu2bJl3rIAAAAAAAAAAADkWq0td/32t7/N2q2rW7dueUwDAAAAAAAAAACQWwX5DlBVK1asiFGjRsVDDz0UqVQq0ul0NG/ePPbbb798RwMAAAAAAAAAAMiZGi93jRw5sspz1q9fHytXroyZM2fGxIkTo7y8PNLpdEREpFKpGDBgQNSvXz/XUQEAAAAAAAAAAPImL+WuVCq11fM3LHWl0+no2bNnXHDBBbmKBwAAAAAAAAAAkAj18h2gqr4uhqXT6TjuuOPinnvuiQYNGuQ5FQAAAAAAAAAAQG7V+M5dEf/efWtrtGnTJg499NDo169fHHjggTlMBQAAAAAAAAAAkBw1Xu566KGHqjynfv360bRp02jdunUUFxdXQyoAAAAAAAAAAIBkqfFy13e/+92afksAAAAAAAAAAIBap16+AwAAAAAAAAAAAPBNyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACVRQHTf9v//7v/jhD38Ya9eujYiI5s2bx5NPPhmdO3fepvvOmzcv+vbtGytXroyIiEaNGsXLL78cbdq02ebMAAAAAAAAAAAASVItO3eNGDEiysrKIp1OR7169WL48OHbXOyKiOjcuXP813/9V6RSqUin07FmzZoYNWpUDhIDAAAAAAAAAAAkS87LXSUlJfHMM89EKpWKVCoV/fr1i169euXs/r169Yp+/fpFREQ6nY4nn3wylixZkrP7AwAAAAAAAAAAJEHOy13PP/98VFRURDqdjkaNGsUll1yS67eIwYMHR6NGjSKVSsX69evjhRdeyPl7AAAAAAAAAAAA5FPOy13jxo2LiIhUKhV9+/aNNm3a5Potok2bNtG3b99Ip9MREcpdAAAAAAAAAABAnZPTcldZWVl89NFHmfFRRx2Vy9tnOfrooyPiq6MZp06dGmvXrq229wIAAAAAAAAAAKhpOS13TZs2LdavXx8REU2aNImDDjool7fPcuCBB0aTJk0iImL9+vUxffr0ansvAAAAAAAAAACAmpbTcte8efMi4qsjGbt06RL169fP5e2zFBQUxE477ZQZz507t9reCwAAAAAAAAAAoKbltNy1YsWKzOM2bdrk8tabtOF7bPjeAAAAAAAAAAAAtV1Oy12rVq3KPG7evHkub71JzZo1yzxeuXJltb8fAAAAAAAAAABATclpuWvDYxiXL1+ey1tv0oa7dVXnEZAAAAAAAAAAAAA1Laflrg130lq6dGkub71JG75H06ZNq/39AAAAAAAAAAAAakpBLm+24447RkREOp2OmTNnxtq1a6NBgwa5fIuMsrKy+Ne//pUZd+jQoVrepzKWLVsWEydOjAULFsSqVauibdu20alTp+jZs2eN7ii2atWq+Ne//hWffPJJLFu2LMrLy6N58+bRvn372G+//aJVq1Y1lgUAAAAAAAAAANg2OS137bHHHpnHZWVl8Y9//CMOP/zwXL5FxnvvvRdlZWWZ8e67714t77Mls2fPjttvvz3eeOONKC8v/8brbdq0if79+8egQYOqreT24Ycfxssvvxx/+9vfYtq0aVFRUbHZa3v06BEDBgyIE044IVKpVLXkAQAAAAAAAAAAciOnxzK2a9cuOnTokCkOPfroo7m8fZb//d//zTzecccdo3379tX2XpvyzDPPxKmnnhqvvPLKJotdERGLFi2KkSNHRv/+/WP+/Pk5zzBw4MA47bTT4t57740pU6ZssdgVETF58uS4+uqrY+DAgbFw4cKc5wEAAAAAAAAAAHInp+WuiIg+ffpEOp2OdDodr7/+ekyYMCHXbxHvv/9+vPbaa5FKpSKVSsVRRx2V8/fYkvHjx8e1114bq1evzjy38847Z3bp+uEPfxiNGjXKvDZt2rQYNGhQrFq1Kqc5li5d+o3nOnToEMcff3ycd955cckll0S/fv1i5513zrrmnXfeifPOOy+++OKLnOYBAAAAAAAAAAByJ6fHMkZEnHHGGfHHP/4xIiLS6XRcddVV8dhjj0WHDh1ycv/PP/88rrrqqkilUpFOpyOVSkW/fv1ycu/KWLhwYQwZMiSzS1YqlYqhQ4fGgAEDol69f3flli5dGldccUW8++67ERExc+bMuP766+OOO+7Ieabi4uI45ZRTom/fvrHLLrt84/V0Oh0vvfRSXH/99bF8+fKIiJg1a1b84he/iLvuuivneQAAAAAAAAAAgG2X8527unXrFscee2ymeLVw4cIYOHBgfPTRR9t87xkzZsTAgQOjpKQkc/9jjjkmdt111xwkr5y77747SktLM+PLLrssBg4cmFXsioho1apVjB49Orp165Z5bty4cTFt2rScZWnVqlVce+218frrr8c111yzyWJXxFcFtOOOOy4eeOCBaNy4ceb5l156KSZPnpyzPAAAAAAAAAAAQO7kvNwVEXHttddG8+bNI+KrYtGcOXPi9NNPj5EjR27VUYDLly+PkSNHxmmnnRZz5syJVCoVERHNmjWLa6+9NqfZt2Tx4sUxZsyYzLhLly5x4YUXbvb6hg0bxrBhwzLjdDodd999d87y/P73v4+BAwdGgwYNKnX9XnvtFQMGDMh67qWXXspZHgAAAAAAAAAAIHeqpdzVvn37uO222zK7WaVSqSgvL49Ro0ZF79694+qrr44xY8bERx99FOXl5d+YX15eHh9//HGMGTMmrrnmmjjiiCNi1KhRsXbt2oj4qiRVv379uPXWW2PHHXesjk9hk1599dWsvP369YvCwsItzjn00EOja9eumfH48eNj9erVOclTUFD1UzVPOOGErLGduwAAAAAAAAAAIJmq3g6qpCOPPDJuueWWGDZsWJSXl0cqlYp0Oh1lZWUxbty4GDduXObahg0bRrNmzSIiYtWqVbFmzZqse6XT6YiIzD0KCwvj5ptvjj59+lRX/E167bXXssbHHXdcpeYde+yxmR27ysrK4u23346jjz465/kqY6eddsoaL1myJC85AAAAAAAAAACALauWnbu+dtJJJ8UjjzwSO+64Y6TT6UilUpmC1oYfa9asiUWLFsWiRYviyy+//MbrG87bcccd45FHHomTTz65OqNv0vvvv595XFxcHJ07d67UvJ49e2aN33vvvZzmqorS0tKs8dbs/gUAAAAAAAAAAFS/ai13RUTss88+MXbs2Bg4cGAUFRVl7cJVmY+Ir3buKioqioEDB8bTTz8dPXr0qO7Y31BSUhIrV67MjPfcc89Kz+3evXvWeNasWTnLVVUff/xx1rh9+/Z5SgIAAAAAAAAAAGxJjWzb1Lx58xg6dGhccskl8cQTT8Sbb74ZkyZN+sbxixtr1KhR7LvvvnH44YdHv379onnz5jURd5M++eSTrHGHDh0qPbe4uDgKCwujvLw8IiJmz56d02xV8eyzz2aNDznkkDwlAQAAAAAAAAAAtqRGz+Rr1qxZnH/++XH++edHeXl5TJ8+PUpKSmLZsmWxbNmyiIho2bJltGzZMtq2bRvdu3ePwsLCmoy4WSUlJVnjqux4lUqlol27djF//vxN3qumfPrpp/Hcc89lxvXr14+jjz46L1kAAAAAAAAAAIAtq9Fy14YKCwvzcrzi1lq9enXWuKioqErzmzRpknm8bt26KCsri4YNG+YkW2VUVFTEz3/+88zuYRERJ598cnTu3Hmr7/n1sZmQVL5GSbINvz59rUJ+WIeQf9Yh5J91CPlnHUL+WYeQf9Yh5J91CPlnHbI5eSt31TYbl7uqWsza+PrS0tIaLXeNGjUq3nvvvcy4VatWcc0112zTPVu2bLmNqZJuSb4DsI3q/tcodUWLFi3yHQG2e9Yh5J91CPlnHUL+WYeQf9Yh5J91CPlnHUL+WYdsqF6+A9QWZWVlWeOqHhfZoEGDLd6vOv3lL3+JUaNGZcapVCp+9atfRatWrWosAwAAAAAAAAAAUDV27qqkjXfZ2vB4w8pYu3btFu9XXd5///24+uqrI51OZ5679NJL48gjj9zmey9btmyb7wHVydcoSZZKpTKN++XLl2f9fxqoGdYh5J91CPlnHUL+WYeQf9Yh5J91CPlnHUL+WYd1R65PGVPuqqSioqKscVV33tr4+iZNmmxzpm/z8ccfx0UXXRRr1qzJPPfjH/84Lr300pzc3/9ISDpfo9QW6XTa1yvkmXUI+WcdQv5Zh5B/1iHkn3UI+WcdQv5Zh5B/1iEbcixjJW1c7iotLa3S/A2vLygoqPadu+bOnRvnn39+rFixIvPc8ccfH9dff321vi8AAAAAAAAAAJAbyl2V1K5du6xxSUlJpeem0+ms6ze+V66VlJTEeeedF4sWLco8d/jhh8fw4cOjXj3/yQEAAAAAAAAAoDbQ9Kmkbt26ZY0/++yzSs9dvHhxlJeXZ8Zdu3bNWa6NLV26NAYOHJiV78ADD4yRI0dGYWFhtb0vAAAAAAAAAACQW8pdldS2bdto1qxZZjx9+vRKz502bVrWuLrKXatWrYoLLrggZs2alXlur732invuuScaNWpULe8JAAAAAAAAAABUD+WuKjjggAMyj5csWRJz586t1LyJEydmjQ866KCc5oqIWLNmTQwaNCimTp2aeW7XXXeN0aNHR9OmTXP+fgAAAAAAAAAAQPVS7qqCPn36ZI1ffPHFSs176aWXMo8bNmwYhx12WE5zlZeXx+WXXx4TJkzIPNelS5e4//77o1WrVjl9LwAAAAAAAAAAoGYod1XBkUceGYWFhZnxmDFjory8fItz3nnnnZg9e3Zm3KtXrygqKspZpoqKihg6dGiMHz8+81z79u3jgQceiHbt2uXsfQAAAAAAAAAAgJql3FUFxcXF0a9fv8x47ty5ce+99272+rKysvjlL3+ZGadSqbj44os3e/38+fNj9913z3wceeSR35rphhtuiBdeeCEzbt26dTzwwAPRqVOnb50LAAAAAAAAAAAkl3JXFQ0aNCiaNGmSGY8YMSIeeOCBqKioyLpu6dKlccEFF8TMmTMzzx1//PHRvXv3nGW544474vHHH8+MW7RoEffff3907do1Z+8BAAAAAAAAAADkR0Eub3bddddlHg8dOjRatmyZy9snQrt27eKOO+6Iiy++OCoqKiKdTsdtt90Wjz32WBxyyCHRsmXLmDNnTrz++uuxZs2azLxdd901brrpppxmueeee7LGK1asiFNPPbXK95k2bVquIgEAAAAAAAAAADmS03LX008/HalUKiIiLrvssk2Wu+pCAax3795x6623xg033BBffvllRER8+umn8emnn27y+j333DNGjhwZTZs2rdZc6XQ61q9fX63vAQAAAAAAAAAA1IycH8uYTqe3+PrTTz8dY8eOjbFjx8bq1atz/fY15uSTT46nnnoqjjrqqCgsLNzkNW3atInBgwfHE088EZ06darhhAAAAAAAAAAAQG2W0527KiudTmd2+KrNunbtGqNGjYovvvgiJk6cGAsWLIjS0tIoLi6Ozp07x/777x/169ev9P06deoUH3/8caWvr8q1AAAAAAAAAABA7ZLTclejRo1izZo1ERFRVlaWy1sn2g477BB9+vTJdwwAAAAAAAAAAKAOyemxjC1btsw8njlzZi5vDQAAAAAAAAAAsF3Jablr9913zzwePXp0fPnll7m8PQAAAAAAAAAAwHYjp8cyHnHEETF+/PiIiJg8eXIcffTRcfjhh0e7du2ioOCbb/Xggw9Gs2bNcvLel156aU7uAwAAAAAAAAAAkAQ5LXedfPLJ8bvf/S4WL14cERGLFy+OsWPHbvLadDodDz30UM7eW7kLAAAAAAAAAACoS3J6LGOTJk3irrvuihYtWkQ6nY5UKpXL229SOp2u9vcAAAAAAAAAAACoaTktd0VE9OzZM5555pk4++yzo3Xr1pFOp7M+NrTxa1vzAQAAAAAAAAAAUBfl9FjGr7Vr1y5+/vOfx89//vMoKSmJJUuWxOrVq2P9+vUxYMCAiIhIpVJx++23R3FxcXVEAAAAAAAAAAAAqNWqpdy1oXbt2kW7du02+dp+++0XHTp0qO4IAAAAAAAAAAAAtU7Oj2WsjFQqlY+3BQAAAAAAAAAAqDWqfeeujW24U1f9+vVr+u0BAAAAAAAAAABqhRovd7322ms1/ZYAAAAAAAAAAAC1Tl6OZQQAAAAAAAAAAGDLlLsAAAAAAAAAAAASqMaPZdycCRMmxMSJE+PDDz+MJUuWxPLlyyOVSkXz5s2jdevWsc8++8T+++8fBx54YL6jAgAAAAAAAAAAVLu8lrvS6XQ8+uij8eCDD8bcuXO/8VpERCqVioiIv/zlLxER0blz5zjvvPPixz/+ceY1AAAAAAAAAACAuiZvxzKWlJTEueeeGzfffHPMmTMn0ul0ptAV8VWpa8Py1tevz507N26++eY4++yzY8GCBfmIDgAAAAAAAAAAUO3yUu5asmRJnHXWWTFhwoRIp9NZRa6vS1wbf0T8u/CVTqfj/fffj7PPPjuWLFmSj08BAAAAAAAAAACgWuXlWMbBgwfH/Pnzs8pabdq0iR/96EfRs2fP6Nq1azRr1iwiIlauXBmzZ8+OiRMnxgsvvBALFy7MzJk/f34MHjw4HnvssXx8GgAAAAAAAAAAANWmxstdL7zwQkyaNClT0GrUqFFcccUVce6550b9+vW/cX27du1i1113jaOPPjp+9rOfxUMPPRT/8z//E2vWrIl0Oh3//Oc/4/nnn48f/ehHNf2pAAAAAAAAAAAAVJsaP5bxvvvui4ivjl9s3LhxjB49OgYOHLjJYtfG6tWrF+edd16MHj06GjdunCmIfX1PAAAAAAAAAACAuqJGy12LFi2KadOmZY5jvOqqq+LAAw+s8n0OOOCAGDJkSKTT6YiI+Oijj2LRokW5jgsAAAAAAAAAAJA3NVrumjRpUkR8tWtXUVFR9O/ff6vv1b9//2jSpMk37g0AAAAAAAAAAFAX1Gi5a/HixRERkUqlYt99940GDRps9b0aNGgQ++233zfuDQAAAAAAAAAAUBfUaLlrxYoVmcetWrXa5vu1bNky83jlypXbfD8AAAAAAAAAAICkqNFyV9OmTTOPly9fvs3327AstuERjQAAAAAAAAAAALVdjZa7vt6tK51Ox5QpU6KiomKr71VRURFTp079xr0BAAAAAAAAAADqghotd+29994REZFKpWLZsmXx5z//eavv9eKLL8bSpUu/cW8AAAAAAAAAAIC6oEbLXZ07d46ddtopIr7avevWW2+NefPmVfk+8+bNi1tuuSVSqVRERHTp0iU6d+6c06wAAAAAAAAAAAD5VKPlroiIc845J9LpdKRSqVi8eHGceeaZMX78+ErPf/PNN+Oss86KJUuWZO5z9tlnV2NiAAAAAAAAAACAmldQ02/Yv3//ePjhh2Pu3LmRSqVi0aJFcdFFF8V+++0XJ554YvTs2TN22WWXaNiwYURErF27NmbPnh0ffPBBPPfcczFx4sRMqSviq127zjjjjJr+NAAAAAAAAAAAAKpVjZe7CgsL47e//W2ceeaZsWLFikilUpFOp2PSpEkxadKkzHX169ePVCoV69aty5r/dbErnU5HixYt4re//W0UFhbW8GcBAAAAAAAAAABQvWr8WMaIiG7dusX9998fnTp1ytqFK51OZz7WrVsX5eXlWc9FRKbY1alTp7jvvvuiW7du+fgUAAAAAAAAAAAAqlVeyl0REXvttVeMHTs2BgwYEEVFRVnlrU19RHxV/ioqKooBAwbE2LFjY++9985XfAAAAAAAAAAAgGpV48cybqhJkyZx3XXXxWWXXRavvPJKvP/++zFlypRYsmRJrFixIiIimjdvHq1bt4699947DjjggDj66KOjadOm+YwNAAAAAAAAAABQ7fJa7vpa06ZN45RTTolTTjkl31EAAAAAAAAAAAASIW/HMgIAAAAAAAAAALB5yl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACVSQ7wAAsD0rH9Y+muQ7RDVaddX0fEcAAAAAAAAAqLXs3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEAF+Q7wbUpKSmLp0qVRVlYWzZo1i44dO0ajRo3yHQsAAAAAAAAAAKBaJbLc9dFHH8VDDz0U48ePj6VLl2a9Vr9+/dhzzz2jb9++ceqpp0aDBg3ylBIAAAAAAAAAAKD6JK7cdeedd8bo0aOjoqIi0un0N15ft25dTJkyJaZMmRIPP/xw/Pd//3d85zvfyUNSAAAAAAAAAACA6lMv3wE2dOutt8a9994b69ev32Sx62vpdDrS6XTMmjUrzjvvvJg3b14NpgQAAAAAAAAAAKh+idm5a+LEifHggw9GKpWKiIjDDjss+vXrF/vuu2+0bt060ul0LFq0KCZNmhSPPvpoTJgwIVKpVCxZsiRuvPHGGD16dJ4/AwAAAAAAAAAAgNxJTLnrscceyzy++uqr46c//ek3runYsWN07NgxTjjhhPjNb36TKXS9/fbbMW/evOjcuXON5QUAAAAAAAAAAKhOiTmW8euduPbaa69NFrs2dvXVV2eVud57773qjAcAAAAAAAAAAFCjcrpz19ixY6NVq1ZxxBFHVHnu4sWLIyJi3333rdT1qVQq9tlnn5g3b15ERCxZsqTK7wlAsn2/d0W+I1SzJTHpxHxnAAAAAAAAACCpcrpz1/z582PQoEFx5ZVXRklJSZXmNm7cOCIili1bVuk5G17bqFGjKr0fAAAAAAAAAABAkuX8WMZ0Oh0vvfRSHH/88fHggw9GOp2u1Lxddtkl0ul0jB8/PhYtWvSt18+ePTvefffdzHjnnXfe2sgAAAAAAAAAAACJk9Ny18EHHxxt2rSJdDodpaWlcdttt0Xfvn1j8uTJ3zr3qKOOioiI0tLSGDBgwBbn/OMf/4jzzz8/1q1bFxERzZs3j4MPPjg3nwQAAAAAAAAAAEACFOTyZgcddFD8+c9/jjvvvDMeffTRqKioiOnTp8cZZ5wR/fr1i6uuuiqaN2++yblnn312/PGPf4ySkpKYPXt29O/fP3bbbbfo0aNHtG7dOtLpdCxatCg++OCD+PTTTzM7gqVSqRg8eHA0aNAgl58KAAAAAAAAAABAXuW03BUR0bRp0xg2bFiceuqp8Ytf/CKmTJkS6XQ6Hn/88XjllVdi6NChceKJJ35jXqNGjeKee+6Jc889N5YvXx4RETNmzIgZM2Z849p0Oh2pVCrS6XScdtppce655+b60wAAAAAAAAAAAMirnB7LuKG99torxowZE8OGDYtmzZpFOp2OJUuWxNChQ2PAgAHxySeffGPO7rvvHs8++2z06dMnU97a1EdEROvWrePmm2+Om2++ubo+BQAAAAAAAAAAgLzJ+c5dG0qlUnHWWWfFcccdF7fccku88MILkU6n4913342TTjopzj///Lj44oujYcOGmTnt2rWLUaNGxbx58+Kvf/1rTJ06NZYuXRpr166Npk2bRpcuXeKAAw6Iww8/PAoKqjU+AAAAAAAAAABA3tRIO6p169Zx++23x2mnnRY33XRTzJ49O8rLy+Oee+6J559/Pq6//vo44ogjsuZ07tw5zjrrrJqIBwAAAAAAAAAAkDjVdizjphx66KHx7LPPxmWXXRYNGzaMdDod8+fPj0GDBsXll18eJSUlNRkHAAAAAAAAAAAgsWq03BURUVhYGIMHD47nn38+vv/970dERDqdjldeeSV++MMfxh/+8IeoqKio6VgAAAAAAAAAAACJUuPlrq917tw5Ro8eHXfeeWe0a9cu0ul0rF69On79619H375945///Ge+ogEAAAAAAAAAAORd3spdX/vhD38Y48aNi3POOSfq168f6XQ6Pvroo/jxj38c119/faxYsSLfEQEAAAAAAAAAAGpc3stdERFNmjSJ//f//l88+eST0aNHj0in01FRURFjxoyJ4447LsaOHZvviAAAAAAAAAAAADWqRspda9asiVmzZsWkSZNi+vTpUVJSssnr9txzz3jiiSfihhtuiBYtWkQ6nY6lS5fGddddF+ecc07MmjWrJuICAAAAAAAAAADkXUF13Xjt2rXx1FNPxZ/+9KeYPn16rF+/Puv1HXbYIXr16hXnnntu7LnnnlmvnXHGGXHMMcfEbbfdFs8++2yk0+mYMGFCnHzyyfGTn/wkLrnkkmjYsGF1RQcAAAAAAAAAAMi7atm5a9asWXHqqafGjTfeGFOmTIl169ZFOp3O+li6dGmMHTs2TjvttLj99tu/cY9WrVrF8OHD46GHHoquXbtGOp2O8vLyuPfee+P444+P8ePHV0d0AAAAAAAAAACARMh5uWvevHlx7rnnxqxZszJFri1Zv359jB49Om699dZNvv7d7343nnnmmbjyyiujUaNGkU6n47PPPouLLrooLr/88liwYEGuPwUAAAAAAAAAAIC8y3m56+abb44lS5ZkxocddliMHDky3nzzzZgyZUpMmjQpnn322bjqqquiRYsWkUqlIp1Ox0MPPRQffPDBJu9ZWFgYF110UTz//PPRq1eviIhIp9PxyiuvxPHHHx8PPPBAVFRU5PpTAQAAAAAAAAAAyJuclrvmz58ff/3rXyOVSkVExODBg+O+++6Lo446Ktq0aRMFBQXRqFGj2G233eLCCy+MZ555JnbcccfM/EcffXSL9+/UqVPcc889cdddd0X79u0jnU7H6tWrY/jw4TF69OhcfioAAAAAAAAAAAB5ldNy14QJEzKPO3fuHJdddtkWr2/Xrl1cfvnlm5y/Jcccc0yMGzcuBg4cGAUFBRERsXbt2q1IDAAAAAAAAAAAkEw5LXctXLgw83ifffap1Jx99903Ir46ZnHD4xy/TVFRUQwdOjSefPLJ2G+//aqUEwAAAAAAAAAAIOkKcnmzxo0bZx4vX768UnNWrlyZedyoUaMqv+cee+wRjz76aHz++edVngsAAAAAAAAAAJBUOd25a+edd46Ir3bheu+99+Kzzz771jl/+tOfIiIilUrFTjvttNXvveOOO271XAAAAAAAAAAAgKTJabnr4IMPjubNm0cqlYqysrL4yU9+ElOmTNnkteXl5XHXXXfF448/nnnuqKOOymUcAAAAAAAAAACAWiunxzI2aNAgLr300rjlllsilUrFnDlz4vTTT4/u3btHjx49omXLlrFu3bqYO3du/P3vf48VK1Zk5hYXF8fZZ5+dyzgAAAAAAAAAAAC1Vk7LXRER5557bsycOTOeeOKJSKVSkU6nY9q0aTFt2rSs69LpdKRSqYiIaN68edxzzz1RVFSU6zgAAAAAAAAAAAC1Uk6PZfzaTTfdFL/61a+iuLg4Ir4qcm388bXevXvH2LFjo3v37tURBQAAAAAAAAAAoFbK+c5dX+vbt2+cdNJJ8dZbb8X7778fc+fOjZUrV0aDBg1ihx12iL322iuOOOKI6NKlS3VFAAAAAAAAAAAAqLWqrdwVEVFQUBC9e/eO3r17V+fbAAAAAAAAAAAA1DnVciwjAAAAAAAAAAAA20a5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABJIuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABKoIN8B6oJly5bFxIkTY8GCBbFq1apo27ZtdOrUKXr27Bn169fPdzwAAAAAAAAAAKAWUu7aBrNnz47bb7893njjjSgvL//G623atIn+/fvHoEGDokGDBtWaZe3atTFt2rT48MMPY/LkyTF58uSYEhGrFAAAYBxJREFUM2dOpNPpzDUff/xxtWYAAAAAAAAAAAByR7lrKz3zzDNxww03xOrVqzd7zaJFi2LkyJHx2muvxYgRI6JTp045z/Hss8/GH/7wh5gxY8YmC2YAAAAAAAAAAEDtpNy1FcaPHx/XXnttVFRUZJ7beeed4+CDD46WLVvG3Llz4/XXX481a9ZERMS0adNi0KBB8fjjj0fTpk1zmuXDDz+MqVOn5vSeAAAAAAAAAABA/il3VdHChQtjyJAhmWJXKpWKoUOHxoABA6JevXqZ65YuXRpXXHFFvPvuuxERMXPmzLj++uvjjjvuqPaMDRs2jD322CPmz58fS5Ysqfb3AwAAAAAAAAAAcq/et1/Chu6+++4oLS3NjC+77LIYOHBgVrErIqJVq1YxevTo6NatW+a5cePGxbRp03Kap6CgIPbYY484/fTT46abboqnn346Jk6cGE888UTWewMAAAAAAAAAALWLnbuqYPHixTFmzJjMuEuXLnHhhRdu9vqGDRvGsGHD4rzzzouIiHQ6HXfffXeMGDEiZ5mGDh2as3sBAAAAAAAAAADJYeeuKnj11VejvLw8M+7Xr18UFhZucc6hhx4aXbt2zYzHjx8fq1evrraMAAAAAAAAAABA3aDcVQWvvfZa1vi4446r1Lxjjz0287isrCzefvvtnOYCAAAAAAAAAADqHuWuKnj//fczj4uLi6Nz586VmtezZ8+s8XvvvZfTXAAAAAAAAAAAQN2j3FVJJSUlsXLlysx4zz33rPTc7t27Z41nzZqVs1wAAAAAAAAAAEDdpNxVSZ988knWuEOHDpWeW1xcHIWFhZnx7Nmzc5YLAAAAAAAAAACom5S7KqmkpCRr3L59+0rPTaVS0a5du83eCwAAAAAAAAAAYGMF+Q5QW6xevTprXFRUVKX5TZo0yTxet25dlJWVRcOGDXOSLV9SqVS+I8AW+RqF/LMOSbINvz59rUJ+WIeQf9Yh5J91CPlnHUL+WYeQf9Yh5J91yOYod1XSxuWuqhazNr6+tLS01pe7WrZsme8I1WxJvgOwjer+1+j2wDqs7axDaosWLVrkOwJs96xDyD/rEPLPOoT8sw4h/6xDyD/rEPLPOmRDjmWspLKysqxxYWFhleY3aNBgi/cDAAAAAAAAAADYkJ27KmnjXbbKy8urNH/t2rVbvF9ttGzZsnxHgC3yNQr5Zx2SZKlUKvObL8uXL490Op3nRLD9sQ4h/6xDyD/rEPLPOoT8sw4h/6xDyD/rsO7I9elGyl2VVFRUlDWu6s5bG1/fpEmTbc6Ub/5HQtL5GoX8sw6pLdLptK9XyDPrEPLPOoT8sw4h/6xDyD/rEPLPOoT8sw7ZkGMZK2njcldpaWmV5m94fUFBQZ3YuQsAAAAAAAAAAKg+yl2V1K5du6xxSUlJpeem0+ms6ze+FwAAAAAAAAAAwMaUuyqpW7duWePPPvus0nMXL14c5eXlmXHXrl1zlgsAAAAAAAAAAKiblLsqqW3bttGsWbPMePr06ZWeO23atKyxchcAAAAAAAAAAPBtlLuq4IADDsg8XrJkScydO7dS8yZOnJg1Puigg3KaCwAAAAAAAAAAqHuUu6qgT58+WeMXX3yxUvNeeumlzOOGDRvGYYcdltNcAAAAAAAAAABA3aPcVQVHHnlkFBYWZsZjxoyJ8vLyLc555513Yvbs2Zlxr169oqioqNoyAgAAAAAAAAAAdYNyVxUUFxdHv379MuO5c+fGvffeu9nry8rK4pe//GVmnEql4uKLL97s9fPnz4/dd98983HkkUfmJjgAAAAAAAAAAFDrKHdV0aBBg6JJkyaZ8YgRI+KBBx6IioqKrOuWLl0aF1xwQcycOTPz3PHHHx/du3evsawAAAAAAAAAAEDtVZDvALVNu3bt4o477oiLL744KioqIp1Ox2233RaPPfZYHHLIIdGyZcuYM2dOvP7667FmzZrMvF133TVuuummasm0ucLY+vXrK3XdLbfcEieffHKuYwEAAAAAAAAAANtAuWsr9O7dO2699da44YYb4ssvv4yIiE8//TQ+/fTTTV6/5557xsiRI6Np06bVkmfjEldVr9t41zEAAAAAAAAAACD/HMu4lU4++eR46qmn4qijjorCwsJNXtOmTZsYPHhwPPHEE9GpU6caTggAAAAAAAAAANRmdu7aBl27do1Ro0bFF198ERMnTowFCxZEaWlpFBcXR+fOnWP//feP+vXrV/p+nTp1io8//rjKObZmDgAAXykf1j6a5DtENVp11fR8RwAAAAAAAGArKXflwA477BB9+vTJdwwAAAAAAAAAAKAOcSwjAAAAAAAAAABAAil3AQAAAAAAAAAAJJByFwAAAAAAAAAAQAIpdwEAAAAAAAAAACRQQb4DAACQXN/vXZHvCNVsSUw6Md8ZAAAAAAAAYNPs3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAmk3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACVSQ7wAAAABs38qHtY8m+Q5RjVZdNT3fEQAAAAAAqKXs3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJ5FhGAACABPt+74p8R6hmS2LSifnOAAAAAAAAyWTnLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASKCCfAcAAAAAIL/Kh7WPJvkOUc1WXTU93xEAAAAAoMrs3AUAAAAAAAAAAJBAyl0AAAAAAAAAAAAJpNwFAAAAAAAAAACQQMpdAAAAAAAAAAAACVSQ7wAAAAAAAN/m+70r8h2hGi2Jqf9sne8QAAAAQALZuQsAAAAAAAAAACCBlLsAAAAAAAAAAAASSLkLAAAAAAAAAAAggZS7AAAAAAAAAAAAEqgg3wEAAAAAkuz7vSvyHaGaLYlJJ+Y7AwAAAACwKXbuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIoIJ8BwAAAAAA2N6VD2sfTfIdopqtump6viMAAABArWPnLgAAAAAAAAAAgARS7gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgARS7gIAAAAAAAAAAEiggnwHAAAAAAAAyLfyYe2jSb5DVLNVV03PdwQAAKCK7NwFAAAAAAAAAACQQMpdAAAAAAAAAAAACaTcBQAAAAAAAAAAkEDKXQAAAAAAAAAAAAlUkO8AAAAAAABA8n2/d0W+I1SjJTHpxHxnAAAA+CY7dwEAAAAAAAAAACSQchcAAAAAAAAAAEACKXcBAAAAAAAAAAAkkHIXAAAAAAAAAABAAil3AQAAAAAAAAAAJJByFwAAAAAAAAAAQAIpdwEAAAAAAAAAACSQchcAAAAAAAAAAEACKXcBAAAAAAAAAAAkkHIXAAAAAAAAAABAAil3AQAAAAAAAAAAJJByFwAAAAAAAAAAQAIpdwEAAAAAAAAAACSQchcAAAAAAAAAAEACKXcBAAAAAAAAAAAkkHIXAAAAAAAAAABAAhXkOwAAAAAAAADw7b7fuyLfEarRkpj6z9b5DgEAkDh27gIAAAAAAAAAAEgg5S4AAAAAAAAAAIAEUu4CAAAAAAAAAABIIOUuAAAAAAAAAACABFLuAgAAAAAAAAAASCDlLgAAAAAAAAAAgAQqyHcAAAAAAAAAgPJh7aNJvkNUs1VXTc93BACglrFzFwAAAAAAAAAAQAIpdwEAAAAAAAAAACSQYxkBAAAAAAAAoBK+37si3xGq0ZKY+s/W+Q4BwEaUuwAAAAAAAAAAqBWULNneOJYRAAAAAAAAAAAggZS7AAAAAAAAAAAAEki5CwAAAAAAAAAAIIGUuwAAAAAAAAAAABKoIN8BAAAAAAAAAID8Kx/WPprkO0Q1W3XV9HxHAKgSO3cBAAAAAAAAAAAkkHIXAAAAAAAAAABAAil3AQAAAAAAAAAAJFBBvgPUBcuWLYuJEyfGggULYtWqVdG2bdvo1KlT9OzZM+rXr1/jeUpLS2PChAlRUlISy5Yti1atWkXHjh3jgAMOiAYNGtR4HgAAAAAAAAAAvl35sPbRJN8hqtmqq6bnO0Ktoty1DWbPnh233357vPHGG1FeXv6N19u0aRP9+/ePQYMG1UipauHChXHHHXfESy+9FKtXr/7G6y1atIgTTzwxrrzyymjatGm15wEAAAAAAAAAALaeYxm30jPPPBOnnnpqvPLKK5ssdkVELFq0KEaOHBn9+/eP+fPnV2uet956K0488cR4+umnN1nsiohYvnx5PPzww3HyySfH9OlakAAAAAAAAAAAkGR27toK48ePj2uvvTYqKioyz+28885x8MEHR8uWLWPu3Lnx+uuvx5o1ayIiYtq0aTFo0KB4/PHHq2XHrKlTp8all14aX375Zea5tm3bxhFHHBHFxcXx+eefx+uvvx4rVqyIiIh58+bFT3/603jyySejffv2Oc8DAAAAAAAAAABsO+WuKlq4cGEMGTIkU+xKpVIxdOjQGDBgQNSr9++N0JYuXRpXXHFFvPvuuxERMXPmzLj++uvjjjvuyGmeNWvWxODBg7OKXT/5yU9iyJAhWUdBrlq1KoYNGxbjxo2LiK92Fbvyyivjsccey2keAAAAAAAAAAAgNxzLWEV33313lJaWZsaXXXZZDBw4MKvYFRHRqlWrGD16dHTr1i3z3Lhx42LatGk5zfPHP/4xPv/888y4b9++MXTo0KxiV0RE06ZN4/bbb49DDz0089wHH3wQf/nLX3KaBwAAAAAAAAAAyA3lripYvHhxjBkzJjPu0qVLXHjhhZu9vmHDhjFs2LDMOJ1Ox913352zPOXl5TF69OjMuFmzZjF06NDNXl+vXr248cYbs4pov/3tb3OWBwAAAAAAAAAAyB3lrip49dVXo7y8PDPu169fFBYWbnHOoYceGl27ds2Mx48fH6tXr85Jnn/84x/xxRdfZMY/+tGPokWLFlucs9NOO8X3vve9zHjq1Kkxb968nOQBAAAAAAAAAAByR7mrCl577bWs8XHHHVepeccee2zmcVlZWbz99tvVkmfD99mSjXO/+uqrOckDAAAAAAAAAADkjnJXFbz//vuZx8XFxdG5c+dKzevZs2fW+L333stJngkTJmQe169fP3r06FGpefvvv3+15AEAAAAAAAAAAHJHuauSSkpKYuXKlZnxnnvuWem53bt3zxrPmjVrm/NUVFTEp59+mhnvtNNO0aRJk0rN7dq1azRq1CineQAAAAAAAAAAgNxS7qqkTz75JGvcoUOHSs8tLi6OwsLCzHj27NnbnOezzz6LsrKyrcqTSqWiffv2mfG8efOivLx8mzMBAAAAAAAAAAC5o9xVSSUlJVnjDctR3yaVSkW7du02e6+azhMRWXnWrVsXS5Ys2eZMAAAAAAAAAABA7hTkO0BtsXr16qxxUVFRleZveGTiunXroqysLBo2bLjVeUpLS3OWZ1P3q4xUKlXlOVCTfI1C/lmHkH/WIeSfdQjJYC1C/lmHkH/WIeSfdQj5Zx1C/lmHVaPcVUkbl7uqWsza+PrS0tJtKnflOs/G96uMli1bVnlO7WI3s9qu7n+Nbg+sw9rOOqwLrMPazjqsC6zD2s46rAusw7rAWqwLrMXazjqsC6zD2s46rAusw9rOOqwLrMPazjqsC6zD2s46rBrlrkoqKyvLGhcWFlZpfoMGDbZ4v9qepy6a+s/W+Y5QAxbkOwBskXUI+WcdQv5Zh5B/1iEkQ91fi9YhyWcdQv5Zh5B/1iHkn3XI9qZevgPUFhvvdFVeXl6l+WvXrt3i/Wp7HgAAAAAAAAAAILeUuyqpqKgoa1zVna42vr5JkyaJyrPx/QAAAAAAAAAAgPxS7qqkjctPpaWlVZq/4fUFBQXbvFPWxuWwbcmzqfsBAAAAAAAAAAD5pdxVSe3atcsal5SUVHpuOp3Oun7je9V0noiIBQv+fUZrQUFBtG5d18+kBQAAAAAAAACA2kW5q5K6deuWNf7ss88qPXfx4sVRXl6eGXft2nWb83Ts2DEaNWq0VXnS6XRWuatLly5RWFi4zZkAAAAAAAAAAIDcUe6qpLZt20azZs0y4+nTp1d67rRp07LGuSh31atXL3beeefMeO7cuZU+mnHWrFlRVlaW0zwAAAAAAAAAAEBuKXdVwQEHHJB5vGTJkpg7d26l5k2cODFrfNBBB+U8z/r162Py5MmVmvfBBx9USx4AAAAAAAAAACB3lLuqoE+fPlnjF198sVLzXnrppczjhg0bxmGHHZbXPBtft/F9AAAAAAAAAACA/FPuqoIjjzwyCgsLM+MxY8ZEeXn5Fue88847MXv27My4V69eUVRUlJM83/3ud6NVq1aZ8QsvvBArVqzY4pw5c+bE3/72t8x4r732is6dO+ckDwAAAAAAAAAAkDsF+Q5QmxQXF0e/fv3ikUceiYiIuXPnxr333huDBw/e5PVlZWXxy1/+MjNOpVJx8cUXb/b+8+fPz9pFq2PHjvHaa69t9vrCwsK44IILYvjw4RERsXLlyrjtttvilltu2eT1FRUV8Ytf/CIqKioyz11yySWbvT9107Jly2LixImxYMGCWLVqVbRt2zY6deoUPXv2jPr16+c7HgBUq2XLlsWMGTNizpw5sWzZskin09GiRYvo0KFD7LffftGsWbN8R4Q6raKiIubOnRtz5syJkpKSWLFiRaxduzaKioqiZcuWsccee8R3vvMdfy8FAKDGff755/Hhhx/G//3f/8Xq1aujYcOGUVxcHLvsskvsscce0aBBg3xHBIBqUV5eHjNmzIiPP/44li9fHmVlZdG0adNo06ZN7L333tGxY8d8R4Q6r6KiIj788MOYNWtWLF26NAoKCqJt27ax2267xa677prveCSAclcVDRo0KMaOHRulpaURETFixIgoKiqKAQMGRL16/94IbenSpXHFFVfEzJkzM88df/zx0b1795zmOeuss+Lhhx+Ozz//PCIi/vSnP0WLFi1iyJAhWf/YXLVqVQwbNizeeeedzHM9e/aMo446Kqd5SK7Zs2fH7bffHm+88cYmd5xr06ZN9O/fPwYNGuQbFVANSktLY9q0aTF58uSYPHlyfPjhh/HZZ59lXv+2Qi+wdSoqKmLChAnxyiuvxN///veYMWPGZq9NpVJx6KGHxnnnnRe9evWqwZRQty1dujTuu+++mDhxYkyfPj2+/PLLLV7fokWLOPHEE+P888+PHXfcsYZSAl/75S9/GQ8//HDWc6ecckrcdttteUoEANWnoqIinn322XjooYdi6tSpm72usLAwevbsGRdeeGEcfvjhNZgQ6pZzzjkn3n333W2+z6WXXhqXXXZZDhLB9q2kpCR+//vfxzPPPLPF06G+853vxJlnnhn9+/f3C3mQY8uXL4/7778/Hn300Vi+fPkmr9l9991jwIAB0bdv3xpOR5Kk0ul0Ot8haps33ngjLr744qwdsHbeeec45JBDomXLljFnzpx4/fXXY82aNZnXd91113j88cejadOmm71vVXfu+trUqVPjrLPOyvohSdu2baNXr17RunXrWLBgQbz22mtZfyi3adMmnnzyyWjfvn2lP29qr2eeeSZuuOGGWL169bde27179xgxYkR06tSpBpJB3ffAAw/EU089FTNnzsz6c2Njyl1QPY455piYM2dOleedcMIJcdNNN23x725A5Xz44Ydx2mmnVXleUVFRDBs2LE499dRqSAVsyqRJk+LHP/7xN/7eqtwFuXPkkUdm/aJPVbz88sux00475TgRbL/mz58fV199dUyaNKnSc37605/GNddcU32hoI7LVbnrP/7jP+L888/PQSLYfv3lL3+J//zP/9xsmWRTevToEaNGjYq2bdtWYzLYfkyePDkuueSSWLRoUaWu/8EPfhC/+c1v/NxiO2Xnrq3Qu3fvuPXWW+OGG27IFKo+/fTT+PTTTzd5/Z577hkjR46stkW21157xYgRI+Kaa66JZcuWRUTEwoULY8yYMZu8vlOnTjFixAjFru3E+PHj49prr/1GGfHggw+Oli1bxty5c7PKiNOmTYtBgwZ9axkRqJz33ntvizsFAdVr6dKl33hu5513jh49ekRxcXE0bNgwFixYEO+8804sWLAgc80LL7wQCxcujPvuuy8aNmxYk5GhzisuLo7ddtstdtppp2jRokXUr18/li1bFtOnT49JkyZl/t66evXquO6662Lt2rVxxhln5Dk11H3l5eUxbNiwLf5CAgDUFf/6179i4MCBWT9IS6VS0aNHj9hjjz2idevWUVZWljmqcd68eXlMC3VHvXr1tmrXn/Xr12cep1KpOOaYY3IZC7Y7b731Vlx55ZVZJ/0UFBTEIYccErvttls0btw4vvjii/jggw9i+vTpmWsmT54cAwYMiDFjxvgZImyjyZMnx9lnnx1lZWWZ54qKiuKwww6LXXbZJSoqKmLWrFnxt7/9LXPN66+/HldccUXcc889UVCg6rO98V98K5188snRo0ePuP3222P8+PGbPeauX79+cdFFF1X7MXeHH354PPfcc3H77bfHSy+9tMmjTr4+3uTKK6/0B+52YuHChTFkyJDMN+dTqVQMHTp0s8eIfv0bMzNnzozrr78+7rjjjrzkhrquqKgo9tprr5g6dWqldtQDtl3Hjh3j9NNPj1NOOWWTBff169fHE088EbfeemvmH0rvvfde/Pd//3cMHTq0puNCnVK/fv046KCD4thjj43DDjssunbtutlrP/vss7jpppvijTfeyDx3yy23xPe+973o0qVLDaSF7de9996b+aWENm3aVPq3RoGtl0qlsr4/U5nrgW23dOnSuOCCC7L+rDvqqKPiuuuu2+xpBjNmzIinnnoqmjVrVlMxoU568MEHqzznlVdeiUsvvTQzPvDAA6Nz5865jAXblTVr1sSwYcOyfrZ90EEHxfDhw6NDhw7fuP6dd96Jn/3sZ5k/Nz/55JO466674j//8z9rLDPUNatWrYorrrgiq9j1gx/8IH71q19F69ats679/PPPY+jQofGPf/wjIr4qZ/7P//xPXH311TWamfxzLGMOfPHFFzFx4sRYsGBBlJaWRnFxcXTu3Dn233//vJw7XFpaGhMmTIjPP/88li9fHq1atYqOHTvGgQceWO0lM5LlxhtvjP/93//NjC+//PIYPHjwJq8tKyuLU045JWbNmhURX33D8Kmnnoru3bvXSFaoq4YMGRLz58+PffbZJ/bee+/YZ599olu3blGvXr2s4zgcywjV48QTT4wBAwbEySefXKm/l40fPz4uuuiiTDG6sLAwXn311WjXrl11RwX+f+vXr4+f/vSn8fbbb2eeO++88+K6667LYyqo2z755JM46aSTYu3atdG4ceO4/vrrs9acYxkhdzb8d6C1Bflx9dVXx/PPP58ZX3TRRTFkyJA8JgK25OKLL876vuktt9wSffv2zWMiqN3GjRuX9efezjvvHE8//XQUFRVtds5HH30Uffv2jXXr1kVERJMmTeLvf/+7nzvDVvrd734Xd955Z2Z8yCGHxH333bfZ3bjKysrixz/+cUydOjUiIho2bBgvv/yyk9q2M3buyoEddtgh+vTpk+8YGU2aNIlevXrlOwZ5tnjx4qyjObt06RIXXnjhZq9v2LBhDBs2LM4777yIiEin03H33XfHiBEjqjsq1Gkb/uUMqHlPPfVUlbYn7tWrV5xwwgnx3HPPRcRXR1S9+uqrceaZZ1ZXRGAj9evXj6uvvjqr3PXmm28qd0E1SafTMWzYsFi7dm1ERFxyySXRsWPHPKcCgOrxt7/9LavY1adPH8UuSLClS5fGm2++mRkXFRXFcccdl8dEUPu98847WePzzjtvi8WuiIg99tgj+vTpEy+99FJEfLXRyIcffhgHHHBAteWEuuyRRx7JPE6lUnHDDTds8ecYDRs2jF/84hfRr1+/iPiq7HXvvffG9ddfX+1ZSY7K7/sN1Cqvvvpq1paq/fr1i8LCwi3OOfTQQ7OOyRk/frwj4wCo1bbm3PkTTjgha/zhhx/mKg5QSXvttVfWNxY///zzPKaBuu2xxx6LCRMmRETEbrvtFgMHDsxzIgCoPvfee2/mcWFhoV8ggIR77rnnsn7Occwxx0STJk3ymAhqv5KSkqzxfvvtV6l5+++/f9Z44cKFuYoE25V//etfWevnwAMPjF122eVb5+27776x2267ZcYvvvhi5gQStg/KXVBHbXy8W2V/m+XYY4/NPC4rK8vaMQEAtgddunTJGi9evDhPSWD7tuE37NPpdB6TQN1VUlISt99+e0R89ZuiN95447f+UhAA1Fbz5s2Lv//975lxr169onPnznlMBHybp59+Omt8yimn5CkJ1B0bl0EaNWpUqXmNGzfOGqdSqZxlgu3J10crfq1nz56VnrvhtUuWLImJEyfmLBfJp9wFddT777+feVxcXFzpb1Rs/AfIe++9l9NcAJB0paWlWeOt2f0L2DZffvllLFu2LDP2QzeoHjfffHOsXLkyIr7a7Xnj38QGgLpk3LhxWb80sPGuzUCyfPzxxzF9+vTMuGPHjnHwwQfnMRHUDZ06dcoaV3a39M8++yxrvNNOO+UsE2xPNvyeZ0REu3btKj1342v9HH/7otwFdVBJSUnmG/QREXvuuWel53bv3j1rPGvWrJzlAoDa4OOPP84at2/fPk9JYPv14osvZh290bt37/yFgTrq5ZdfjldeeSUiIlq3bh1XX311nhMBQPWaNGlS1vjAAw/MTxCgUjbeteukk06yUxDkwOGHH541/vOf//ytc9avXx8vvfRSZtyxY8fYfffdc54Ntgdr1qzJGjdo0KDScxs2bJg1njlzZk4yUTvYhgDqoE8++SRr3KFDh0rPLS4ujsLCwswP02bPnp3TbACQdM8++2zW+JBDDslTEtg+ffTRR/HrX/86M27ZsmUMGDAgj4mg7lm5cmXcfPPNmfG1114bLVq0yGMiAKh+U6ZMyTxu165dtG3bNiIi5syZE0899VS89dZb8fnnn8eXX34ZO+ywQ+yyyy5x2GGHxUknnRStW7fOV2zYLq1bty6ee+65rOccyQi50bt379h9990zv+D6pz/9KY488sj4wQ9+sMnr0+l0DB8+PD799NPMc4MHD4569ewhA1ujWbNmWeMVK1ZUeu7G127cCaBuU+6COqikpCRrXJUdR1KpVLRr1y7mz5+/yXsBQF327rvvxrvvvpsZN2vWLL7//e/nMRHUfel0OlatWhUzZsyIF198MR577LFYu3ZtREQUFRXFXXfdFcXFxXlOCXXL8OHDY+HChRER8b3vfS9OPPHEPCeC7dNHH30UQ4YMiWnTpsXixYsj4qtSc6dOneKggw6Ko446KvbYY488p4S6YeXKlZk/+yK+OvZ73bp18bvf/S7uvvvuWLduXdb1q1evjs8++yzeeuutGDFiRFxwwQVxySWX2DUIasibb76Z+bMx4qud9rp06ZLHRFB31K9fP+68884488wzY9myZbF+/fq45JJLon///nHyySfHbrvtFo0bN44vvvgiJk2aFH/4wx/iH//4R2b+GWecEX379s3jZwC128ZHK1Zl960ZM2ZkjSt7rCp1g3IX1EGrV6/OGhcVFVVpfpMmTTKP161bF2VlZd/Y5hEA6povv/wyhg0blvXcwIEDs/5cBLbdJ598Ej/60Y8y44qKikin09+4rlevXnHdddfFLrvsUpPxoM577733YsyYMRHx1db/v/jFL/KcCLZf06dPj+nTp2c9t2rVqpg/f378/e9/jxEjRsQRRxwRP//5z2OnnXbKU0qoG5YtW5Y1Li4ujv/8z/+MZ5555lvnrl69Ou6666746KOP4s4774yCAj9Wgeq28ZGMdu2C3OrWrVuMGTMm/t//+3/x7rvvRkVFRTz66KPx6KOPbnZOcXFxXH755dG/f/8aTAp1T8+ePbPGb731Vqxbt+5b/45ZWlqa9YvpEd/sBFC32S8R6qCN/0de1WLWxteXlpZucyYASLobb7wxa3vxrl27xgUXXJC/QFBHpdPpWL9+feZj42JXvXr14pxzzombbrpJsQtybO3atTFs2LDMurvoooti5513zm8oYIv++te/Rt++feONN97IdxSo1VauXJk1fvvttzPFrkaNGsVFF10Uzz77bPzzn/+MCRMmxCOPPBInnXRS1k5dL7/8ctxxxx01mhu2R8uXL4/XX389M27cuHEcd9xxeUwEdVOXLl3i4YcfjltvvTVatGixxWu7d+8ev/3tbxW7IAdat24d++67b2a8aNGiePLJJ7913kMPPfSNn9mXlZXF+vXrc56RZFLugjqorKwsa1xYWFil+Q0aNNji/QCgrnnwwQezfiu0QYMG8V//9V92roQ8qKioiIcffjiOOuqouO222zJHNALbbtSoUTF79uyIiNhll13ipz/9aZ4TwfapXbt2ceaZZ8bIkSPjlVdeiYkTJ8aUKVPirbfeit///vfRv3//rO/NrFy5Mi6//PL45z//mcfUULtt/MuwX5e9WrZsGY899lgMGTIkdt9992jUqFE0a9YsDjzwwBg+fHgMHz486tX7949R7r///vjoo49qNDtsb55//vmsfwcec8wx0bRp0zwmgrpp1qxZ8ZOf/CSuu+66WL58+RavnTZtWvTr1y8uvPDCWLBgQQ0lhLrrJz/5SdZ4+PDhMXHixM1e/+abb8aoUaM2+dqaNWtymo3ksn8w1EEb/yC6vLy8SvM3/gGaH2wDUJe9+OKLcdttt2U9d9NNN8Xee++dp0RQt3Xr1i0+/vjjzHjt2rWxbNmymD59erz44ovx3HPPRXl5eZSXl8cDDzwQM2bMiN/97nff+AUEoGo+/vjjuO+++zLjG2+80bqCPPjVr34VBx100CaP3GjTpk20adMmjjjiiDj//PPj0ksvjRkzZkTEV794N2TIkHjxxRetXdgKm1s3N910U+y5556bnXfiiSfGlClT4sEHH4yIr3ahvf/++2P48OHVkhOIGDt2bNbYkYyQe2+//XYMHjw4vvzyy4j4apOI008/PU444YTYbbfdonHjxrFs2bKYPHlyPPbYY/HXv/41IiLGjx8fp5xySvzxj3+Mbt265fNTgFrt2GOPjd69e2d2aC4tLY0BAwbEOeecEyeddFLssssukU6nY9asWfHUU0/Fo48+GuvWrYuIiKKioswvLqRSqWjcuHG+Pg1qmJ27oA4qKirKGld1562Nr2/SpMk2ZwKAJHrnnXfiZz/7WVRUVGSeu/rqq33jEGpQgwYNom3bttGrV6+49dZb48knn4wdd9wx8/rbb78dI0eOzGNCqP0qKipi2LBhmV/8OeWUU+Lggw/OcyrYPh166KGbLHZtbKeddoo//OEP0aFDh8xzn332WYwZM6Y640Gdtanvb3br1i2OPfbYb5174YUXZp2M8MYbb2T9GxLInVmzZsXkyZMz444dO8YhhxySx0RQ98ydOzcuvfTSTLGrefPm8cgjj8QvfvGLOPDAA6N58+ZRWFgYbdq0iT59+sTvf//7uOGGGzLzly5dGhdffHFmPlB1qVQqfv3rX8dee+2VeW7t2rVx3333xYknnhj77LNP9OjRI0455ZR4+OGHM8Wuyy+/POv7pk2bNs3aZZa6zX9pqIM2LndtfP7ut9nw+oKCAjt3AVAnTZ48OS655JKsHSvPP//8uPDCC/OYCthjjz3i97//fdYP0B588MH44osv8pgKareHH344c5xby5Yt4z/+4z/ynAiojNatW8c111yT9dy4cePylAZqt02Vu37wgx9Uam5xcXH06NEjM16+fHnMnDkzZ9mAf3v66aezxieddFKk/r/27jy65mv///jrJBKRORFjiggxx1AlqlWqrVarSul11dSatbio9lvtpROlaLm4pdWSGjpoqaqhVC9a8zzPMSQiBJlIZJDk94fl8/PJeI5mkjwfa1kr7332/nze5zhRPV7Z22IppG6A4mnq1Kmm44o//PBDNWrUKMc13bt3V/fu3Y36/Pnz+vbbb/OtR6Ak8PT01OLFi9W1a1fZ29vnOLdMmTIaN26cXn/9dV25csUYd3d3z+82UYQQ7gKKoQoVKpjqy5cvW702PT3dND/jtQAAKA5OnjypAQMGmD7IeOmll/jHbqCICAgI0LPPPmvUiYmJ2rRpUyF2BNy/EhMTNX36dKN+66235O3tXXgNAbDJ008/LVdXV6Pev38/uyQA96Bs2bKmHx6Qbv+d01q1atUy1bZ83grAOmlpaVqxYoVpjJ3Vgbx1/fp1rV+/3qirVq2qZ555xqq1GX8g9pdffsnT3oCSqEyZMpowYYJWrlypwYMHq3HjxvLx8ZGDg4O8vb0VGBio4cOHa82aNerRo4diY2MVFxdnrK9Zs2Yhdo+Clvse4ADuOxnPuQ4PD7d67dWrV42jOiTJ398/z/oCAKAoCA0NVd++fRUTE2OMPfPMM/rwww8LrykAmbRs2dL0QeGJEycKsRvg/pWcnGwKM48dO1Zjx47NcU16erqpXr58uekf2jp16qSPP/44bxsFkKVSpUopMDBQ27ZtkyTdunVLkZGRqlatWiF3BtxfHBwcVLVqVYWEhBhjHh4eVq/PODc2NjbPegNw25YtW0zByaZNm6pq1aqF2BFQ/Bw6dEipqalG3axZM6t3x6tcubIeeOABXbhwQZJ06tQpJSUlcfoPkAf8/f01cuTIXOcdOnTIVAcGBuZXSyiC2LkLKIbKly8vNzc3oz527JjVa48ePWqqCXcBAIqTy5cv65VXXjFtXdy6dWtNnTqVs+mBIsbHx8dU37hxo5A6AYqX1NTUXH+lpaWZ1qSnp+f4OID8VbZsWVPNUcXAvcm4s0FycrLVazPO5R+ygby3fPlyU82uXUDeu3btmqkuV66cTevvnp+Wlmb64VkA+W/v3r2m+u6jw1H88S9YQDHVtGlT4+tr164pNDTUqnUZ/6PQrFmzPO0LAIDCEhUVpVdeecW0o2Xz5s01Y8aMTMdzACh8GcNc7u7uhdQJAACFK+MxjIRKgHvTvHlzU23L0YqXLl0y1V5eXnnSE4Dbbty4YToqrkyZMmrfvn0hdgQUTxn/HpmYmGjT+ox/L3V2dv7bPQGw3qpVq4yvy5Ytq5YtWxZiNyhoHMsIFFNPPPGENm7caNS//fZbpvOws7J27Vrj69KlS+uRRx7Jj/YAAChQN27cUP/+/XXmzBljrGHDhpo9e7acnJwKsTMA2cm4o2ylSpUKqRPg/ubu7m7zsaY7duxQ7969jbpz586aNGlSXrcGwEphYWGm2tvbu5A6Ae5vTz75pMaPH28cP7x3717Tf++yk56erv379xu1vb296tSpk19tAiXS6tWrTSGTp556Sq6uroXYEVA8Zfx75N3HFecmJSXFtJGEo6Oj6RQhAPlr8+bNOnfunFG/8MIL/NB6CcPOXUAx1bZtW9Mf6D/++KNSUlJyXLNt2zadPXvWqFu3bk3qHgBw30tMTNTgwYN15MgRY6xWrVr66quv+KAQKKISExP166+/msb4STQAQEkUERGhU6dOGXXZsmVVvnz5QuwIuH9VrFhRDz74oFH/73//U1RUVK7rNm/erIsXLxp1w4YN+X9JII/9/PPPpvrFF18spE6A4q1evXqmfzvcuXOnrly5YtXaP/74QwkJCUbduHHjvG4PQDaSk5M1ceJEoy5Tpox69uxZiB2hMBDuAoopHx8f/eMf/zDq0NBQffnll9nOT0pK0vjx443aYrFoyJAh+dojAAD57datW/rXv/6lXbt2GWN+fn6aP3++PDw8CrEzoGRITk7W8ePHbVqTlpam9957z/QPaI0aNZK/v39etwcAQJH3+eefG7sMSdIjjzwii8VSiB0B97dhw4YZXyclJemjjz7KcX58fLwmTJhgGuvVq1e+9AaUVKGhodq7d69RV65cWS1atCjEjoDiy9nZWUFBQUad8d8GsxMdHa3Jkyebxtq2bZvn/QHILDU1VaNHj9bp06eNsWHDhsnX17cQu0JhINwFFGODBg2Si4uLUc+cOVPz589XWlqaaV5UVJT69+9v+o/Cs88+q3r16hVYrwAA5LX09HS9/fbbpmOKfX19FRwcLB8fn8JrDChBEhMT1alTJw0fPlwbNmxQcnJyjvMPHDig3r17a/ny5caYnZ2d3n333XzuFACA/JWcnGw6ItwaS5cu1ZIlS4zaYrFYdYQcgOw9/PDDatOmjVGvXr1a//d//6fr169nmhsaGqpXX33VdNJBYGCg2rdvXxCtAiXGsmXLTPULL7xAkBnIR6+//rqp/u233zR8+PBsd/A6ePCgXn75ZYWHhxtjPj4+6tatW772CRR3H374of773//qwoUL2c45evSoevToobVr1xpjTZo0UZ8+fQqiRRQxlvS7f/QLQLGzceNGDRkyxBTo8vPzU4sWLeTp6anz589rw4YNpvPsa9asqR9++IHtxYE8EB4erqeeeirLx1JTU021vb19lvOCg4PVvHnzPO8NKO7Cw8Mz/QSZxWKRnZ1tP9/g6+ur33//PS9bA0qMuLg4NWvWzKjLlCmjOnXqqGbNmvLw8FCZMmUUHx+vS5cu6dChQwoLCzOtt1gsmjBhgrp06VLQrQMl2o4dO0wBks6dO2vSpEmF2BFw/4uLi1OLFi30zDPP6MUXX1SLFi1UqlSpLOdeuXJFn3/+ub799lvTON+LQN6IjY1Vt27dTKEtNzc3tWrVSlWrVlVKSopOnjyp7du3KyUlxZjj7e2tpUuXqnLlyoXRNlAspaen64knnjCFRtatW6dq1aoVYldA8Tdt2jTNmTPHNObo6KjmzZurVq1acnZ2VkxMjPbv36/Dhw+b5jk4OGju3Ll6+OGHC7JloNgZPny4EdoKCAhQ/fr1Vb58ednZ2enq1as6cOCATp06ZVpTu3ZtBQcHy9vbuzBaRiHL+hMEAMVGmzZtNHHiRL3//vu6efOmJOncuXM6d+5clvPr1q2rWbNmEewC8kh6enqmEFd2sptHDhu4N1l979jyPXmHrfMBZO/mzZvat2+f9u3bl+vcChUq6IMPPtDjjz9eAJ0BAJD/UlNTtWrVKq1atUqurq6qW7eu/P395eHhIQcHB8XFxen48ePav3+/KVAiSQ899JA+/PDDQuocKF48PDz01Vdfafjw4Tpy5Igk6fr161q9enW2a/z9/fXFF18Q7ALy2I4dO0zBrqZNmxLsAgrAyJEj5eDgoM8//9z47DM5OVmbN2/W5s2bs13n7e2tSZMmEewC8tipU6cyBbkyateunT7++GO5ubkVUFcoagh3ASVAp06d1LBhQ3366afatGlTpg8IJalcuXL6xz/+ocGDB8vR0bEQugQAAEBx4+Liok8++UR//fWXdu3apcuXL+e6pl69eurcubNefPFFfuAAAFBs3bhxQ7t27dKuXbtyndu9e3e9/fbbfF4D5KEHHnhAP/zwg+bNm6cffvjBFC65W/ny5dWnTx/17NlTTk5OBdwlUPwtX77cVHfu3LlwGgFKoKFDh6pt27aaP3++1q5dq6SkpGznli1bVl27dlWfPn1UtmzZAuwSKL6eeOIJRUdHa//+/UpOTs5yjsViUfPmzdWvXz+1bt26gDtEUcOxjEAJEx0drb179+rSpUuKj4+Xj4+PqlSpogcffDDbI+EAAACAvBAZGamQkBBduHBBsbGxSkpKkrOzs1xdXfXAAw+ofv36cnd3L+w2AQDIc8nJyfrvf/+rHTt26MiRI9l+eH+Hs7OznnzySfXu3VuBgYEF1CVQMqWnp+vQoUM6e/asrly5IovFIm9vb9WtW1d16tQp7PYAAMh3ycnJOnr0qEJCQhQXF6fExES5uLjIy8tL9erVk7+/vywWS2G3CRRLSUlJOnTokM6fP69r167p1q1bcnZ2VtWqVdW4cWOOYISBcBcAAAAAAAAAFJBbt27p7NmzCg0NNX747tatW3Jzc5O7u7sCAgJUu3ZtfggPAAAAAABIItwFAAAAAAAAAAAAAAAAAEWSXWE3AAAAAAAAAAAAAAAAAADIjHAXAAAAAAAAAAAAAAAAABRBhLsAAAAAAAAAAAAAAAAAoAgi3AUAAAAAAAAAAAAAAAAARRDhLgAAAAAAAAAAAAAAAAAoggh3AQAAAAAAAAAAAAAAAEARRLgLAAAAAAAAAAAAAAAAAIogwl0AAAAAAAAAAAAAAAAAUAQR7gIAAAAAAAAAAAAAAACAIohwFwAAAAAAAAAAAAAAAAAUQYS7AAAAAAAAAAAAAAAAAKAIItwFAAAAAAAAAAAAAAAAAEUQ4S4AAAAAAAAAAAAAAAAAKIIIdwEAAAAAAAAAAAAAAABAEUS4CwAAAAAAAAAAAAAAAACKIMJdAAAAAAAAAAAAAAAAAFAEEe4CAAAAAAAAUKwsW7ZMtWvXNn4tW7assFsCAAAAAAC4J6UKuwEAAAAAAICC1rZtW4WHh+c4x87OTi4uLnJzc1O1atVUt25dtW7dWkFBQbJYLAXUKYoja99/bm5ucnNzU40aNRQYGKh27dqpdu3aBdQlAAAAAAAAigJ27gIAAAAAAMhCWlqarl+/rosXL2rbtm2aN2+e+vTpo3bt2mnTpk2F3R7yQK9evUy7OxUlaWlpio2N1YULF7Rp0ybNmjVLHTt2VM+ePRUSElLY7QEAAAAAAKCAEO4CAAAAAACwQWhoqAYOHKhZs2YVdisogXbt2qXOnTtr/fr1hd0KAAAAAAAACgDHMgIAAAAAgBLvs88+U6NGjUxjd3buOnXqlH7//Xf973//U1pamvH4zJkz5efnpw4dOhR0uyhmsnv/xcTE6MiRI1q+fLn2799vPJaUlKRRo0Zp8eLFCgwMLOBuAQAAAAAAUJAIdwEAAAAAgBLPx8dHDzzwQJaP1a9fX506ddL27ds1ZMgQJSQkGI9NnTpV7dq1k6OjY0G1imIou/df1apV1bBhQ3Xv3l2LFi3S+PHjlZ6eLul2wGvixIn69ttvC7pdAAAAAAAAFCCOZQQAAAAAALBCixYtNG7cONNYRESEtm3bVkgdoSTp2bOnXn31VdPYnj17dPTo0ULqCAAAAAAAAAWBcBcAAAAAAICVXnjhBXl5eZnGtm/fXkjdoKQZNGiQHBwcTGObN28upG4AAAAAAABQEDiWEQAAAAAAwEp2dnYKDAzUn3/+aYxdunTpnq4VFhamI0eOKCoqSnFxcXJzc5OPj48aN26sChUq5FXLkqTExETt3r1bly5dUlRUlNzd3VW5cmUFBQWpdOnSeXKPyMhIHTx4UNeuXVNMTIycnZ1VtmxZBQYGqkqVKn/r2ikpKQoJCdHZs2d15coVxcfHq3Tp0nJ3d1eVKlXUsGFDlSlTJk+eR1Hm6empBg0aaN++fcZYSEhIIXaUs5SUFO3bt08XL17U1atXlZaWpoCAAD3++OO5rg0LC9PRo0cVFRWl2NhYOTg4yMPDQ9WrV1fdunXl7Oz8t3pLT0/XwYMHde7cOUVGRsrBwUHlypVT06ZNVbFixb917YiICIWEhCgsLEw3btxQWlqa3N3dVbZsWTVq1ChPvr8jIiJ07NgxRUREKD4+XqmpqSpTpoy8vLzk6+ur2rVry83N7Z6vHx8fr7179yoyMlJRUVGyt7eXt7e3atSoofr168vO7t5/Zjg+Pl7Hjx/XmTNndP36dSUmJqp06dJydXVVpUqVVL169b/9ZwYAAAAAAMUJ4S4AAAAAAAAbuLu7m+rY2Fir1yYkJGjhwoVaunSpzp8/n+28unXratCgQXrmmWdksVhyve7MmTM1a9Yso16wYIGCgoJ0+fJlzZo1S6tWrVJ8fHymdc7OzurYsaNGjhwpT09Pq5/HHSkpKfrpp5/07bff6uTJk9nO8/PzU9++fdWlSxeVKmXdx1GRkZFau3atNmzYoH379ikhISHbuaVKlVKrVq3Uv39/PfTQQzleN+NrdbfatWtnu6558+ZauHChVb3np4zBo+joaFN94cIFPfHEE0bduXNnTZo0yerr9+rVSzt37jTqEydOZDs3u/ddTEyM/vOf/2j16tWKiYkxralTp0624a7o6GgFBwfr119/VXh4eLb3dXBwUJMmTfTCCy+oQ4cOcnJysvLZSWlpafrmm2+0aNEiXbhwIcs5Dz30kN566y01atTIqmsmJydr8+bNWrdunbZv366IiIgc5/v5+al3797q2rWrTeHKtLQ0LV26VIsXL9axY8dynGuxWFSzZk09/vjjeuWVV1S2bFmr7vHXX39p7ty52rt3r1JSUrKc4+Xlpa5du2rAgAHy8PCwuv9jx47p888/18aNG5WcnJzjXG9vb7Vs2VLdunVT8+bNrb4HAAAAAADFEeEuAAAAAAAAG2QMSTk6Olq17q+//tL//d//6dq1a7nOPXbsmEaMGKGWLVtqxowZ97QDz969ezVkyJBM4Zq7JSQk6Pvvv9e6des0Z84cq8MsknT48GGNGDFCYWFhuc49d+6cxo0bp++++05ffPGFVTsXPfPMM1kG0rJy69YtbdiwQRs2bNArr7yiN9980+oQ2f0mPT29sFvI0Z49ezRy5EhdvnzZpnU//vijPv744xxDfHekpKRo586d2rlzp6pUqaKgoCCr7nHt2jWNGDHCFF7Lyu7du9WjRw9NnDhRzz//fK7XnTx5sk3Bv3PnzunDDz/UkiVLNGvWLKt2qYqLi9OQIUO0e/duq+6Rnp6uU6dO6dSpU3r44YfVsmXLHOdHRUXpjTfe0NatW3O9dnR0tObOnasff/xRs2bNUrNmzXJdM3fuXH322WdKS0uzqv+oqCitXLlSFouFcBcAAAAAoMQrnp9yAQAAAAAA5JMjR46YamuCGUuWLNH777+v1NRU07ivr68CAgLk6upqHFV2964/W7du1csvv6zvvvtOrq6uVvcYGhqqyZMnKy4uTpLk5OSkRo0aycfHR3FxcTp69KgpZBYVFaW+ffsqODhYgYGBuV5/w4YNGjlypG7evGkaL1eunOrUqSMPDw/dvHlTISEhOnfunPH4sWPH9NJLL2nJkiW5Hn2XMcTk4+Mjf39/eXp6ysnJSfHx8QoNDdWZM2dMr2twcLBSUlI0bty4XJ/H/ShjaMrLy6uQOsksLCxMU6ZMMQKFzs7OatCggcqVK6eEhATTe+FuEyZM0IIFCzKNe3p6qk6dOvL29lZqaqqio6N14sQJm3bLuyMxMVGDBg3SoUOHJN0OZTZo0EAVKlRQWlqaQkJCdPr0aWN+SkqKxowZo4CAANWpUyfHa2cMLJUpU0b+/v4qX768XFxclJKSoqtXr+r48eOmwOLx48fVu3dv/fzzz7nunDdixIhMwS5nZ2fVqVNH5cuXl6OjoxISEnTt2jWFhIQY3/vWOH/+vPr165cpqOni4qL69evLx8dHqampCg8P19GjR43nGxMTo1dffVWzZ89Wq1atsr3+ihUrNHXqVNOYxWJRQECAHnjgAbm6uio5OVk3btzQ2bNndfHixSIfYgQAAAAAoCAR7gIAAAAAALDSH3/8ocjISNNYbrsGbdu2LVOw6/nnn9fgwYNVs2bNTPN37Nih8ePHG8ccnjx5UuPGjdNnn31mdZ9TpkxRXFycHBwc9Nprr+mVV16Rs7Oz8XhqaqrWrl2rCRMm6OrVq5KkGzduaPTo0frll19yPObu9OnTGjVqlCnY1apVKw0fPlwNGzbMNP/o0aOaMGGCEUy5fPmyRo0apYULF8re3j7b+1gsFrVq1UrPPPOMHnvsMZUvXz7LeZGRkVq8eLG+/vpr4xi5xYsXq02bNnrssccyze/Tp486d+4sSRo1apQOHDhgPPbHH39k248tx+fll9jYWB0+fNg0VqNGjULqJrOPP/5Y8fHx8vDw0MiRI9WlS5dMO9tlDBAFBwdnCnY1adJE//rXvxQUFCQ7O7tM9zl+/LjWrFmjJUuWWN3bjBkzFB0dLScnJw0bNkwvv/yy6XtCkg4ePKjRo0cbR6ampKRo4sSJ+uabb3K9ftWqVfXCCy+oTZs2qlevXpZ9p6SkaP369fr000+N1+HixYv64IMPNG3atGyv/ddff2nLli1G7enpqXfffVft27eXg4NDlmtOnTqlTZs26aeffsqx75s3b2ro0KGm35fq1atr5MiRevLJJzN9j0ZGRmrmzJnGa5+SkqI333xTv/zyS5Y78qWlpWnKlCmmsZ49e2rw4MEqV65clj3FxMRoy5YtWrlyZY5/RgAAAAAAUFIQ7gIAAAAAALBCSEhIpt2gKleunGWA6I74+HiNHj3aCHZZLBaNHz9eXbt2zXZNUFCQvv/+e/Xr10/79u2TJK1atUrdu3e36vgz6XYIyN7eXtOnT9eTTz6Z6XF7e3s9++yzqlevnnr06GEEvM6dO6c5c+ZoxIgRWV43LS1NI0eONB2dN2zYMA0dOjTbXurVq6dvvvlGI0eO1Lp16yTdPrrv119/VadOnbJdt2LFCj3wwAO5Ptfy5ctr5MiRCgoK0oABA3Tr1i1Jt4+By+r3xt3dXe7u7pIyB7asuV9h+vLLL40A2x25HbdXkOLj4+Xp6amFCxeqVq1aWc65e6e706dPZwr+9OjRQ//+97+zDEfdUadOHdWpU0dDhgzJ9HpkJzo6Ws7Ozvrmm2+yDCFKUsOGDRUcHKwOHToYO2zt2LFD58+fV7Vq1bK9dv/+/XPtWZIcHBzUvn17tWzZUn369NGxY8ckSb/99ptGjRqV7S6AGUOHM2bMyDVUGhAQoICAAPXr1y/H12jy5MlGkFSSHnvsMc2cOTPbgGf58uX10Ucfyd/fX5MmTZJ0+7WdPn26Jk6cmGn+4cOHTYHYzp07a+zYsTn27unpqeeee07PPfecEhMTc5wLAAAAAEBJkPMnDgAAAAAAACVUWlqaYmJitHv3bk2cOFFdunQxQlCSZGdnp/fffz/TzkR3+/77701r+vXrl2Ow6w4XFxdNmzbNdO2vv/7apv579uyZZbDrbn5+fnr//fcz9ZycnJzl/HXr1pmCIO3bt88x2HVHqVKlNGnSJJUtW9YYy+352Bq0atmypf75z38a9c6dOzMdYXg/++677zK9Zk2aNFGDBg0KqaOsjRkzJttgV0azZ882wnjS7WDR2LFjcw1J3eHk5CQ3Nzebessu2HVH5cqV1a1bN6NOT0/Xjh07cl1jbc+S5OHhofHjxxt1WlqaVq5cme38ixcvGl97enrmGuy6m8ViyfbPqMuXL+vHH380al9fX82YMSPHnfvuePXVV9W6dWuj/vXXX3XlypVM88LDw031008/bW3rkmRVLwAAAAAAFHeEuwAAAAAAQInXu3dv1a5d2/Srbt26CgoKUo8ePRQcHGw6htDJyUmTJ082hRuysmjRIuNrZ2dnvfbaa1b3VKlSJbVv396ot2zZkm3oKiMHBwcNGTLEqrlPPfWU6tevb9TR0dHauHFjlnMXLlxofG2xWPTGG29YdQ/pdmDt7tDMyZMndeHCBavXW6Ndu3ameu/evXl6/fxy9epVXbhwwfQrNDRUhw4d0g8//KDu3bvr/fffV3p6urHG0dFRY8aMKcSuM6tUqZI6duxo1dyYmBitWbPGqO3s7DR27FhZLJZ86a1ChQp68cUXrZr7+OOPm+qjR4/meT8NGjSQr6+vUd/ZpS838fHxSkpKypMevv/+e9OuXkOHDlWZMmWsXv/qq68aX6ekpOivv/7Kdc21a9dsaxIAAAAAAHAsIwAAAAAAgLXc3NzUoUMHDRgwwBTMyMqZM2dMO+60bt1aLi4uNt0vKChIv/zyiyQpOTlZBw8e1EMPPZTrukcffVReXl5W36dDhw46cuSIUe/ZsydTUCohIUEHDhww6sDAwGyPkctOUFCQPv/8c6PevXu3zTt03bp1SwkJCYqPjzeOu7wjYzAoJCTEpmsXllGjRtk039HRUVOnTlWjRo3yqaN707ZtW6t3sNq1a5fp969ly5aqWrVqfrWmRx99VKVKWfdRaI0aNUx1VFTUPd0zPT3deK9mFcz08vIydrbK6b3q7++vTZs2SbodopoyZYrefffdvx2E27p1q/G1vb29zbtqNW3aVKVKlTJ2X9u9e3emAJ2/v7+p/vLLL9W6dWuVK1fuHrsGAAAAAKDkIdwFAAAAAABgpcTERNnZ2cnHxyfXuXv27DHVlSpVsnmnqoxBmdDQUKvCXbaGfjIeVXfo0KFMcw4cOGDa5adKlSo2P5+7d56SpLCwsFzXXLlyRb/99ps2b96skydPmgJzuYmLi7Opv/tBkyZN9OGHH1p99GFBqlu3rtVzM+6qZstRg/eiZs2aVs91d3c31devX7dqXXJysrZs2aJ169bp6NGjOnPmjNW77eX0Xn3uuec0f/58o164cKF27typrl276vHHH7c5ZClJSUlJpkBnxYoVFR0drejoaJuu4+bmZqzJ6vu5du3aqlWrlnGc6/nz59W+fXt17txZTz/9tBo3bmx16A4AAAAAgJKK/3MGAAAAAAAl3meffZYpEHXz5k2FhYXpr7/+0rJly5SYmKiUlBQtXrxYJ0+e1FdffSUnJ6dsr3np0iVTPW/ePM2bN+9v9RkbG2vVPD8/P5uum3F+VkenRUREmOpVq1Zp1apVNt0no5yez82bNzVz5kwtWLDAFCqzhbWhnKLIzs5OLi4ucnd3V/Xq1dWwYUO1a9fOpgBVQStbtqzVc69cuWKqbQlf3YuMga2cODg4mOo7O1PlZP369Zo4ceI9HzWa03s1MDBQffr00TfffGOMnThxQhMmTNCECRNUqVIlNWnSRE2aNFGzZs1Up06dXHf1unLliun7Kjw8XE888cQ99X5HTExMluMfffSRevfubRwnef36dS1YsEALFiyQs7OzGjZsqMaNG6tp06Z68MEH5erq+rf6AAAAAACguCHcBQAAAAAASjwfH58sjwcMCAhQ27Zt1adPH/Xr188IbuzatUvvvfeePvnkk2yvmV3Q4e+Ij4+3ap6t4Qg3NzdTnVXoqiCfT3x8vAYOHKjdu3f/retn3CmsqFqwYEG+71xVEGw5djTj+8mW8NW9sPa4yHsRHBysiRMn/q1r5PZefeedd1S5cmXNmjUrUxAsIiJCERERWr16tSSpQoUKeu6559SnTx9VrFgxy+sV5Pdz48aN9d133+nf//63jh49anosISFB27dv1/bt2yXdPnK0VatW6tmzp1q2bJnnPQIAAAAAcD8i3AUAAAAAAJALPz8/ffHFF3rppZeUkJAgSVq+fLnatm2rp59+Oss197rbVE6sDSvltmtPbvOzWl+Qz2fq1KmmYJfFYlHLli3Vpk0b1a9fXxUrVpSnp6ccHR1NuyxduHDhb+8+hMJh63u2qDhw4ECmkKevr6+ef/55NWnSRFWqVJGPj4+cnJzk6Ohoep69evXSzp07rb7XK6+8oi5dumjlypVav3699u7da/x5dLfLly9r3rx5WrRokUaPHq0+ffpkmpMf3885qV+/vpYtW6atW7dq5cqV2r59e5ZHrCYnJ+uPP/7QH3/8oTZt2mjSpEny8vIq0F4BAAAAAChqCHcBAAAAAABYoWbNmho+fLgmTZpkjE2cOFGtW7fO8njGjIGETz/9VB06dMj3PiXbjyOMi4sz1VntopTx+YwaNUqDBg2yvblcREZG6vvvvzfq0qVL6/PPP9ejjz6a69obN27keT8lTWpqaoHcJ+P7ydojR4uaWbNmKS0tzai7deumcePGqVSp3D92vZf3q5ubm7p3767u3bvr1q1bOnHihPbv36/du3dr69atph25kpOT9fHHH8tisah3796m62R8/R999FF9/fXXNvdjC4vFokceeUSPPPKIpNs7ju3fv1979uzR9u3bderUKdP8jRs3auDAgfruu++sej0BAAAAACiu8m8/cgAAAAAAgGKmZ8+eqlatmlFHRERo0aJFWc4tW7asqT537lx+tva37pVxfsbesxrLr+ezceNGU1imf//+VgW7pNvBsJIuYwjm1q1bNq3PGPTLL+XKlTPVp0+fLpD75qWEhARt27bNqKtUqWJ1sEuSrly58rfuX6pUKdWvX189evTQtGnTtHXrVn355ZcKDAw0zZs2bVqm31cfHx9Tffbs2b/Vy72oVKmS2rdvr3//+99auXKl1q5dqx49epiO0Dx48KB+/vnnAu8NAAAAAICihHAXAAAAAACAlRwcHDRs2DDT2Ny5c7PcgadJkyamevPmzfna290OHDhg0/yDBw+a6ozhEOn287n7SLktW7ZYfUykLTKGxtq0aWP12n379uVtM/chV1dXU23LLm7JyckKDQ3N65ay9OCDD5pqW44nLCouXrxoOt6wVatWVge7wsLC/na4KyN7e3u1bt1a3377rerVq2eMJyQkaMuWLaa5rq6uCggIMOrw8PACDaBmxc/PT+PGjdMbb7xhGv/9998LqSMAAAAAAIoGwl0AAAAAAAA2eO6551S9enWjjomJ0cKFCzPNq1+/vunos/379+vkyZMF0uPmzZsVHR1t9fyVK1ea6qZNm2aa4+3tbQqMXL58WX/++ee9N5mNjGEkNzc3q9alpqZqxYoVNt3L0dHRVCcnJ9u0vihycXExHRNqy45Y27ZtU1JSUn60lUnz5s1NQagtW7YoLCysQO6dVzLuhmXte1WSli1bltftGBwdHdWxY0fT2IULFzLNy7gj3pIlS/KtJ1t07drVVGfVOwAAAAAAJQnhLgAAAAAAABvY2dlpyJAhprH58+dnCiXZ2dnp5ZdfNur09HSNHz/e5mPy7kVKSopmz55t1dzff/9dR44cMWovL69sd8vq0aOHqf7kk08UHx9/z31mxd3d3VSfOXPGqnWLFi2yOQSS8V7F4VhHi8WiunXrGvWFCxd06tSpXNelpaVZ/Z7JC+7u7nr++edN958wYUKB3T8veHh4mGpr36vh4eFZBkLzkr29vanOGGSUpO7du5sCdosWLbLqvZLfMu5+llXvAAAAAACUJIS7AAAAAAAAbNShQwf5+fkZdWxsrIKDgzPN69u3r2n3rh07dmjMmDE274508eJFbdq0yaY1ixYt0vr163Occ/78eX3wwQemsW7dumUbpujUqZP8/f2NOiQkREOHDlVsbKxNvUVFRWndunVZPlanTh1TPW/ePKWmpuZ4vU2bNmnq1Kk29SBJNWrUMNUZj667X7Vo0cJUT58+Pdc1U6ZMKfBjLQcOHCgHBwej3rBhgyZMmKC0tDSr1icmJtp07GReq1KlipydnY1648aNue7OFxUVpWHDhtnUd3BwsKKioqyen5qammk3vozvdUmqVq2aXnzxRaNOSkrSwIEDbdrtTbq94112O5GtX78+07GvuVm+fLmpzqp3AAAAAABKEsJdAAAAAAAANrK3t8+0e1dwcHCmkJOrq6umTZtm2olmxYoV6ty5s1asWJFjyCsyMlJLly7V4MGD9eSTT2rNmjVW9+fh4aHU1FSNGDFCs2fPVkJCgunx1NRUrV69Wi+//LKuXLlijFerVk2DBw/O9rr29vaaMWOGXF1djbGtW7eqY8eO+vbbb3Xjxo1s18bExGj16tUaNWqUWrdune3ORY899phcXFyMevfu3Xr99dcVERGRaW50dLSmTp2q1157TcnJyfL29s72/lkJCgoy1ZMnT9bcuXO1f/9+nT9/XhcuXDB+3f06FXVdunSRnd3//9hv/fr1GjNmTJYhvJCQEA0ZMkTz5s2TlHk3s/zk7++vt99+2zS2YMEC9ezZU9u3b8825HX8+HFNmzZNjz/+uI4ePVoQrWbJ0dFRTz75pFGnpKSoX79+WR5XmpqaqrVr16pr1646cuSILBaLPD09rbrPrFmz1KZNG40YMUKrV69WTExMtnNDQkI0ePBgHThwwBirWLFipsDfHW+//bZq165t1BcvXlSXLl00bdq0LL/n7khMTNTWrVs1fvx4tW7dWmPGjMly3o4dO/TSSy+pS5cumjt3rkJCQpSenp7l3Bs3bujLL7/UpEmTTOOdOnXKtg8AAAAAAEqCUrlPAQAAAAAAQEbPP/+8Zs+erXPnzkm6HUyYN2+eRo4caZr38MMPa+LEiXr33XeVnJws6XYA480339Q777yjunXrqnz58nJ2dlZCQoJiY2N15swZXbt27Z57e+ONNzRlyhRdv35d06dP1xdffKFGjRrJx8dH169f15EjR3T16lXTGldXV02dOlVlypTJ8doBAQGaOXOmhg8fbuw+dOnSJX3wwQcaP368atWqpUqVKsnV1VWJiYmKi4vTuXPndOnSJat69/Dw0JAhQ0w7cW3YsEF//vmn6tevrypVqujWrVu6dOmSDh8+bOzq5ezsrI8++kivv/661a9Ts2bN1KBBAx0+fFjS7d/D7HYAa968eb4fpZdXqlSpoldffVVff/21MbZs2TKtWrVKjRs3Vrly5XTz5k2dPXvWdJTg4MGDtXfvXu3cubPAeu3Zs6fCwsJMO9/t2bNHffr0kaenp+rVqycvLy+lpqYqKipKJ0+ezDHcVNCGDRum9evXGwHKyMhIDRgwQL6+vqpbt66cnJwUExOjQ4cOmcJ1gwYNsum1TkpK0po1a4yQp6+vr6pVqyZ3d3c5Ojrq+vXrCgkJUWhoqGmdvb29JkyYkOmowztcXFz0xRdfqG/fvsZ7ITExUXPmzNGcOXNUpUoV+fv7y83NTampqbp+/brCw8MVGhqa6456dzt8+LAOHz6sqVOnytXVVQEBAfL29paLi4uSkpIUERGhY8eOKSUlxbSuY8eOatWqldX3AQAAAACgOCLcBQAAAAAAcA/s7e01ePBg085DCxYsUJ8+fTLtINWxY0dVr15db7zxhs6fP2+Mp6SkWH1kmS07Kvn5+WnOnDkaMmSI4uLidPPmTW3fvj3b+d7e3po9e7YaNmxo1fVbtmyppUuXatSoUUYwSrq9O9GxY8d07NixXK+R0/MZMGCAQkNDtWTJEtO1Dx48mOXr5enpqVmzZqlSpUpW9X+36dOna+DAgaaQU3EwYsQIhYaG6vfffzfGkpKStGPHjiznDxgwQCNHjlSvXr0KqkXDmDFj5O/vr4kTJ+rmzZvGeExMjLZu3Vrg/diiatWqmjFjhoYPH27aIS88PFzh4eFZrunXr9/ffq1zuv4dHh4emjx5sh599NEc51WqVEk//fST3nvvPf3666+mx8LCwhQWFpZrP7b8+XTjxg2rjgD95z//qbFjx1p9XQAAAAAAiiuOZQQAAAAAALhHHTt2VLVq1Yw6ISFBX331VZZzAwMDtWbNGk2ZMkVNmjTJdiedO+zs7FSvXj31799fP//8s9555x2benvooYe0YsUKvfjii3J2ds5yjrOzs7p166Y1a9aocePGNl2/WrVq+umnnzRnzhy1bNlSjo6Oua6pUaOGevXqpcWLF2vWrFk5zv3oo480ZcoU+fn5ZTvH29tbPXv21KpVq9SsWTOb+r+jSpUq+uWXXzRlyhS1b99eNWrUkJubW66/P0Wdo6OjZsyYobFjx6pcuXJZzrFYLGrevLnmz5+v0aNHF3CHZt26ddMff/yhvn37ZtvvHY6OjnrkkUc0efJkNWnSpIA6zF6rVq20dOlSPfHEE7JYLFnOKVWqlB599FEFBwfrrbfesun68+fP19ChQ9WkSROVLl061/mVK1fWwIEDtW7dOrVp08aqe7i4uGjq1Kn65Zdf1LFjR3l4eOS6pnz58nr++ef1n//8R1u2bMlyzqBBgzR+/Hi1a9dOPj4+uV7TyclJTz/9tH744Qd98MEH9/33IQAAAAAAecGSnp6eXthNAAAAAAAAlDQ3btzQgQMHdOnSJcXGxiopKUnOzs7y9PSUn5+fatSoIVdXV6uuNXPmTFNYasGCBQoKCjLqhIQE7dmzR5cuXVJUVJTc3d1VuXJlBQUFycnJKU+eT1JSkg4cOKCLFy8qJiZGCQkJcnZ2lru7u6pWraoaNWrIy8vL5uump6frxIkTOnz4sKKiomRvby8fHx/5+vqqcePGhD+skJaWpsOHD+vEiROKjo5W6dKlVaFCBQUGBsrX17ew28vSyZMnderUKUVFRen69etycnKSl5eX/Pz8jOMOi6KrV69qz549ioiIUGJiory9vVWuXDk1atQo045+9yIlJUWnT59WaGioIiMjFR8fL+l2OKt8+fKqXbu2qlWrlm3IzFppaWk6ceKETp8+rdjYWMXFxal06dJydXWVr6+vatSocU875YWHh+vs2bO6ePGi4uLilJycrDJlysjDw0M1atRQrVq1cj0aFgAAAACAkoZwFwAAAAAAwH0ut3AXAAAAAAAAgPsTxzICAAAAAAAAAAAAAAAAQBFEuAsAAAAAAAAAAAAAAAAAiiDCXQAAAAAAAAAAAAAAAABQBBHuAgAAAAAAAAAAAAAAAIAiiHAXAAAAAAAAAAAAAAAAABRBhLsAAAAAAAAAAAAAAAAAoAgi3AUAAAAAAAAAAAAAAAAARZAlPT09vbCbAAAAAAAAAAAAAAAAAACYsXMXAAAAAAAAAAAAAAAAABRBhLsAAAAAAAAAAAAAAAAAoAgi3AUAAAAAAAAAAAAAAAAARRDhLgAAAAAAAAAAAAAAAAAoggh3AQAAAAAAAAAAAAAAAEARRLgLAAAAAAAAAAAAAAAAAIogwl0AAAAAAAAAAAAAAAAAUAQR7gIAAAAAAAAAAAAAAACAIohwFwAAAAAAAAAAAAAAAAAUQYS7AAAAAAAAAAAAAAAAAKAIItwFAAAAAAAAAAAAAAAAAEUQ4S4AAAAAAAAAAAAAAAAAKIIIdwEAAAAAAAAAAAAAAABAEUS4CwAAAAAAAAAAAAAAAACKIMJdAAAAAAAAAAAAAAAAAFAEEe4CAAAAAAAAAAAAAAAAgCKIcBcAAAAAAAAAAAAAAAAAFEGEuwAAAAAAAAAAAAAAAACgCCLcBQAAAAAAAAAAAAAAAABF0P8DD7Uw1R0UzFsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 711, "width": 1211 } }, "output_type": "display_data" } ], "source": [ "pnbd_map.fit()\n", "map_fit = pnbd_map.fit_summary() # save for plotting later\n", "\n", "obs_freq = pnbd_map.idata.observed_data[\"recency_frequency\"].sel(obs_var=\"frequency\")\n", "ppc_freq = pnbd_map.distribution_new_customer_recency_frequency(\n", " rfm_data,\n", " random_seed=42,\n", ").sel(chain=0, draw=0, obs_var=\"frequency\")\n", "\n", "# PPC histogram plot\n", "clv.plot_expected_purchases_ppc(pnbd_map, ppc=\"posterior\");" ] }, { "cell_type": "markdown", "id": "6697eb80-a45f-4503-ab8a-ca2aadbe294d", "metadata": {}, "source": [ "Our fitted model is able to reliably simulate customer behavior!" ] }, { "cell_type": "markdown", "id": "25724a17-538a-4ec5-9df8-8dd28b547a86", "metadata": {}, "source": [ "## Full Bayesian Inference" ] }, { "cell_type": "markdown", "id": "c695d148-36b2-4731-94e4-15d673d6fc4d", "metadata": {}, "source": [ "MAP fits estimate only scalar values for $r$, $\\alpha$, $s$, and $\\beta$, but with full Bayesian sampling we can infer the posterior probability distributions for these parameters, illustrating uncertainty in our estimates as well as enabling prediction intervals.\n", "\n", "NUTS is the default sampler in `pymc-marketing`, which samples from the posterior by exploring the gradients of the probability space. However, NUTS sampling with `ParetoNBDModel` can be quite slow due to the complexity of the likelihood expression. In fact, the mathematical complexity of this model is what motivated the development of the [`BetaGeoModel`](https://www.pymc-marketing.io/en/stable/notebooks/clv/bg_nbd.html) in 2005. The BG/NBD model makes some simplifying assumptions and sacrifices functionality in customer dropout estimation for better computational performance.\n", "\n", "To save time and computational costs, it is recommended to use the gradient-free DEMetropolisZ sampler. This often requires more samples during fitting, so if any `rhat statistic` warnings are encountered, increase the size of the `tune` and `draw` parameters until the warning no longer appears." ] }, { "cell_type": "code", "execution_count": 20, "id": "ceec3eb4-66d4-41ca-8ad0-e4a232767879", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Multiprocess sampling (4 chains in 4 jobs)\n", "DEMetropolisZ: [alpha, beta, r, s]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b45ed39eb0b0459bafb0d8b39c8f364a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling 4 chains for 2_500 tune and 3_000 draw iterations (10_000 + 12_000 draws total) took 6 seconds.\n" ] }, { "data": { "text/html": [ "\n", "
\n", "
\n", "
arviz.InferenceData
\n", "
\n", "
    \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 408kB\n",
             "Dimensions:  (chain: 4, draw: 3000)\n",
             "Coordinates:\n",
             "  * chain    (chain) int64 32B 0 1 2 3\n",
             "  * draw     (draw) int64 24kB 0 1 2 3 4 5 6 ... 2994 2995 2996 2997 2998 2999\n",
             "Data variables:\n",
             "    alpha    (chain, draw) float64 96kB 15.45 15.45 15.45 ... 15.71 15.71 17.46\n",
             "    beta     (chain, draw) float64 96kB 14.67 14.67 14.67 ... 14.4 14.4 10.09\n",
             "    r        (chain, draw) float64 96kB 0.6189 0.6189 0.6189 ... 0.6553 0.7206\n",
             "    s        (chain, draw) float64 96kB 0.4866 0.4866 0.4866 ... 0.4811 0.3935\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.505430+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.140834093093872\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 226MB\n",
             "Dimensions:            (chain: 4, draw: 3000, customer_id: 2349)\n",
             "Coordinates:\n",
             "  * chain              (chain) int64 32B 0 1 2 3\n",
             "  * draw               (draw) int64 24kB 0 1 2 3 4 ... 2995 2996 2997 2998 2999\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "Data variables:\n",
             "    recency_frequency  (chain, draw, customer_id) float64 226MB -14.3 ... -0....\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:46.109420+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 324kB\n",
             "Dimensions:   (chain: 4, draw: 3000)\n",
             "Coordinates:\n",
             "  * chain     (chain) int64 32B 0 1 2 3\n",
             "  * draw      (draw) int64 24kB 0 1 2 3 4 5 6 ... 2994 2995 2996 2997 2998 2999\n",
             "Data variables:\n",
             "    accept    (chain, draw) float64 96kB 0.003792 0.02374 ... 3.073e-05 0.2678\n",
             "    accepted  (chain, draw) bool 12kB False False False True ... True False True\n",
             "    lambda    (chain, draw) float64 96kB 0.8415 0.8415 0.8415 ... 0.8415 0.8415\n",
             "    scaling   (chain, draw) float64 96kB 0.0001501 0.0001501 ... 0.0001337\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.508144+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.140834093093872\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 56kB\n",
             "Dimensions:            (customer_id: 2349, obs_var: 2)\n",
             "Coordinates:\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "  * obs_var            (obs_var) <U9 72B 'recency' 'frequency'\n",
             "Data variables:\n",
             "    recency_frequency  (customer_id, obs_var) float64 38kB 49.0 3.0 ... 0.0 0.0\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.509416+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 94kB\n",
             "Dimensions:      (index: 2349)\n",
             "Coordinates:\n",
             "  * index        (index) int64 19kB 0 1 2 3 4 5 ... 2344 2345 2346 2347 2348\n",
             "Data variables:\n",
             "    customer_id  (index) int64 19kB 1 2 3 4 5 6 ... 2353 2354 2355 2356 2357\n",
             "    frequency    (index) float64 19kB 3.0 1.0 0.0 0.0 0.0 ... 5.0 1.0 6.0 0.0\n",
             "    recency      (index) float64 19kB 49.0 2.0 0.0 0.0 ... 24.0 44.0 62.0 0.0\n",
             "    T            (index) float64 19kB 78.0 78.0 78.0 78.0 ... 66.0 66.0 66.0

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
\n", "
\n", " " ], "text/plain": [ "Inference data with groups:\n", "\t> posterior\n", "\t> log_likelihood\n", "\t> sample_stats\n", "\t> observed_data\n", "\t> fit_data" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_full = clv.ParetoNBDModel(data=rfm_data)\n", "pnbd_full.fit(\n", " fit_method=\"demz\", draws=3000, tune=2500, idata_kwargs={\"log_likelihood\": True}\n", ")" ] }, { "cell_type": "code", "execution_count": 21, "id": "3dbbde96-1b4d-47c5-9715-83fa76b2e612", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
alpha15.7691.11413.71717.8760.0380.027882.01152.01.01
beta12.5653.6306.59819.7380.1240.088821.01072.01.00
r0.6270.0490.5400.7210.0020.001845.01100.01.00
s0.4280.0600.3210.5410.0020.001838.01212.01.00
\n", "
" ], "text/plain": [ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n", "alpha 15.769 1.114 13.717 17.876 0.038 0.027 882.0 1152.0 \n", "beta 12.565 3.630 6.598 19.738 0.124 0.088 821.0 1072.0 \n", "r 0.627 0.049 0.540 0.721 0.002 0.001 845.0 1100.0 \n", "s 0.428 0.060 0.321 0.541 0.002 0.001 838.0 1212.0 \n", "\n", " r_hat \n", "alpha 1.01 \n", "beta 1.00 \n", "r 1.00 \n", "s 1.00 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_full.fit_summary()" ] }, { "cell_type": "markdown", "id": "c95b81c4-a68b-449f-9a7f-a78907fbdbd6", "metadata": {}, "source": [ "Use `thin_fit_result` if the large number of draws are causing computational issues. Keeping every second sample will reduce the number of draws by half:" ] }, { "cell_type": "code", "execution_count": 22, "id": "60090c2d-a85c-4a2b-831d-7650632185b3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
arviz.InferenceData
\n", "
\n", "
    \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 204kB\n",
             "Dimensions:  (chain: 4, draw: 1500)\n",
             "Coordinates:\n",
             "  * chain    (chain) int64 32B 0 1 2 3\n",
             "  * draw     (draw) int64 12kB 0 2 4 6 8 10 12 ... 2988 2990 2992 2994 2996 2998\n",
             "Data variables:\n",
             "    alpha    (chain, draw) float64 48kB 15.45 15.45 17.23 ... 14.82 14.82 15.71\n",
             "    beta     (chain, draw) float64 48kB 14.67 14.67 15.43 ... 14.21 14.21 14.4\n",
             "    r        (chain, draw) float64 48kB 0.6189 0.6189 0.6611 ... 0.5998 0.6553\n",
             "    s        (chain, draw) float64 48kB 0.4866 0.4866 0.502 ... 0.4529 0.4811\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.505430+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.140834093093872\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 113MB\n",
             "Dimensions:            (chain: 4, draw: 1500, customer_id: 2349)\n",
             "Coordinates:\n",
             "  * chain              (chain) int64 32B 0 1 2 3\n",
             "  * draw               (draw) int64 12kB 0 2 4 6 8 ... 2990 2992 2994 2996 2998\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "Data variables:\n",
             "    recency_frequency  (chain, draw, customer_id) float64 113MB -14.3 ... -0.654\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:46.109420+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 162kB\n",
             "Dimensions:   (chain: 4, draw: 1500)\n",
             "Coordinates:\n",
             "  * chain     (chain) int64 32B 0 1 2 3\n",
             "  * draw      (draw) int64 12kB 0 2 4 6 8 10 ... 2988 2990 2992 2994 2996 2998\n",
             "Data variables:\n",
             "    accept    (chain, draw) float64 48kB 0.003792 1.95e-06 ... 0.1581 3.073e-05\n",
             "    accepted  (chain, draw) bool 6kB False False False ... False False False\n",
             "    lambda    (chain, draw) float64 48kB 0.8415 0.8415 0.8415 ... 0.8415 0.8415\n",
             "    scaling   (chain, draw) float64 48kB 0.0001501 0.0001501 ... 0.0001337\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.508144+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.140834093093872\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 56kB\n",
             "Dimensions:            (customer_id: 2349, obs_var: 2)\n",
             "Coordinates:\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "  * obs_var            (obs_var) <U9 72B 'recency' 'frequency'\n",
             "Data variables:\n",
             "    recency_frequency  (customer_id, obs_var) float64 38kB 49.0 3.0 ... 0.0 0.0\n",
             "Attributes:\n",
             "    created_at:                 2024-12-13T07:35:40.509416+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 94kB\n",
             "Dimensions:      (index: 2349)\n",
             "Coordinates:\n",
             "  * index        (index) int64 19kB 0 1 2 3 4 5 ... 2344 2345 2346 2347 2348\n",
             "Data variables:\n",
             "    customer_id  (index) int64 19kB 1 2 3 4 5 6 ... 2353 2354 2355 2356 2357\n",
             "    frequency    (index) float64 19kB 3.0 1.0 0.0 0.0 0.0 ... 5.0 1.0 6.0 0.0\n",
             "    recency      (index) float64 19kB 49.0 2.0 0.0 0.0 ... 24.0 44.0 62.0 0.0\n",
             "    T            (index) float64 19kB 78.0 78.0 78.0 78.0 ... 66.0 66.0 66.0

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
\n", "
\n", " " ], "text/plain": [ "Inference data with groups:\n", "\t> posterior\n", "\t> log_likelihood\n", "\t> sample_stats\n", "\t> observed_data\n", "\t> fit_data" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_full.thin_fit_result(keep_every=2).idata" ] }, { "cell_type": "code", "execution_count": 23, "id": "521c94ec-0ae3-4055-801c-472c47053eb9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACXcAAAWPCAYAAADpjVXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xT1f/H8fdtm5bulr1FkCXDhYDKkCEoKiKKggIq4BZFnDh+TpaAC3AgThygiIgiIKAMByB7CMgS2at7j5zfH/nSUpo2aZu2CbyejwcPknvPPfeT5OY2vXn3HMsYYwQAAAAAAAAAAAAAAAAA8Cp+5V0AAAAAAAAAAAAAAAAAACA/wl0AAAAAAAAAAAAAAAAA4IUIdwEAAAAAAAAAAAAAAACAFyLcBQAAAAAAAAAAAAAAAABeiHAXAAAAAAAAAAAAAAAAAHghwl0AAAAAAAAAAAAAAAAA4IUIdwEAAAAAAAAAAAAAAACAFyLcBQAAAAAAAAAAAAAAAABeiHAXAAAAAAAAAAAAAAAAAHghwl0AAAAAAAAAAAAAAAAA4IUIdwEAAAAAAAAAAAAAAACAFyLcBQAAAAAAAAAAAAAAAABeiHAXAAAAAAAAAAAAAAAAAHghwl0AAAAAAAAAAAAAAAAA4IUIdwEAAAAAAAAAAAAAAACAFyLcBQAAAAAAAAAAAAAAAABeiHAXAAAAAAAAAAAAAAAAAHghwl0AAAAAAAAAAAAAAAAA4IUIdwEAAAAAAAAAAAAAAACAFwoo7wIAAAAAAAAAnN06d+6sAwcOFLi+Vq1a+uWXX8qwouIbMGCAVq1aVWib7du3l1E1AAAAAADA1zFyFwAAAAAAAAAAAAAAAAB4IUbuAgAAAAAvNGvWLI0YMaLY2wcEBCgsLExhYWGKiopSo0aN1KxZM1188cU6//zzPVgpUHo++eQTjR49Os+ykJAQrVy5UoGBgTnLVq5cqYEDB7rV5yOPPKIHHnigSHVMnDhRkyZNKrTN6NGj1bt370LblOR9HRAQIJvNprCwMEVHR6t69eqqV6+ezj//fLVu3Vq1atUqVr9S0Z4/Pz8/+fv7y2azKTAwUKGhoQoPD1dUVJSqVKmimjVrql69emrcuLEaN26sgADvuvRUlMcqOUaLWrhwofz9/Yu1v+zsbF111VWFjkh1us8++0xt2rQp1v5wdtu/f7+6dOlS3mXooYce0tChQ8u7DAAAAAAAzhjedYUNAAAAAOARWVlZiouLU1xcnPbv36/Nmzdr1qxZkqRGjRqpd+/e6tevnypUqFDOlcIZd0JA7oSJfN2iRYvyLWvfvn2eYFdRffjhh+rbt68qVqxYktLKXFZWlrKyspSamqpjx47pn3/+0bJly3LWN2vWTP369dONN95YqoEqu90uu92uzMxMpaSkKC4ursC2ISEhateuna699lp17ty5RK9beTlw4IB++eUXXXXVVcXafvHixUUKdgEAAAAAAACnY1pGAAAAADjL/PPPPxozZoyuu+46/f777+VdDuBUTEyM1q5dm295cUM2JyUlJendd98tUR/eaMuWLXruuefUq1cv7du3r7zLkSSlpKTo559/1iOPPKKrrrpK06ZNU1ZWVnmXVWSfffZZuWwLAAAAAAAASIS7AAAAAOCstW/fPg0aNEhffPFFeZcC5PPrr78qOzs7zzKbzaYrr7yyxH1/9dVX2r9/f4n78UY7duzQrbfeqp07d5Z3KXkcPnxYr776qm6++WZt3bq1vMspklWrVmn79u1F3m7r1q3666+/SqEiAAAAAAAAnE0IdwEAAADAWe6VV17JmbIR8BbOpmRs3bq1wsPDS9x3Zmam3nrrrRL3461OnDihp556Kl84zhts3bpVt956q3766afyLqVIpk2bVuRtGLULAAAAAAAAnkC4CwAAAADOcsYYvfrqqzp27Fh5lwJIklJTU/XHH3/kW961a1eP7ePHH3/Utm3bPNaft9m8ebPmzp1b3mU4lZ6eruHDh2v69OnlXYrbfvjhB8XFxbnd/sSJE/rxxx9LryAAAAAAAACcNQLKuwAAAAAAQPE5GxkmKytLx48f17p16/Tjjz8qMTHRZT/Jycl68803NXLkyNIoEyiS5cuXKy0tLc8yy7LUpUsXj+3Dbrdr/Pjxmjp1qsf69BRn7+vs7GwdPXpUK1eu1A8//KDMzEyX/SxYsEA9e/YsjRJLzBijl156SdHR0erevXt5l+NSWlqavv76a91zzz1utZ8+fboyMjJKuSoAAAAAAACcDQh3AQAAAIAPa9OmTYHrbrjhBg0bNkzDhw/X77//7rKv+fPn68UXX5TNZvNkiUCROZuSsWXLlqpWrZpH97N8+XKtXLmy0PdReSisnl69eqlfv3664447lJKSUmg/f/31l0frWrx4sWrXri3JEY5LTExUQkKCjhw5ovXr12vt2rVatmyZW8Gzk30888wzatKkic455xyP1loavvzySw0ePFj+/v6FtsvMzNRXX31VRlUBuWrXrq3t27cXaZvGjRu7bDN69Gj17t27uGUBAAAAAIASItwFAAAAAGewqKgoTZo0Sddff732799faNukpCStWrVKV1xxhct+jTE6evSoDh8+rCNHjujEiRNKT09XWlqasrOzFRgYqPDwcFWqVEl16tTRueeeq6CgIE89rCLJzMzU5s2btXPnTsXGxiojI0M2m02XXnqpLr744iL3tXXrVh0+fFjx8fE507RFRUUpKipKdevWVaNGjWRZVik8krITHx+vv//+WzExMYqLi1NiYqIqVKigyMhIRUZG6pxzzlGDBg1KZd9ZWVlaunRpvuWenJLxVOPHj9c333xTKn2XlpYtW6p///6aMmVKoe3i4+OVkZGhwMBAj9fg5+eXczzUqVNHrVq1kiQdPXpU06ZN08cff+xWyCspKUkvvviiPv74Y4/X6GmHDh3SwoULdfXVVxfabt68eeU+zW1WVpa2bdumQ4cOKS4uTvHx8bLb7TmvWZUqVdSsWTNVqFCh1GrYtm2bdu/eraNHjyotLU0RERGqX7++LrzwwlLdryv79u3Trl27cp6XlJQURUREKCoqSlWqVFHz5s0VEhJSbvWdzXbs2KFt27bp2LFjSklJkZ+fn+rVq6cePXq43DYrK0sHDx7UkSNHdPToUcXFxeV8LrEsS4GBgTnH/jnnnKO6devKz8+v1B/T/v37tWvXLsXHxyshIUGJiYmy2WwKCQlR9erVVbduXdWrV08BAZ67TB8bG6utW7cqJiZG8fHxSkxMVHBwsKKiohQdHa1mzZqpUqVKHtsfAAAAAKD0Ee4CAAAAgDNcSEiIBgwYoNGjR7tsu2PHjnzhLmOMdu/erbVr12rdunX6559/tGvXLpejBp3KZrOpefPm6ty5s2688UZVqVKlyI9jwIABWrVqVaFtTh2x5OjRo5oyZYpmz57tdGrKgQMHuhXuSkhI0DfffKMlS5Zo48aN+aYLPF1UVJRatWqlm2++WVdeeaVbQS93HtvpRowYoREjRhTapiijrezYsUPTp0/XypUrtXPnThljCm0fHR2tiy++WNdee62uvvpql6MZueuvv/7KCc2dypNTMp5q48aNmj9/vsvAjre55JJL3GoXGxvr8RHPClO1alU99thjuuqqq/Too4+6DJVK0h9//KGlS5eqY8eOZVChazabrcBg2rRp01weK86m1XSn75JKSkrSzJkz9euvv2rjxo0uz9E2m03NmjVTu3bt1K9fP1WuXLnENaSmpurDDz/U999/r//++89pm6CgIHXv3l333XdfqYVET2WM0dKlS/X9999r9erVOnr0aKHtAwIC1Lx5c3Xp0kV9+/ZVREREqdd4Jpk4caImTZpUaJvPPvssZ4TCjIwMff755/r888914MCBfG2bNGmSL9yVkZGhv//+W+vWrdP69eu1c+dO7d27t0jvrbCwMLVq1Urdu3dXjx49PBY4zMzM1IIFC7RgwQKtW7fOraBnSEiImjdvrvbt26tbt26qV69ekfe7bds2TZ8+XatWrdLu3btd/gyvX7++rrjiCg0cOFB169Yt8v4AAAAAAGWLcBcAAAAAnAXcHaHq+PHj+ZZt2LBBt956a4n2n5mZqXXr1mndunV6++23dfvtt+uRRx4ptdFRFi1apBEjRighIaHYfSQmJmrixIn65ptvihRki4uL06JFi7Ro0SI1bNhQjz32mDp16lTsOkrb33//rTfeeEPLly93+WXwqWJjY7V48WItXrxYEyZM0N13362+ffuWeNSyxYsX51tWv379Ug2BvPHGG+ratatHR07xFuU1AlHLli318ccfq0+fPk7DeqebOnWq14S7OnTooD///NPp+3716tXaunWrmjZt6nTbdevWadOmTU7XhYSE6LLLLnN6jJdEcnKyJk+erBkzZigpKcnt7TIzM7V+/XqtX79eU6ZM0Q033KBHH3202CP6/P7773r++eedBnROlZ6erjlz5mjevHm677779MADD5TaCEpz5szRe++9p127drm9TVZWVs7z8t577+n222/X0KFDS2UEvLPdrl279NBDD2n37t1F2u6TTz7RhAkTSrTvpKQkLVmyREuWLNFrr72mYcOGqW/fvsXuLzMzUx9//LGmTZvmMkB4upSUFK1atUqrVq3ShAkTijS15oYNG/Tmm2/qjz/+KNI+d+/erd27d+vLL79Ut27dNGLEiDINAgMAAAAAiqb0x54GAAAAAJQ7d0ceiY+PL+VKHF+AfvLJJ+rTp49iYmI83v93332noUOHlijYtXHjRvXq1UuffvppkYJdp9uxY4fuu+8+jRo1qtRG6ymJzz77TLfccouWLVtWpGDX6Q4cOKAXX3xR9957r2JjY0tUk7PgiyemZKxVq1aB6/7991/NnDmzxPsoS2vXrnXZpkqVKgoPDy+DapyrW7euxo0b51bbVatWuQwFlZWIiAjdcMMNBa4vbGSuwtb16tXL46NAbdu2TTfddJM+/PDDIgW7TpeRkaFvvvlGN9xwg1asWFHk7efPn6977rmnSK9hZmamJk6cqOHDhysrK6vI+yxMUlKShg8frieeeKJIwa7TJScna8qUKbrlllu0d+9eD1aIbdu2qV+/fkUOdpWG2NhYvfDCC3r00Udlt9uLvP2uXbt06623asKECUUOdhWXMUZTpkzRbbfdVuRg16mys7M1b9483XDDDVq2bJkHKwQAAAAAeBLhLgAAAAA4C7gb2oqMjCzlSnLt3LlT9913n8tpDoti1apVeu6554r15exJCxcu1G233ebWdHLu+vTTT/Xggw8qOzvbY32W1PPPP6+RI0d6NHS2dOlS3XTTTTpy5Eixtt+8ebMOHjyYb/lVV11V0tLUunVrXXbZZQWunzRpklJTU0u8n7KwefNmff755y7becNIWB06dNCll17qVltPj2hVEgMGDChwFLq5c+c6DaYeOXJEP//8s9NtLMtS//79PVrjn3/+qVtuuUV79uzxWJ/Hjh3TXXfdpdmzZ7u9zdKlS/XYY48VO6A1b948Pf/888Xa1pmYmBj16dNHc+fO9VifW7du1c0336ydO3d6rM+zWUxMjO6+++4yCZQXxU8//aRRo0YVaZtly5bppptu0pYtW0qpqvzsdrseffRRTZgwwWPByNjYWN1zzz2aM2eOR/oDAAAAAHgW4S4AAAAAOAusWbPGrXaVK1cu5Ury2rBhg6ZMmeKx/p544okSfdG5YcMGPf7446UyytbSpUv10ksvebzf4nj33Xf19ddfl0rfBw4c0P3331+sEc8WLVqUb1nVqlXVokULT5Smxx57rMDAzrFjx/TJJ594ZD8ltXLlynz//vjjD82ZM0fPPPOM+vbtq+Tk5EL78Pf315133lk2BbswcOBAt9q5e54qCw0aNNAVV1zhdF16erpmzJiRb/kXX3xR4Pnniiuu8OjUojt37tTQoUOVnp7usT5Pstvteu6557Rq1SqXbWNjY/Xss8+WOGAya9Ysj4zclp6ergceeKBURoNKSEjQPffco2PHjnm877PNmDFjymyEq6KaNm2a26PXrV+/Xg8++GCZB4PHjh2refPmebxfY4yeeeYZt977AAAAAICyFVDeBQAAAAAASldycrJbo/xIUqNGjdzu19/fX1WrVlV4eLgqVKigwMBAZWVlKSUlRUePHlVcXJxb/UybNk133XWXR6aPO3z4cLG3TUpK0oMPPuj2SGK1atVS5cqVZYzRwYMHdfz4cZfbzJgxQx06dPDINIPFtXLlSr311ltut69Vq5aqVKmilJQU7d27160wyZYtWzRy5EiNHDmySLU5G7mpS5cuBQayiqpFixa6+uqrC/xSfOrUqerbt6+io6M9sr/icjcMVZhhw4apYcOGHqim5Nq0aSM/Pz+XI+pt27atjCpyz8CBA/Xbb785XffVV1/p7rvvVkCA49JaWlqa08DXqX15SlZWlh588EElJia61T4iIkK1a9eWv7+/Dh48qBMnTrjcJjMzU0OHDtXChQsLnUpyzJgxboedAgICVK9ePYWHh+vYsWMeHR3xpLFjx2rdunVutQ0PD1fdunUVFBSk2NhY7d271+UxeuDAAb3wwgt65513PFHuWaskP6sLExQUpGrVqikkJEQVKlRQQECAMjMzFR8fr6NHj7odOn7nnXfUtm3bQtskJSVp2LBhysjIKFJ9tWrVUmRkpNLS0nTixIkih9zmz5/vdhA5MDBQ9erVU1hYmFJSUrRnzx6XP8MzMzM1fPhwLVy4UMHBwUWqDQAAAABQegh3AQAAAMAZLDY2Vo8++qhbI6KEh4cXOH2an5+fLrjgArVp00YtW7ZU06ZNVa1aNfn7+xfY35EjR/Trr7/q3XffLfSL3ISEBM2fP199+vRx/YCKqFq1amrdurWqVKkiu92uQ4cO6d9//9U///yTr+0nn3ziMqQQHBysIUOGqE+fPqpWrVqedZs3b9brr7+u33//vdA+JkyYoE6dOuV57p555hklJCTk3F++fLk++OCDQvu5++671b59+0Lb1K9fP9+y119/XcaYQreTpOuuu04PP/ywzjnnnJxlycnJmj17tl5//XUlJSUVuv13332nwYMHO63Bmf/++8/p6+KJKRlP9eijj2rhwoVORxpKSkrSe++9pxEjRnh0n2XJZrPpkUce0d13313epeSIjIxUgwYNtGPHjkLbHThwQMYYj4X5SqpDhw6qV6+e/v3333zrTk7B2KNHD0nSDz/8UGCgtV69eurQoYPH6vrmm2+c1uRsvyNGjFC7du1yQmjGGK1Zs0ajR4/W5s2bC90+Li5OH374oR599FGn6w8fPqwff/zRZR02m0333nuvBgwYoKioqJzl//77ryZMmFDgVJZFtXfv3kIDdid16tRJ9957ry666KI8y2NiYvTFF1/o/fffL3T0xsWLF2vNmjW65JJLSlwzHEJDQ9WmTRvVrl1bgYGBOnLkiA4cOKBNmzYVuE2FChV02WWX6ZJLLlGLFi3UsGFDVapUqcD2xhjt2rVLc+fO1UcffVRokHvlypX677//VLdu3QLbvPvuuzp06JBbj++KK67QoEGD1Lp1awUGBuZZd/ToUa1YsUIzZ87UqlWrCv35nJWVpTfeeMPl/ho2bKiHH35YV155ZZ79ZWRk6KefftK4ceMKDaSfHMny/vvvd+PRAQAAAADKAuEuAAAAAPBhK1euzLcsKytLx48f17p16/Tjjz+6PbrLNddcI5vNlm95gwYNtGzZMlWpUqVItVWrVk19+/ZVp06ddPXVVxc6YsZff/3l0XBXjRo19Mwzz6hbt25O1x88eFAHDx7MuZ+QkKCPPvqo0D5DQ0P12WefqXnz5k7XN2/eXFOnTtXjjz+uuXPnFtjP7t27tXDhQl199dU5y5o2bZqnjTthvPr166tNmzYu251q6dKlWr9+vct29913n9NAR2hoqG6//Xa1aNFCd9xxR6GvaXZ2tiZPnqwJEya4VdvChQvzLYuIiFDr1q3d2t5d55xzjvr06aOvvvrK6fovv/xSAwcOVK1atTy637Jw4YUXauTIkTrvvPPKu5R8KlWq5DLclZmZqcTExEJHiipLlmWpf//+evXVV52u/+yzz3LCXZ999lmB/QwYMMBjgbWsrCy9++67Lts1atRIn3/+uSIjI/MstyxLrVq10pdffqkhQ4a4nH7ts88+06BBg/L1IzlGL3M1HaNlWZowYYK6d++eb129evU0ceJEPf/88x6ZJnby5Mku6yno3CZJFStW1NChQ9WiRQvdd999hYZspkyZovfff79E9cIxstQjjzyigQMH5gs9SY7A7V9//ZVvec+ePdW/f3+FhIS4vS/LsnTeeefpkUceUbNmzfTggw8W2n7VqlUFhrsSExP15Zdfutynv7+/nnvuOd12220Ftqlatap69uypnj176u+//9bo0aMLbDt79myXwc7LL79c7777ripUqJBvXWBgoHr16qVWrVrplltuKXQUv48++khDhgxx+rkQAAAAAFD2/Mq7AAAAAABA8Q0cODDfv0GDBunJJ5/UV1995XawKywsTI888ojTdeHh4UUOdp2qWrVqaty4caFt1q5dW+z+T1enTh1Nnz69wGCXJNWsWVOtWrXKub98+XIlJycX2u/w4cMLDHad5Ofnp+eff97ll6FLly4tdH1pcWeEnGbNmhV4LJzUsmVLPfTQQy77+vXXXwsdAedUixYtyresY8eOpfLF8kMPPVRgKCAjI0Nvv/22x/dZFtavX68RI0YUOJVgeXJ3qsvU1NRSrqRobrzxRoWFhTldt27dOm3evFl//vmn01HnJMe59cYbb/RYPevXr9eRI0cKbePn56cxY8Y4DWSdFBQUpDFjxjgNgJwqJSWlwOPJ2TSqp7vuuuucBrtO9eyzz6pGjRou+ypMZmam03PIqZo3b65hw4a57OvKK690OWLgihUr3J7CF87ZbDZNnTpVQ4YMcRrskhzvn06dOuVbXr169SIFu07XsWNHl20K+1zy888/uzXF42OPPVZosOt0559/vqZNm1bg+oKmFD4pODhY48aNc/m+rl27tstRuRISEtye4hQAAAAAUPoYuQsAAAAAznKWZen5559X5cqV3Wqfnp6uP//8U+vXr9e///6rf//9V3FxcUpNTVVKSooyMjKKXENh0zYWhWVZGjt2rKpXr16k7VyFYWw2m3r16uVWX9HR0WrUqJG2bNlSYJvly5cXpTyP+eOPP1y2ueOOO+Tn5/pvwfr27auJEycWGsZJTk7Whg0b8gTpnDlx4oTTEcW6du3qso7iqFy5su6880698847TtfPmTNHgwYNchlK9EYbN27U4MGDNWDAAI0YMaLQqVPLkjtTgXqjsLAw9e7du8CRuaZNm5ZnStXT3XTTTQoNDfVYPa6mfZWkNm3aqFmzZi7b1apVS1dffbVmz57tcp/XXnttnmUJCQnauXOny30MHDjQZZsKFSqoT58+JQpVrlu3zmVAt0+fPm6PoNa6detCw7BpaWlatWqVR6fbPNsMHTq0yKNPFiQmJkbLly/Xtm3btGfPHv33339KTExUamqqUlNTXY7o5kxhIcply5a53L5BgwYaNGhQkfdbkPT0dK1evbrQNp07d3b7s5w7o2IuW7bM46NnAgAAAACKh3AXAAAAAJzFLMvSiy++6FZwadeuXZo8ebJ++eUXj4+uk5mZqdTUVAUHB5eon8suu0yXXHJJkbdzNu3TqTIzM4vVb0GOHTumhISEMp1+7vSpKAvibJQUZ0JDQ9W2bVv9+uuvhbZbvXq1y3DXL7/8IrvdnmdZUFCQ2rdv71YtxTF48GBNnz5dMTEx+dbZ7XZNmDBBU6ZMKbX9l7aTo78899xz5VyJQ2xsrFvtSnoOKA0DBgzQ559/nu8YlaS5c+cqOzvb6XZ+fn7q37+/R2tZs2aNyzbuvoclRxjEVbjL2T43b97sMrAXHR2tli1bulVHp06dShTucnUOl6QXXnhBL7zwQrH3cbrdu3cT7iqm8PBwt4J/rvz22296//33tXr1aqfvz5KIj48vcN2mTZtcbt+3b1+PTcd6cp+uRoubO3duodNCF9Xu3bs91hcAAAAAoGSYlhEAAAAAzlJ169bVRx99pL59+xbazhijCRMm6Prrr9fcuXNLbdq0wka/cVePHj2Ktd2xY8dKvO+iOnHiRJnuz53HWKtWrSIFztwZ2er48eMu2zibTu3yyy/36IhHpwsLC9N9991X4PqlS5dq1apVpbb/wmzfvj3fv23btmnNmjWaNWuWHn30UVWqVMllP9OmTfOaKRrdOQ4CAwMVHh5eBtUUTd26dQucxi0zM7PAUEnHjh1Vt25dj9bizvu4adOmbvfnznvY2T6PHj3qcrtGjRq5Xcd5551XolHm3KnH05wFQ+GeK6+8skRBzsTERA0ZMkSDBw/WqlWrPB7skgr+TJKZmalDhw653N7TI15xjAMAAADA2Y1wFwAAAACcZRo1aqQRI0bohx9+0OWXX+6y/YgRIzRlypQCR6fxlMzMzBL30aJFiyJvk5KS4nI0jNLg7khGnuLOl7TuBIZOVbFixRLvNzk52el0kV26dClSLcXRr18/1a5du8D148ePL/Ua3GVZlsLCwtSsWTPdd999+vHHH3Xeeee53O71118vg+oKFxMT49YIMDVr1vToSDeeVJxRhu644w6P1+Hp97E7bZOTk/NNt1vYqEbFqSMwMFBhYWFutz9dWZ9Py2ufZwp3R3RzJjExUf379y/16Y0LmsoxPj7erTBZYT9bioNjHAAAAADObkzLCAAAAABnoICAAIWGhiosLExRUVFq3Lixzj//fLVq1apIo7rMnTtX3333XSlW6lnVq1cv8jaeGDGsODwRZiuKxMREl20qVKhQpD5DQkJKvN9ly5blC474+fmVSbgrMDBQDz/8sJ588kmn6zds2KCff/651OsojooVK+rll1/WbbfdVmi7LVu2aMeOHWrYsGEZVZbfihUrXE7hJ0nnn39+GVRTPJdffrkaNmyoHTt2uNW+YcOGuuyyyzxeR1JSkss2RXkfuzt6UmJiYp6wVnJyskfrOFmLO6ExZ8rjPF7W5/AzSXF+Vp80btw4bdu2zYPVFM3pP68K4umRJ4v73igJjnEAAAAA8B6EuwAAAADAh23fvr1U+58wYYLLNhEREbr99tvVqVMn1atXT2FhYfmm1xowYECZTHFXnCndAgLOjl+N3XluijqCWUpKSon362xKxosvvtitUcE8oWfPnvr444+1detWp+tff/11XX311WVSS1FdcsklqlKlisup+tasWVOu4a5PP/3UrXYXX3xxKVdSMv3799cLL7zgVtsBAwaUSg1hYWGKi4srtE1R3sfuTrN7+vvYneBKUc8nJZny92w5j58pijv96r59+/T111+7bFevXj0NHDhQrVu3Vs2aNRUSEpJvVEB3piR1JjAw0K12ycnJJRqN7nQc4wAAAABwduO3QgAAAACAUxs3btSBAwcKbVOxYkV9/fXXqlOnTqHtSvKlfVGcHipzR2RkpPz8/AqdZqlmzZr69ddfS1JauXMnLHXixIki9enOFHGF7TczM1PLli3Lt7xr165FqqMkLMvS8OHDdffddztdv2fPHs2ZM6fM6imqWrVquQx37d27t4yqyW/RokVav369W23LYrS2krjhhhv0+uuvuxxBJyoqSj179iyVGipWrOgy3HXixAk1aNDArf7cec+HhobmC7RERka63M6d88NJGRkZbo1KVpDo6GiXbT799FO1bdu22PuA5/j5+RVruwULFrgcBbBVq1aaOnVqoaPSleQziTufGSTpwIEDxQ6QOePOMf7ggw/q4Ycf9tg+AQAAAADeo3i/SQMAAAAAznhr1qxx2Wbw4MEug12SdPDgQU+UVCpsNpuqVatWaJuDBw8WKajgjapUqeKyzYEDB4o0vZk7I8dVrly5wHWrVq1yur+yDHdJUocOHdSmTZsC17sKOZYnd6bNKklopiR2796tESNGuNX25Ag73iw4OFg333yzy3Y333yz29MdFpU77+OiTFnnznvY2T6rVq3qcrt//vnH7Tp27dql7Oxst9ufrnbt2i7bbNmypdj9wzusXr3aZZunnnrK5ftv//79xa7BZrOpRo0aLtutXLmy2PtwhmMcAAAAAM5uhLsAAAAAAE65Gg1Icm9ao40bNxZ5RKiy1rx5c5dtfvrpJ4/sy9VoH5LyTR/ljKvRS05Xs2ZNt76QXrJkiVv9paSkuPXl9SWXXFLguoULF+Zb1rhxY7cCg572+OOPl/k+SyozM1N79uxx2c6TU4O5a+3atRo0aJDbYcEhQ4aUckWe0b9//0JHCPT399ftt99eavt3Z+rKoowy+MsvvxRrn82bN3d5noqJidGmTZvcqsPd805B3DmHz507t0T7OJU753F43vHjx122adKkics2S5cuLVEdLVq0cNlmxowZRf45XRh33nO///67YmNjPbI/jnEAAAAA8C6EuwAAAAAATiUmJrps405wY9KkSZ4op1S1a9fOZZv33nvPreekIBkZGfriiy80YMAAl23dGfWnKCNsnXT55Ze7bPPpp5+69aXu9OnTlZKSUmibkJAQXXjhhU7XGWOcBkvKetSuk1q2bKnu3buXy76L6/vvv3f5GkhSpUqVyqAah8OHD2vs2LEaMGCADh065NY2l112mTp27FjKlXlGzZo1Cz1Gu3btWqojkLlzrlqxYoW2bt3qst2hQ4e0YMGCYu0zIiJC5513nsttp02b5rJNenq6vvnmG5ftCtOmTZt8U0eebsuWLSUO6a5Zs0aDBw92awQpeJ47P4NdTZuamJioTz75pER1dOjQwWWbnTt3lng/pwoPD9cFF1xQaJvMzEy99dZbJdrP/v379X//93/64IMPStQPAAAAAMCzCHcBAAAAAJwKDw932ea7774rdP2kSZNKPEJGWejevbuCgoIKbXPs2DHdd999Lr84Pt2BAwf03nvvqWvXrnr55ZfdCry4M9JScZ5Xd8JLmzdvdhnI27JliyZOnOiyr86dO8tmszldt2nTJh05ciTf8quuusplv6Vl+PDhCggIKLf9F8Xvv/+ukSNHutXWnRH2isputyshIUH79+/X6tWrNXXqVN13333q0qWLPvroI2VlZbnVT2hoqF566SWP11eaCgtoDhw4sFT3feGFF7qcEtFut+vpp58uNACakZGhp59+WqmpqYX2FRISoiuuuMLpui5durisd86cOU5H6DvVqFGjSjz1aVhYmDp16uSy3bPPPlvk6fLS0tL0008/6Y477tBtt92m3377zaMjMsF9Jf1ckp6erkcffdStkUkL061bN4WEhLhsN378+CIFF3ft2lXo+aVnz54u+/jqq6/00Ucfub1PyXHOWLlypZ5++mldffXVmjFjhjIyMorUBwAAAACgdPnGFUsAAAAAQJmrXbu2yzbLly/X448/rscff1zVq1fPWb537169+eabHpvKsLRFR0frpptu0pdffllou9WrV+vaa6/VkCFD1KNHD6chi+TkZG3evFkbNmzQkiVLtHbt2iIHAdx57v/880/de++96tatm6pVq5YvRFW5cmU1aNAgz7KOHTvqggsu0IYNGwrte/Lkydq/f78eeugh1a1bN2d5SkqKZs+erTfeeMPliFH+/v564IEHCly/aNGifMtq1aqlpk2bFtpvaapXr55uuukmzZgxo9xqkOQ0fGKMUUpKivbu3atly5bpzz//dOu4Cg8PV5s2bTxSlzthnqLw8/PT6NGjdc4553i039J26aWX6vfff8/3/FuWpcqVK5fqvgMCAnT//fe7DMRt27ZNt956q55++mm1a9cuz1SSa9eu1ejRo7Vx40aX+xs4cKCioqKcruvXr5+mTp1aaJDPGKNHH31U999/v/r376/IyMicdXv37tXrr7+u+fPnu6zDHUOGDHE5EllKSoruvPNO9e7dW7feequaN28uP7+8f/tqt9u1c+dObdy4UatWrdKiRYuUnJzskRpRMrVr13Y51edbb72l7Oxs3XnnnTmjYBpj9Ndff2nMmDHasmVLiesIDw9Xv3799OGHHxbaLisrS88995wWLFigQYMGqVWrVvlGmIuJidHq1as1a9YsLV26tNCRM3v37q1JkyYpJiam0P2OHTtWS5cu1V133aXLLrvMaXj94MGD2rBhg9auXauff/5Zhw8fLrRPAAAAAED5ItwFAAAAAHCqffv2brX74Ycf9NNPP6l69eqqWrWqjh8/rn379pVydZ738MMPa968eYqNjS203bFjxzR69GiNHj1a1apVU5UqVRQYGKiEhATFxcUpJibGrWkNC3POOecoIiLC5dSLS5Ys0ZIlS5yuu/HGGzVmzJh8y4cPH6477rjDZQ3ff/+9vv/+e9WuXVtVqlRRSkqK/v33X6Wnp7v1GG644YZ84bJTOQt3ldeUjKcaOnSo5syZ43JEo9LkydGfbrrpJpfT1ZUHy7L0wgsv+NxUmCeVdoirMH369NEnn3yivXv3Ftpu9+7duueeexQZGanatWvL399fBw8e1PHjx93aT1RUlAYNGlTg+urVq6tHjx6aM2dOof1kZmbq7bff1rvvvqt69eopLCysVH5OtGzZUr1799asWbMKbWe32zVz5kzNnDlTISEhqlOnjkJDQ5WWlpZzDk9LS/NobfCMdu3aad68eYW2ycrK0ptvvql33nlHtWvXVnh4uPbv368TJ054tJYHHnhAc+fOdSsUtXz5ci1fvlxBQUGqXbu2IiIilJ6ertjYWLenr5UcUzY/+eSTevrpp122XbFihVasWKGAgADVrVtXkZGRysrKUnx8vGJiYpSUlOT2fgEAAAAA5Y9pGQEAAAAATtWpU8ftEX+ys7N14MABrVu3Lt8X9gEBAapSpUpplOhR0dHRGj9+fJ4Rblw5cuSINm/erLVr12rnzp06fvx4iYNdkiP40rlz5xL340zbtm01dOhQt9vv379f69at0/bt290OdjVt2lTPPfdcgev37NmjXbt25VvuDeGuKlWquBV+8wXVq1fXww8/XN5l5FOhQgW9/vrr6tu3b3mX4pNsNpsmTZrk1vStkhQfH68tW7Zo48aNbge7bDab3nrrrTwjbTkzYsQIVapUya0+MzMztWPHDqc/Jzzl2WefLTRUerqUlBRt375da9eu1d9//62DBw8S7PJi3bp1c3lMnpSRkaHdu3drw4YN+YJdNWrUKHEtYWFhevPNN4sUnk1PT9euXbu0bt06/f3330UKdp104403ujU940lZWVnavXu31q1bp02bNum///4j2AUAAAAAPohwFwAAAACgQE888YQCAko26PPw4cN17rnneqii0tWuXTuNGTOmxI/ZE/r3759vujBPeeihh9S7d+9S6btGjRp6//33FRoaWmCbhQsX5lsWHR2tSy65pFRqKqq7775b0dHR5V1GiVSuXNnl61AemjVrphkzZqhHjx7lXYpPa9Sokd56661SGZXNz89PL7/8stq2beuybcWKFTVy5MgihWKd6d69u2rWrFmiPiRH4Oajjz5SvXr1StwXvE9ERIQefPDBEvVhs9n0+uuve6Seiy66SJMmTcqZ/rGsjBw50uPT5AIAAAAAvBvhLgAAAABAgVq0aKEXX3yx2NsPGDBAgwcP9lxBZaBnz5768ssvVbdu3XKto0WLFiX+Erswo0aN0tNPPy2bzeaxPtu1a6dZs2apWrVqhbZbvHhxvmWdOnUqcUDEU8LCwnTfffeVdxnFdskll+irr75SkyZNyruUHLVq1dKLL76ob775xqvq8mXt2rXT9OnTdc4553isz8qVK2vq1KlFCn926tRJ48ePL3Yotn379ho3bpwsyyrW9qerXr26vv32W11//fUe6c8ZT9WKorvjjjt0ww03FGvbgIAAjRs3ThdffLHH6unYsaO+/fZbnX/++R7r05XAwEBNmjRJjz32mEd/hp+KYxwAAAAAvAvhLgAAAABAofr06aMJEyYoJCTE7W1sNpsef/zxQqfm82YXXHCBZs+ercGDBysiIsIjfZ5//vl66qmnNH36dLe3eeihh/Tyyy8rPDzcIzWcyrIs3XXXXZo+fbquuOKKEvVVo0YNPf/885o6daoqVqxYaNtjx45pw4YN+ZZ7w5SMp7rttttUq1at8i7Dbf7+/mrdurUmTZrkFeFESQoNDdU111yjyZMna8GCBerXr5/XBPjOFM2aNdOsWbN01113lWiUNpvNpt69e2v27NnFOh/06NFD7733XpFG37IsS3fccYfeffddBQUFFXmfhQkLC9P48eP15ptveixMGB0drdtuu03Tp09X69atPdInimf06NEaNGhQkbapWLGi3n//fV1zzTUer6dBgwaaMWOGhg8fXmbTUPv5+emee+7RjBkz1KFDB4+EsYKCgtS9e3dNnjxZ99xzjweqBAAAAAB4SvnPMwEAAAAA8HrXXXedLrroIk2ZMkVz5sxRSkqK03ZBQUHq2rWr7r//fjVs2LCMq/Ss0NBQPfnkkxo6dKi+//57LVq0SBs3blR8fLxb29eoUUMXX3yx2rZtq8suu0x16tQpVh233nqrrr/+es2fP1+rVq3S33//rePHjysxMVEZGRnF6vNUzZs310cffaTt27dr+vTpWrlypXbv3i1jTKHbRUVF6aKLLtK1116ra665xu1RexYvXpyv75CQkBIHzDwtMDBQDz/8sJ566qnyLiWHv7+/goODFRwcrPDwcNWtW1cNGjRQ48aN1b59e5fBOk/WYbPZVKFCBYWEhCg8PFzR0dGqUqWKatWqpXr16qlJkyZq1KgRYa4yEBYWpqeffloPPvigZs6cqV9++UWbNm1SampqodvZbDY1bdpU7du3V79+/UocSmnfvr3mzp2rDz/8ULNnz9b+/fsL3G/Hjh117733qmXLliXapyvXXHONrrnmGv3111+aNWuW1qxZo71797q1bWhoqJo1a6Y2bdqobdu2uvDCC71iyl44zkFPPfWUunXrpvfee0/Lly9Xdna207ZRUVG66aabSn263cDAQN17770aNGiQ5s+frwULFmjdunU6fvy4y22Dg4PVokULtW/fXt26dSvSfps1a6YPPvhAe/fuzfkZvn37dmVlZbnc1mazqWHDhmrdurXatm2rSy+9VGFhYUXaPwAAAACgbFjG1dVaAAAAAABOkZmZqQ0bNmjPnj2KjY2VMUYRERE699xzdcEFFyg4OLi8Syw1xhjt2rVLe/fuVUJCguLj45WSkqIKFSooNDQ0J3Bz7rnnlmgUnfIWFxenLVu2KDY2VvHx8UpISFBQUJAiIyMVGRmpevXqqUGDBsUaKWTw4MH67bff8izr1q2bJk6c6KnygbNeZmamtm7dqkOHDikhIUFxcXE55+qIiAhVrVpVzZo1K9Xz9datW7V7924dO3ZMaWlpCg8PV7169XTBBReUa4AkJiZGW7duVWxsrBISEpSYmCjLshQaGqrQ0FBVq1ZN9evXdzm9LLxHYmKi1q5dqwMHDig+Pl4BAQGqVKmSGjZsqGbNmsnPr/wmr9i3b5927dqV87M0MTFRNptNISEhql69es5nBk8GB1NTU7VlyxYdO3ZMiYmJio+PV1ZWVs4xXqlSJZ177rmqXbs2AVwAAAAA8BGEuwAAAAAAQJlISkpS27ZtlZmZmWf52LFj1atXr/IpCgAAAAAAAAC8WPn92RIAAAAAADirLF26NF+wKyAgQJ06dSqnigAAAAAAAADAuxHuAgAAAAAAZWLRokX5ll166aWKjIwsh2oAAAAAAAAAwPsR7gIAAAAAAKUuIyNDy5Yty7e8a9eu5VANAAAAAAAAAPgGyxhjyrsIAAAAAAAAAAAAAAAAAEBejNwFAAAAAAAAAAAAAAAAAF6IcBcAAAAAAAAAAAAAAAAAeCHCXQAAAAAAAAAAAAAAAADghQh3AQAAAAAAAAAAAAAAAIAXItwFAAAAAAAAAAAAAAAAAF6IcBcAAAAAAAAAAAAAAAAAeCHCXQAAAAAAAAAAAAAAAADghQh3AQAAAAAAAAAAAAAAAIAXItwFAAAAAAAAAAAAAAAAAF6IcBcAAAAAAAAAAAAAAAAAeCHCXQAAAAAAAAAAAAAAAADghQh3AQAAAAAAAAAAAAAAAIAXItwFAAAAAAAAAAAAAAAAAF6IcBcAAAAAAAAAAAAAAAAAeCHCXQAAAAAAAAAAAAAAAADghQh3AQAAAAAAAAAAAAAAAIAXItwFAAAAAAAAAAAAAAAAAF6IcBcAAAAAAAAAAAAAAAAAeCHCXQAAAAAAAAAAAAAAAADghQh3AQAAAAAAAAAAAAAAAIAXItwFAAAAAAAAAAAAAAAAAF6IcBcAADhjPP3002rcuLEaN26slStXlsk+BwwYkLPP/fv3l8k+AQAAAAAAgLLGtTcAAIDyQbgLAAAAAAAAAAAAAAAAALwQ4S4AAAAAAAAAAAAAAAAA8EKEuwAAAAAAAAAAAAAAAADACxHuAgAAAAAAAAAAAAAAAAAvRLgLAAAAAAAAAAAAAAAAALxQQHkXAAAAYIzRunXrtHz5cq1bt067d+9WbGysLMtSVFSUmjZtqk6dOql3794KDAws0b46d+6sAwcOSJK2b98uSVq4cKG+/fZbbd26VTExMYqKitIFF1ygW265RR06dCjyPrZt26YvvvhCK1eu1OHDh1WhQgU1aNBA1113nW655RbZbLZCt4+NjdWvv/6qFStWaNu2bTp48KBSU1MVGhqq6tWr69JLL9Utt9yixo0bF/0JAAAAAAAAwFmFa295ce0NAAD4GsJdAACg3N1+++1as2aN03VHjhzRkSNHtGTJEn3wwQeaPHmymjRp4pH9ZmRkaMSIEfrxxx/zLD969KgWLlyohQsXqlevXho5cqQCAtz72PTxxx9r/PjxysrKylmWnp6utWvXau3atfrxxx/1wQcfKCwszOn2y5Yt0/33359n+5Pi4+MVHx+v7du364svvtBdd92lJ554Qn5+DMYKAAAAAAAA57j2lotrbwAAwBcR7gIAAOUuJiZGklSjRg21bNlS9erVU1hYmDIyMrRnzx4tXbpUiYmJ2r9/v+666y59//33qlq1aon3O2HCBP3444+qUKGCOnfurPPOO0/p6en6448/tGnTJknS7NmzZVmWxowZ47K/mTNn6t1335XNZlPXrl3VuHFj+fn5aePGjVq2bJmMMVq7dq1GjRqlUaNGOe0jMTFRWVlZstlsatmypRo1aqTKlSvLZrMpJiZGa9as0aZNm2SM0UcffaSgoCANGzasxM8FAAAAAAAAzkxce8vFtTcAAOCLLGOMKe8iAADA2W3ixIm68sor1aJFC6frk5KS9PLLL+v777+XJPXu3VujR4/O1+7pp5/Wd999J0n67LPP1KZNm3xtTh0a3rIs1atXTx988IHq1KmTp93MmTP1/PPPy263S5LeeecddenSJV9/AwYM0KpVq3LuN2zYUO+8847q1q2bp92iRYs0dOhQ2e12+fn56ZdfflGNGjXy9ffXX39p586duu666xQeHu70+fjzzz81bNgwxcXFyc/PTz///HO++gEAAAAAAACJa2+n4tobAADwRYwjCgAAyt3QoUMLvLgkSWFhYRozZozOP/98SdLcuXOVnJxc4v3abDa9//77Ti/O3HzzzXrggQdy7r/77rsu+wsLC9MHH3yQ7+KSJHXt2lU9evSQJNntdv3yyy9O+7j00kvVr1+/Ai8uSdJll12mV199NaevmTNnuqwNAAAAAAAAZyeuveXi2hsAAPBFhLsAAIBP8PPz0zXXXCNJSk9Pzxm6vSRuvPFGnXPOOQWuv/vuuxUWFiZJ2rRpk3bv3l1ofzfffLPTvwg86aqrrsq5/ffffxex2rw6d+6s4OBgSdKaNWtK1BcAAAAAAADOblx7y4trbwAAwJsElHcBAAAApzp06JC2bdum48ePKzk5WdnZ2TnrTr0os2fPHrVt27ZE++ratWuh6ytUqKD27dtr3rx5kqT169erfv36BbZv165dof3Vq1cv5/aJEydc1peenq7t27drz549SkpKUnp6uk6dUdtmsyk1NVV79uxx2RcAAAAAAADAtbdcXHsDAAC+gnAXAADwCj/88IM+/PBDbd261a32iYmJJd5nkyZNXLZp3LhxzgWmf//9t9C2NWvWLHR9aGhozu2UlJQC2x05ckRvvfWW5s+f79YQ+AkJCS7bAAAAAAAA4OzFtbdcXHsDAAC+hnAXAAAoV3a7Xc8++6xmzZpVpO3S09NLvO+oqCiXbaKjo3Nux8fHF9o2KCio0PWWZeXcPvWvAE+1efNmDRo0yOW+TpWRkeF2WwAAAAAAAJw9uPaWF9feAACALyLcBQAAytU333yTc3HJZrOpT58+uvLKK1W/fn1VqlRJFSpUkJ+fnyTp22+/1TPPPFOm9RV0Iag0pKena9iwYTkXlxo1aqS+ffvqoosuUvXq1RUWFqbAwMCc9p06ddLBgwfLrD4AAAAAAAD4Fq695eLaGwAA8FWEuwAAQLn6/PPPc26/9dZb6tKlS4FtPTEc/Kni4uJUtWpVl21OioyM9Oj+T7dkyRLt27dPknThhRdq2rRpeS4onc7TzwcAAAAAAADOLFx7y8W1NwAA4Kv8yrsAAABw9kpNTdU///wjSapTp06hF5ckaefOnR7d//bt24vUpl69eh7d/+k2bNiQc7tfv36FXlw6cuQIF5gAAAAAAABQIK695cW1NwAA4KsIdwEAgHKTkJCQc9vVX+ZlZGTo119/9ej+Fy5cWOj6tLQ0LV++POf+hRde6NH9n+7UC0ZRUVGFtp0/f36p1gIAAAAAAADfxrW3vLj2BgAAfBXhLgAAUG4iIyNlWZYkaffu3UpLSyuw7ZQpU3T8+HGP7n/27Nk5Q7E7M3XqVCUlJUmSWrRoofr163t0/6c79SLbli1bCmx34sQJvf/++6VaCwAAAAAAAHwb197y4tobAADwVYS7AABAualQoYKaNWsmSUpJSdFLL72kjIyMPG2ys7M1depUTZo0KedilKdkZGTo3nvvdXqR6bvvvtM777yTc/++++7z6L6dadWqVc7tqVOnavPmzfna7N27V3feeadOnDjh8ecDAAAAAAAAZw6uveXFtTcAAOCrAsq7AAAAcHa755579PDDD0uSZs2apVWrVqlDhw6qVq2ajh8/rmXLlmnv3r0KDg5W37599fHHH3ts3wMHDtSnn36q6667Tl27dlWDBg2Unp6uP//8Uxs2bMhp17NnT3Xt2tVj+y1Ihw4d1LhxY23fvl0pKSnq06ePOnXqpEaNGsnf319///23li9frszMTPXs2VNr1qzRgQMHSr0uAAAAAAAA+CauveXi2hsAAPBVhLsAAEC56t69ux544IGcv9Tbv3+/vvzyyzxtoqKiNH78eB07dsyj+3788cd19OhRzZs3Tz/++KPTNtddd51GjRrl0f0WxM/PT5MmTdJdd92l/fv3y263a/HixVq8eHGedldffbVeeeUV9ejRo0zqAgAAAAAAgG/i2lsurr0BAABfRbgLAACUu0ceeUSXXXaZPv/8c61du1ZxcXEKCwtTzZo11blzZ91yyy2qWrWqZs2a5dH9BgYG6s0339TVV1+tWbNmadu2bYqJiVFUVJRatmypW2+9VR07dvToPl2pW7euZs+erc8++0yLFi3Sv//+q+zsbFWuXFnNmzdXr1691Llz5zKtCQAAAAAAAL6La2+5uPYGAAB8kWWMMeVdBAAAQFnp3LlzznDq27dvL+dqAAAAAAAAgDMH194AAAA8z6+8CwAAAAAAAAAAAAAAAAAA5Ee4CwAAAAAAAAAAAAAAAAC8EOEuAAAAAAAAAAAAAAAAAPBChLsAAAAAAAAAAAAAAAAAwAsR7gIAAAAAAAAAAAAAAAAAL0S4CwAAAAAAAAAAAAAAAAC8kGWMMeVdBAAAAAAAAAAAAAAAAAAgL0buAgAAAAAAAAAAAAAAAAAvRLgLAAAAAAAAAAAAAAAAALwQ4S4AAAAAAAAAAAAAAAAA8EKEuwAAAAAAAAAAAAAAAADACxHuAgAAAAAAAAAAAAAAAAAvRLgLAAAAAAAAAAAAAAAAALwQ4S4AAAAAAAAAAAAAAAAA8EKEuwAAAAAAAAAAAAAAAADACwV4usPY2FhPdwkPsixLUVFRkqS4uDgZY8q3IHgNjg0UhGMDBeHYQEE4NlAQjg0UhGMDBeHYKF3R0dHlXQKK6Ey57sZ7G76E4xW+hmMWvoTjFb6E4xW+hOMVvuZMPGY9fd2NkbsAAAAAAAAAAAAAAAAAwAsR7gIAAAAAAAAAAAAAAAAAL0S4CwAAAAAAAAAAAAAAAAC8EOEuAAAAAAAAAAAAAAAAAPBChLsAAAAAAAAAAAAAAAAAwAsR7gIAAAAAAAAAAAAAAAAAL0S4CwCAchQba/TeFLuG3GvX6jWmvMsBAAAAAAAAAAAAAHiRgPIuAACAs5UxRsMeM9q123F/336p1SXlWxMAAAAAlIXs7GwZY2QMf+QCAAAAAABQGMJdAACUE8uy1Odmacxrji8zjhwxkqw8beYtMKpdS2rR3HLSAwAAAAD4JmOMslMylXUizasDXn4hAfIPsZV3GQAAAAAA4CxGuAsAgHJ0dTdpxUrpqq6WLrow77qFi41GjTGqECS9Pp6AFwAAAIAziz0lS1kx6ZK3hrv+9ysY4S4AAAAAAFCeCHcBAFCOAgIsvfpS/tBWerrRe1OMjJFS06TX3zT66APHaF8AAAAAcCYxadnlXYJTVgX/8i4BAAAAAABAfuVdAAAAZ4uvZhi9855dWVmu/yo9KMjS269bqhgtXXyRNG6MRbALAAAAAAAAAAAAAM4yjNwFAEAZ2LjJ6L33jbLt0qbNRmNGSpGRhYe1atWy9M5EqUYNyd+fYBcAAAAAAAAAAAAAnG0IdwEAUAa+/8ER7JIkf38pNNS97WrXJtQFAAAAAAAAAAAAAGcrwl0AAJSBZ5+21LSJNH2G0YvPWwoIKH5oKzvbMJIXAAAAAAAAAAAAAJwF/Mq7AAAAzgZ+fpZu7m3pq88tVa5cvGCW3W700zyjfgOMjp8wHq4QAAAAAAAAAAAAAOBtCHcBAFCGbLbij7g1boLRqLFGBw9KX80g3AUAAAAAAAAAAAAAZzqmZQQAoJT8t8+obh3PTZ/Y6UpLP8x1hLqWLpXuv8eUaHpHAAAAAACAs1V2SqbsKVnlXYZLfiEB8g+xlXcZAAAAAMoR4S4AAErBrt1Gg4YYtW9nNPQhS9WqljyEdWkrqd0VUssWlnr1FMEuAAAAAACAYrKnZCk7Nl3y5sHR/3fph3AXAAAAcHYj3AUAgIcZYzThDaNsu7RkmWRkNPLlkgexLMvSmJEEugAAAAAAADzCSCYtu7yrKJBVwb+8SwAAAD7IGKOsrKyc2wB8H+EuAAA8LCNDqldP2rRZCgiQ7r+HQBYAAAAAAAAAAMDZoLynf7YsS5npjihIVlKa04AXUz8DvoVwFwAAHhYUZOnJxyxde43R7t1S7dqEuwAAAAAAAAAAAM4G5T79s2UpM80xAmhWSrp0eriLqZ8Bn0O4CwCAUtLsfEvNzi+9/o8fN/r2O6Nm51tqdwUBMgAAAAA4W5X3yADuYGQAAAAAnFXKc/pny5JlcwS6TFp2vnAXUz8DvodwFwAAPui3342ee8EoK0u6+CJDuAsAAAA4Cxw/frzY24aGhio4ONjpuhMnTjidpsMdwcHBCg0NdbouNjZW2dn5v8ywLEupqanKPJGmhNgYmbT8oaSgwCCFhYQ57Tc+MUFZ2ZnFqtcWEKiIsHCn6xKSEpWZlZFbZ5C//BQkmyq47tdmU2RkpNN1iYmJSk9PL1a9/v7+io6OdrouOTlZqampkqTMmDTZ44owMoBlqVJURaerUtPSlJKaXJxyJUmVois52Z+UnpGutBIE0CpWrCg/P798yzMyMpSQkFDsfqOiohQQkP8yeVZWluLi4iQp53lOSkpyu9+IiAgFBgbmW2632xUTE1O8YiWFh4crKCjI6boz5RzhjqCgIIWHO38vx8fHKzPT9TkiMyZN9th0mfTcGopyjiiKAH+bIsMjnK5LSklSeobzc4Sr85Crc8Tx48eL9dpZlqVKlZy8l+V4PyQnF/8cUblyZafL09PTlZiYWOx+y/McURycIxxCQkIUFRXldF15nyOcCQwMVESE8/dyQkKCMjKKd44o788RRXW2niMsy8o5duLj42WMOePOEdmpmbKnFv19FxoSouAKBZwjYmJkijl8VXCFYIWGhORb7hcSoIT0JN86R5T15wjLUnpWmqNNUnL+cFeQv2x+wapa2fnrxjnCgc8RuUr7c4Szc6wr3vy7hqQCfwYXF+EuAAA8wG43mvuT1L2bFBhY+kGr85vmfhZfu07av98w/SMAAABwhmvUqFGxt33ttdc0ZMgQp+vatm2rEydOFKvfJ598Uk8//bTTdT169ND27duL1e8dvW7XqGEvOl03+Ln79eeGVcXq99qOV2vKSxOdrnt83DOau3R+sfq94oor9MMPPzhd9/LLL+vDDz8sVr+NGzfWn3/+6XTdxIkT9dprrxWr34qR0dr0vfPncPp3M/TsWy8Vq19JOrBkR75lfhE2Lfh1ge4eem+x+/3nn3+cfpmzatUq9ezZs9j9/v7772ratKmkvCOgbduxXR2v7VzsfmdN+0ZXtLk83/LjMSfUrG3LYvf7wcT31at3L/kH5x8F7Ww6RwwePFjjxo1zuq5///76/fffi9VvaZ0jLrugtWa+9YXTdaOmjNens52vc8XZOcIYo6ysLI0dO1avvPJKsfqtVKmSduzI/16WpC+++EJPPvlksfqVVOAXjvPmzdOgQYOK3W9ZnCNOtWPHDl1xxRXF7nfOnDlq165dvuUxMTElei9/9NFH6tWrl9N13niOeOqppzRmzBin67zxHNGzZ0998sknTtc9/PDDmjNnTrH69bXPEZwjcnGOcBj5+Iu66+aBTte1u7qjYuKKFzYZPvhhPX73sLwL//c1SI/rfesc4ZWfI85rpD9XrXC6jnOEA+eIXN74OcLbf9cobvi9IIS7AADwgB/mSuMmGH05Qxr+iHRpq9INWlWsaKljB6OUFOn66yxVr16quwMAAAAAoERMZsmmpMmMSVOm8o8ekBVfvNFMcraPS1fm8VTJ35I9JVMmJVsykj2+eCMrnGRPyFR2TP7a7LElq9ekZikrLl32ZM9Ow5mdlOl4Hpyxe/ZLCXhQtsn3ulmWpcz0AGWnFG/UEUmSPX+/ObtMKkG/PijnHOFkeYn6jXfeb3bq2fX8AjhDZJqCpx8sSbghK3+/TCcI4GxFuAsAgBKKjzd6b4rjF5R9+6S/t0qXtir9/b7wnCV/f0brAgAAAIDyZjLtBQYh7KklCOE4CW7k9FuCKQ7Lgz3DXrLtY9OVLSdhqYSSBSHs8RnKjkmXFeQnu93IMpJJy5ZJL1m9JsPu9EvOU6cALF7Hkj0tWyYpy/1pON1gT3EeRpNK9p0sSpfJNvlfN8tSZpp/ic4RxqjA48FektCYDzp5jnC2vET9OguAWpLdlPAcAQCAu/h6qdSVdUg8MyatRP3CuxHuAgCUmW3bjf5aLW3/x8hmkypWlDq2t9SiueOvCn1VeLh03z2W3ptiFBUl9bu1bPZLsAsAAAAAvIPJtBcchChBmMdpcONkvyUJjfkgk57tPCxVwtCYSXeEsKxAvxL1U+b+F0LzmNIacQOlyzh53SxLls1I2SV43Zz1e1Lm2XU8nDxHOFteon6dBEDPxtFoTk4jevL22YqQOIDyYAoZqbNE5whGAM1RpiFxlXyUYHg3y3j401JsbKwnu4OHWZalqKgoSVJcXNxZ/WEZeXFsoCCeODYOHTJ6a5LRbwVMQXxuPenRRyxdfJFvh5Xi4oyOn5DOa+Dbj6MwCYlGO3dK/+6V4uOl7Owg+ftLNlu6qlWTalSXqleXKlX07cAeSoafKSgIxwYKwrGBgnBslK7o6OjyLgFFtGPHjmJvGxoaquDgYKfrTpw4Uez3V3BwsEJDQ52ui42NVXZ2/i/ELctSaGioMk+kKeFAjExa/i8OggKDFBYS5rTf+MQEZWUX70sBW0CgIsLCna5LSEpUZlbuRXYr3CZjjKxM43K0pQB/myLDI5yuS0pJUnpG8S6y+/n5Kzoiyum6lNQUpaanFqnOkyxZqhhV0em61PQ0paQmF6teSaoUVSnfMr8Im1LT05Qcl1jskauiI6Ll55c/gJWRmaHE5MRi9SlJkWGRCggIkF+ETfaTz2NatrKyshSfFC9ZlsLCHMd4UlKy20Gn8NBwBdoC8y232+2KTSj+NfSI6tGy2QJz6jzVibgTxe43JDhUwUEVnK6LiYuRKcIwYVa4TX7hgbJFBRXrHOGOoKAghYc7fy/Hx8crM9P1OSIzJk322PQ8x2RRzhFFUdxzhKv3t9NzhGUpPDxMyanJOnb8eLHCeUU5R5z6erujcuXKTpenp6crMbH47+WKFSs6P0dkZCghIcHp6+2Ok+eI0+WcI4rJ2TnCquAvK8qmRL8Cpkh1p9/wcAUFOX8tjh8/Xux+T/0ckZ2SmedL/xMxRTtHnCokOETVqlaVJCUlJeX5PBIbF6tse/FCdCFRoYqs6vyzrrvnCGcCAwMVEeH8vZyQkKCMjKKdIzJj0mSPSy/8HJFcws8RkVFO16Wkpig1zcWxFujn9P1tWZYqVcr/816SUlNTlZxc/M8RxT1HZKdmyp5a8Pu7YlQBnyMyMpSQ5N65x5KV8zMtOTlZRkZREQWfI+IS8p4j/IL95R9sc2tfERERCgx0/jkiJibGrT6ccXWOKO650pOfI04VHBSskOCQPMusCv7yrxikJP+0cv0c4cyp54jM46nKjknP+bxW5p8jXHyGtcJtsiw/VQyNdDoarFvniIJYlioV9DkirYi/a1iSX1SQbBUdx1d5fY5wpaD3Tll+jpAK/l3DCvKXX3Tu81hgv2XwOeJ0J69HWJalyMhISY73oTvXKLz5dw1JatiwYbH2XxDCXWcZLoyjIBwbKEhJj40/Vxj934tGqW6MBNq7lzT0QUs2G6Gg4ti23ahKZalSJc8+f0eOGs35wejPFdI/bn6XFFxBqlNHqlNbqltXqlPbUt06jmWhoby+Zzp+pqAgHBsoCMcGCsKxUboId/meM+W6m2VZCgsLU+bxVMX9d0LGS0egOj3s4618oU6frvF/QRlJSkxMKvdRrHzluVSQn/xsXjwKkb8le0qmTLLzEeG8RbFe7zI+Znm9Pccvwia/yEDZogv/4rW8ZR5PVXZsumemhrUshYY4ghvJKSkeOV6tQD+feB6l/OEPb+MT728p9z2eku3RKYvzKcHx6ivHpbcfk1JuuMtW2XlQxFuU+3Pp4vOAL3ymlHi9PcVXPmOcDFSVJKjnTTx93Y1pGQEApcYYo5mzcoNdfn7SVV2l1q0s+ftLmzYbLfhZSvpfSH/WbOm/fUavviSFhZVNACgry2jPHmnnbiklWZIl1a0jNTtfCgnxjRDSipVGUz40+ucf6a47pMF3eabuAweMpn5s9MsvUnYR/0guNc0RBMsNg+X+4lCpolHt2lL1alLVqlLVqpaqVXXcrlnDd553AAAAAADgnD0tWyYpq3S/ZC8BK8hPdrsRVyA8g9fbc+xpWQVOZeUV/C3Z07M8NzXsyWlE9b/+PBTu8vrnUcp9Lr2ct7+/pVPe456esjjfjop/vPrEcekjxySA4vH2c5BlWcpMD5BfCBGmgvDMAABKjWVZeun/pAcfNkpPl178P0tNGudeRunaxdKdA43eeNvol18dy1avkR4ZbvT2G6U7wtPxE0bfzjL6/gfJ2Yiq/v5Sh/ZGt/ax1LxZ/jp27Tb64EOjYUMtVa9evpeGMjOlf/5x3J47T7pzoJG/f/Frysw0mvqR0fSvpdNHLLXZpEYNpQYNpCqVLVWuHKzsbOnw4VQdOmR0+Ih08JBU2IACJ2Ic/zbkLMn7S3Dlyka1a0n16kkXtrR0ycVSdLQvXH4DAAAAAAA5SvtL9hKwAvNPu4MS4vX2CG8P0vhKUM7bn0fJd55LSV79/pZ85z3u7celTx2TAIrM289BsixlpvvLpmDJvdm+zzqEuwAApSoszNL4sY5QUFRU/l8LoqMdAbAmjaV33nN8otj+jzTiOaNxY6SgIM/+KpGVZTTrO+mDj4xSCwmoZ2dLvy6Rfl1i1KWT0SNDLVWsaOX0MWac0dat0po1Rs89K3VsX36/8lzWVqpUUUpJkS65yPF/AVNBu3TwkGMazW3b8y5v01q6sZelVhdLFSo4HqtjmiTHULhxcel5pklKSjLat1/at0/at9/ov/+Uc9/VFJ3Hjzv+rd8gzf7eyM9PuuhCo2t7WOp8pRQQwK+XAAAAAAAAOEN5cZDGV0I0krz6eZR87LmE53jxcckxCW9kBfpJJRjMAKfx4nOQLEsKKe8ivBvhLgBAqatSpfAPXpZl6ba+UlSkNGqsIyC0dp302nij555xrPeEmBij/3vJaP2GvMurV3NMw1ixomMUrK3bHAGzkxb/Kv21xjFd5MUXWdr+j7Rrl2Ndtl1qcK5Hyiu2gABLY0c7ppMsyZSGO3cZPfaE0YmY3GWXXCw9cJ+lxo2K1m9YmKWmTaSmTSSd8rc+xhgdPy7tPyAdPSodPSYdOWp09Ih0+Ih04KCUnp63L7tdWrNWWrPW6KOPpXvvlq7s6LnjAgAAAAAAAAAAeD/CPmcfb59OkClNUVYIdwEAPMYYo9fGG110kaVuXYv+4brHNZaSkqS3JzsCXgsWSi2aS71uKHlt/+wwemqE0bHjucvOayDdM8RS2zaSn1/eevfuNfriK6Of5jvuJyRIw58wevpJ6epult6fLD3zf0Z9brJUu3b5/yJx6nSXxbHlb0ewKynZcT/QJj30oKUbb/BsiMqyLFWpIlWpkmdpzi273fEa/fefI2S3eo0jjGe3O9bvPyA9/6LR5W2lp56QKlUq/+ceAAAAAAAAAACUDcI+Zxdvn06QKU1RVgh3AQA8ZuEi6Ye50g9zjVasMHruGStfaMqVW/pY2nfA6LvZjvtvTTJq01qqUaP4H4vWrjN6+lmjlBTHfX8/achgS/1uLXiKv3POsfTM05Z6XGP08kijo0elrCzp1VFGWVnSdT0sffqhFBxc7LLctmu30XezHdMcHjrsCJqlpEjGyQfZalWlmTPyDp+84GejV0YV/Kn3ZHbrZH8REdJroy01b1b2H0X9/CxVq+p4HJe2kgb2txQba/TjT9KMr43i4h3t/lgh3X2f0eiRKvKoYgAAAAAAAAAAwDcR9jkLefF0gkxpirLCkQYA8AhjjKZ/k/tJOiIy/2hY7hr6gKWmTaWgIOnJx60SBbv+Wm30+JO5wa7ICOmNCZYG3G4VGOw61YUXWJryjqVGjXKXjR1ntOBno5AQy6OjWhljtG9//t9GUlKk2XMcUxMePCglJTlGsjLGyb9T+nJ/v7nBLptNmvRW3mDXuvVGX0432ru3fH5Tio52vF5ff2Xplpslv/99ejl6THpgqNHKVV76GxwAAAAAAAAAAPC8/4V9vPGft4bOAPg2wl0AAI+wLEuT3rR0801S7drSfXcXP/QUGGjplRctTXnX0jXdi9/Pho2OEbsyMh33q1aV3plo6eKLitZneLhUv57U8DzHfWOk0a8ZrVtf8k/o2dlGK1YavfSqXT17G/Xrb3T4cN5+mzSWAgPzbmdZjhHITv9n7NLUj+zq0zc3KGb5SQEBzv+drksnqf65eZ+fefON3nnP6PY7jO5/yK75Pxulp5f9bychIZYefshPb06wFBHhWJaeLj39rNHy3/htCQAAAAAAAAAAAMCZh2kZAQAeExJiadhQS2l3G1WoULIRrapXK9n2/+41enKEUXq6436NGo4RqapVLVq/mZlG//eS0e9/SFWrSPXOkf7d65ii8dn/M3r/HalO7aLXuudfo3kLjBb8LJ04kXfdho1S9eq59202SyOekqIipZo1pegox3SQzkYNe+4Fuz75zHF7/gKjuwdb6tbV8e9UdrvR/71otGTZyX1Iw4Y6Rio7vd3KVbn3N22WNm02emuidN21dt0z2K6qVcs2K37xRZY+eFd69AmjgwelzEzp+ReNxo+VWl3CQMcAAAAAAAAAAAAAzhyEuwAAHlfSYFdBkpONjh+Xzjmn8P7j442eGmGUnOy4X7WK9NbrRQ92SdLe/6S1ax23jx6T7r9X+naW43ZCgvTE00ZT3pEiIlz3nZBotPgX6af5Rlu3Om8THS2lpuZfflUX92rvcbWlJUsdo1itXCXdPdh5u88+V06wS5JGPJU/ACY5pn988AFLv/9utPw35YyClpgofTXdaOa3sbqpd5Bu72sUHe1WiR5Rq5alyW9Jwx4z2vufI2z3zPNGk9+WGp5HwAsAAABlLykpSUuXLtWmTZu0efNmHTlyRDExMUpPT1d4eLjOO+88dejQQTfffLOiy/LDMwAAAAAAAHwa4S4AQIkcOGBUq1bph2n+3mr0wstGliV9/IEUGup8n1lZjpG2Dhx03A8Jkca/ZqlmjeLVeF4DS2NGOUJcA/tbur2fpdatjB4YapSaJu3f7xjB6/VxjhG2CvLLEqNXRhplZuZfV6WydHV3R4Dr3HOdj8jlrtaXSj2ukTq2t9SmtfM2y38zmvpR7jSGt/WT02CXJAUEWOrW1bE+Pt5o3gLp+x+M9u1zrM/MlKbPSNf3c6QBt1u6ra9jm7JQpYqlt96Q7nvA6PARKSVFemqE0YcfSNFRBLwAAABQtjZu3Kjhw4c7XRcTE6NVq1Zp1apV+vDDDzVu3Di1b9++jCsEAAAAAACALyLcBQAotoOHjAYOMmp1idGwoZZqFDNA5Up6utHTzxjFxDruj3/D6IXnnO/rrUlGa/430pZlSS8+b6n+uSWr65KLLU37WDkhtoYNLb3wf9KIZ42Mkdatl95536jPTdLhw45/11ydN6RVu5byBLsCA6WOHaRrulu65GLJ398zz11AgKVnniq4r+PHjUa/lhvsattGuneIe/uOjLTU9xbp1j7Sqr+kz780WrfesS41VfpzhVH/28o2VFW5kqXXx0n3PWSUkOAYUe2lV4wmvOa55xQAAADeJyMjQ9u3b1dMTIwSExOVlZVV5D569erl8bpq1KihNm3aqFmzZqpRo4aqVKkiu92uw4cPa8GCBVq4cKFiY2N1//33a+bMmWrSpInHawAAAAAAAMCZhXAXAKDY3ppolJ4u/f6HlJJiNPHN0gnTBAVZeny4Y9q98HCpU0fn+/nue6PvZufev/9eS5df5n5NGRlGn38pXd5WatIk73a1aln6aZ7Rrj1GcbFSfIJUrap0+Ihj/TczpW9m5oammjezVLdu7vbnNZCiIqU6daRrrrbU+UopLKxsw0fGGI0Z5whBSVKtmtILz1lFDkFZlmNUsLZt/LRte6gmvJGs7f9k6/Hhlvz8yj5QVbeupZf+T3rsSSO7XVq9RvrkM6PBdxHuAgAAONPMmTNHX3/9tdavX6/s7OwS9eXpcFebNm20ZMmSAtf36NFDixYt0oMPPqjMzExNnjxZEydO9GgNAAAAAAAAOPMQ7gIAFMvy34x+/8Nx289PeuiB0g3SdGhvadjDUvt2UrWq+fe1Zq3Rm2/lhquu7i71u9V1v8YYxcRIK/8ymvSOlJAgffGV9Phwo2u6++Vpu3Cx0V+r3at39VrlCXf5+Vma/kXZB7pO9f0P0oqVJ+uRnnvGUnh4yepp28amGV9G6s8VcWpQP//6pCRTJo/50laWhgySpkx1HAOfTpPatDZq3oyAFwAAwJngyJEjGjZsmNavXy/J8Tm+OCzLkjGmRFOhF8Tf399lm65du6p+/fravXu3/vrrL4/XAAAAAAAAgDMP4S4AgCTHlyMnYhzhpowMKShIioyQoqPzt01JMXrj7dwvU3r3kho3Kv0Qzc29ne/jwAGj5180yrY77jdvJj0x3Mr3hc3BQ0YbNkgHDhrt2y/Hv32OKQVPlZ4uzf1JuqZ73uXRUa5rDA2V2l0uVa+Wf115jNS1dZu0foPUoZ006Z3c1+z2flKL5p6px8/PUrPzrXxfsM2abfT5F0ajR5bN8dH/NscUmX+tlux26ZWRRh9PlUJCCHgBAAD4soSEBN11113as2dPTjDrZEirqIobCvOk4OBgSVJ6eno5VwIAAAAAAABfQLgLAM5Q6elGa9dLAf5ShQrS+U2Vb/q9EyeMlv/uGIVr2zbHVIOnCww0WvmHUaAtd9sPPzE6etRxu1JFacigsgnPJCQYzf9ZOnjQEUSLj5eOHJEOHXaEeSTJ31+KjZXuvs/os4/z1rVxkzRyjHtf5pzs71Rdu1hq0liKinYE38LDpbAwRz1PjnBsk5wsVa2mIk0HWRqys42G3Gu0Y6fj/qLFUlqa4/Z5DaRBd5ZufavXGL31tiNw98BQo+dGSJ2uLN19+vlZeuYpaeAgo8RE6cBB6cOPjYY+SLgLAADAl02aNEm7d+/OE+qqXLmy2rdvrwYNGigyMlIBAb5xiWvXrl3atm2bJKl+fSdD3wIAAAAAAACn8Y0rXwAAp96fatfRo1JMjDRujKWAgNwQS3qG9MRTuUGmJYty123bbjRxstGGja73ERmpPMGuf3YYffNN7vpHHrY8PiKVMUY7dzlCSKeOvpWRIb09qfBwVna2I9Tj/Lsd59tGRUl1akvn1pManic1aGCpSuX87QoKbNWtY+mB+0zOyFiffyFdeonRxReVX6jI399S7dq54a5/djj+t9mk55+1ZLOVbm3+/lJomGMkuPR06fkXjR5+ULqlT+nut0oVS48/Kr3wsuO1+OZbqXs3o0YNCXgBAAD4ovT0dM2YMSMn1OXv768nn3xS/fv3d2saRG+QmpqqI0eO6Ndff9XUqVOVnZ0tSRo4cGA5VwYAAAAAAABfQLgLALzYyNF2bdgkxcVJk96y8gVU5s2Xjh933I6LlypXyl0XHiYF2qSMTMf/pwa/qlSWtvydf38REVLVKlJgoGOUp/h4qXat3PXZ2UavjTeyn5KR+uhjoz17jDp2sNSgvvJNheiu5GSjv1ZLf640WrFSOnFCmvaJpXPr5bapVEkKriClprnuz9n3PFGRubdtNun1cdJ5DSyFh5c8+HNrH2ntWumPFZIx0qujjD75UIqIKL9QUa+elv780yg9w1GTJN092FKD+qVf00UXWvrgXempZ43+/dex7O3JRrKkW24u3f137iTN/1n6c4VjNLVxE4zem5x/5DoAAAB4vzVr1ig9PT1n1K6nnnrKJ0JRs2bN0ogRIwpcP2jQIPXs2bPI/Rb39y1vc+rjsCQZb31cliXLSJKRvLVGyTfq9OEaTy3XsiSjcq7fh59Lr+ILNUrFqrPMj1lfeC59oUbJN+r0cI2lcrz6wvMo+UadvlCjVGZ1luh49YXn0hdqlHyjTi+o0eXx6gU1usUX6qRGj8h7zHpnjeWNcBcAlKNly43WrnOMoPX4cEvNzj9t2sQY6eBBx+24uPzbV6qYG+6Kickb7rIsS127GB09Jvn5nbZdJUvnNzXauMlxv2ZNaeKblqpWyf2Babcbxwc+k1vTrNlG27bn7evfvdLHn0off2pUu5bUsYPRlR0d0xcW9sPXGKO9/0mr/pL++NNo/QYpKytvmxUrlSfcZVmWBvR3TDO5b5/Rd9/nbd/sfOmJx6T0NGn1WsfUlEFBuTW0beOnRo3s+ucfqVZNR/DKE8Guk7WNeEq6Y5BRTKx09Jj02gSjV14svw8hzZsZ1agp7dnjuN+yhSOEVlZq1bL0/mTpmeeN1qx1LHt7kpGfn3Rz79L8JdvSo49Ia9YaZWRIW7dJc36Ubryh1HYJAACAUvLff/9Jcvz+EB0drf79+5dzRSXTtGlTvfTSS7rggguKtX1UVJRnCypHWf/7BTAkNEQKKediCmBsksmWTEC2/EO9d6Q4X6jT12s8+TduodHhZV/YaXz9ufQWvlCjVPw6y/KY9YXn0hdqlHyjztKo0dPHqy88j5Jv1OkLNUplW2dxj1dfeC59oUbJN+r0lhoLO169pUZXfKFOavSg/311GBYWpgDnUzSd1XhGAKAc/TjX6I8VjtsbNjrCSaeKjsq9HReff/uB/S2lpUkVKzrCSqey242aNLH0+x9G3a7Kv+1t/aRKlaUtm6VuXaVqVfOGbX5dKn36mVHP66RbbrErKdFoytTcIbvOqy8dOCSlpuZus/+A9MVX0hdfGVWrJrW+1GjwnZYqV87te9VfRj/MdYS5YmMLfm4qVcwdber0x7xho9E77+Vft+Vv6eFHHVMBSlKdOlLnK/O2eeh+S4GBjufa06Gr6GhLzzwtPf6/6TCXLJXmzpOu6+HR3bjto09yg13BFaRnR1hlPnpVaKilsaOkJ0cYrV3nWPbm247g4E03ll4tNWtYuusO6f0PHK/F+1OMOrRzBBsBAADgOxL+9+HesixdcMEF8jv9L1e8VNeuXdW8eXNJUlpamvbt26d58+Zp4cKFevzxx/XMM8+oU6dO5Vxl+fMLCZBNweVdRoHslpGx2yW7vHoaUF+okxo9xxfqpEbP8YU6qdFzfKFOavQcX6jTF2qUfKNOavQcX6iTGj3HF+qkRs/yCyHCVBCeGQAoRz2usfTHCkf4ZNMmI/XNGzy5525LQwZJUVFScHD+UErHDs6DKv/9ZzT6NaNNmx33Z8+RbrnZqEaN3PbtLvdTu8sdfwF/+ohZkvTDj0a790hvTjSymzT9/kemUlIc6xrUl6ZOsZSdLf21WlqyzOi336WkpNztjxyRfvhRundI3n4PHJR+XZJ/f5YlNW0iXX6ZpcvaSg3Pk/z88j++Q4eMRjyXW3OTxlKXTtI77zvCYCeDXZK04Gejzlfm7ePii0o33NO2jaU+Nxl9863j/ptvG53XwCgtzdLuPdKJE0YJiZI9WzrnHKvUpijcsNHoy+m594c+ZKlWzfIJNlWokBvwWrfeseyNt4yCgqTrepReTX1vkRYslP79V0pKlia9a/TCc4S7AAAAfElkZO7c6uHh5T9ijrsiIiIUERGRc79ly5a69tprNXv2bD399NN64IEHNHLkSPXu3btI/cY5G9LZB1mWpbCwMPmH2JRqT5dx9pc9XiZTTn5x9kK+UKev1XjyeJWkpKQkrzpefe259Fa+UKPkfp3lecz6wnPpCzVKvlGnJ2os7ePVF55HyTfq9IUapdKt01PHqy88l75Qo+QbdZZXjUU5Xn3heZR8o05qLL7Tj9kzgadHXyfcBQClzBij+QukbduNHn0k71+ZX3G5dPdgSy2aS+c3zb/t6aNpuZKVZfTVDOnjT4wyMnOXV68uxcRKNWrk38ayLNlseZclJhpt2+a47e8vpaYarVnr+GEfEOAYAWrPHql+fandFZbaXWEpM9MxMtOSZUbLf3NMIxkVJUVF5X0MF12Ye7titON+m9aOQFd0dN62drvJE/CKjzca+qjJCXAFBEijX7VUpYqlGjWMXh7pmIbvpO3bpYWLjTq2lwIDSz/Uk5lpdOy4Y/rDRb84RiZLS5OG3CvlDoCb68oOJl+4658dRuFhyhPEK6qUFKORY0zOyGeXtZWuv9ZxfOzZIzVsWPYBp+BgS6+Nlp542jFqm+QIeF3eVqpYsXTqsdksPf6o9NAjjidi4SLpphuNmjcj4AUAAOArqlevnnM74dS/5PBRvXr10pIlSzRv3jy98sor6tKlS54AmyveFCopKW//a2HgVEwJAl/DMQtfwvEKX8LxCl/C8Qpfc+oxeyZd//AU3tEAUIpSU43GTTD6eZHjfrsrjC5tlRsssdks3TGg6P3a7Uar10jrNhjt2OEIEGVmSgcO5J2+0WaT7hxo6fZ+UkCA+4GW8HBL382UFv8q/fmn0dSP0nLWDb7LUnSUdGMfo6goR0Dp8eF+stkstWntCGo9Nsxoy9/Op108p6409EHpnHOk8DCpQX1LFSrkre2hR+w6cEBKTZN+muMYwSstzeipZ4wOH87b38k/hr+yo6VzzpFeftVox07HsuMnpJdeMYqIcEwReeEFlhrUl6pUliIjpQoVnE/NaLc7QmKWJQUG5m1z+LDRmnXSsWPS8eOOMNex4477hU0z6UzlyvmXzZxltHCR1LuX0cD+liIjix5Emvyu0cGDjtuREdLwYdIHHxrN/UlKS5dmz3Q+ElxpOxnweuQxo717pVGvWKUW7Drpwgssdb/KaMFCx/3J7xq9M9HzU3ICAACgdLRq1UrBwcFKS0vTli1byrscj+jSpYvmzZunlJQULVu2TNdff315lwQAAAAAAAAvRrgLAEqRzeYYMeukb2bmDXcVVUqK0dx50rezjPYfKLytv7/UuZPUqWPRgl0nBQdbqlzJ6I8VyhkB6pKLpdv6Sj/+5LgfFycdPZp/288+d0yJaPk5wlGXX5a7f8uy9NvvRhMnO+5Pfd8xteKpjhx1BKYk6fARqWoVoxdeNtp8ync59c6RruwoZWRIQUGOZefWszTlXembb6XPphklJTuWJyRIixZLixbnTXkH2qQxo6TWl+bWZ7cbdeic227hPEvBwbnbbN0mjR5bvLR4m9bSBS0tRYQ7Rh0777z8bdatcwT1ZnwjNW4sdetatH388afR9z/k3n98uKXq1aTffjc6EeNYtmixdP11xXoIJRYSYmncaEcYrqxGELt7iKVflzoCe5s2S0uWSp2uLJNdAwAAoIRCQ0PVrVs3ff/99zpx4oRWrFihtm3blndZJVKxYsWc2wdP/lUGAAAAAAAAUAA/100AAMUVEGDp1Zcs1T9XurGX9MpLxQuzpKUZffSJ0Y19jN6a6DrYJUnZ2dKCn6Xb7zAa8Zxda9Ya2e3uh5IWLnaMlJX5v+kdGzX016hX/OTvb8nYpapVHctPDW6dFBtndOCgtH+/FBOTv++QkNzbJ07kX1/pf991WJa0b5/RhDeMfv8jd/3wYdLnn/ppyCA/hYfn3b/NZum2vpZmfGnpvnss1apZ8GM8derKk/z88k5TeTI4dlKVKgX3FxAgVa8mtb5Uuq2f9MJz0oUX5K7ftk3q3k3qdYOl66611KRx3tozMoyqVXPcbtRQ6tq54H05c/iI0aujc1/jbl2lTldasixLN/R07KtGdeUJq5WHqCirTKeGrF7N0q19cu+/O8UoM5PhXAEAAHzF8OHDFRUVJUkaO3as0tLSCt/Ayx05ciTndsipvxwBAAAAAAAATjByFwCUsrAwSx+8JwUFFS/M8tdqozHjjE65/i/JMd1e927SilXSf/85loWHSxddKO3cpZxp+YyRlv8mrfrL6PtvLYWFud7nlr+NXnolN/xSp46f3pscrqCgRBlj1OsGSzf0lHbtdkxxeDpjz72dkpJ/fY3qjukZQ0OVJ0h10vPPWgoKlCIijd6eJP0wN3fdXXdIvXu5ziZHRlrqf5t0ez9pz7/S6tXSjp1G//4nxcVK8QmO2pztPzTEEfwKtDnCXqeqWUPqcbUj5FWlsqXKVaSqVXKnejy9/aWtjAbdY3T0qGOfz71gNPEN5ZuKUpICAy1NfFNasdLx3JzelzGmwOkEMzONnn/RKCHBcb96NWnYI7ltr+kuRUdb6tCueCO5lbZDh4yW/Sbd2qd0aut/m6Uf5hrFxTneG7NmK0/gCwAAAN6rWrVqGjt2rIYOHapt27bp/vvv14QJE/KMgOVL5s+fn3O7UaNG5VgJAAAAAAAAfIFljPHo0BWxsbGuG6HcWJaV89eucXFx8vDLDx/GseEZhw4ZxSco34hMJTFqjF0/5V77V4P6Up+bLV3VxREYO3rUaNDdRo0aSf/3rKWoKEvGGK3fIM2cZbRsuSPgdXV36bkReUNRO3cZ2QKkiAhH8OckYxzTIP7yq9TwPGnqlGhVruTn9rGRkGiUkiLZ7VJYmBQRXvTnw243ev1No9lzcpf1vF56YrhVYMCpqDIyjPz8Sj/stHmL0UOPGGVlOe537CC98qKVL7xVmKwsx0hq1/Ww1OnK/Nu9+bZdM2c5btts0rsTLTVpUrqPy1PnjTVrjf7vRcd759kRlq7pXjp1f/e9YxQ4yRGEnPGFpYgI7wu6nQn4mYKCcGygIBwbKAjHRumKjo4u7xKKZO3atXrwwQcVFxeniIgI9e3bVx06dNB5552nyMjI8i5Ps2bN0rXXXqug04f/PcUnn3yi0aNHS5Jq1aqln3/+WQEB7v/t5Zly3Y33NnwJxyt8DccsfAnHK3wJxyt8CccrfM2ZeMx6+robI3cBgIckJho9McLo8GHHdHzt23kmNDLsYUsbNhqlpkoP3G+pW9e8IzpVrWrpvclSjRqSv79juWVZuuhC6aILLf23z+j7H4w6dcxfz8TJRmvWOkZ5mjkjd71lWXp8uBQVaXTv3X6qXKlos/hGhFuKCC/e45Ucwa7xbxjN+SF3WY9rpMeGeS7YJTlGyioLzZtZGj5Mem2844PI0mXSO+8ZPfSA+/t//wOjlascI7mlpUnXXJ277eJfTU6wS5KGPlj6wa6TkpONNmzM1Oo1dsXHG2VlS21bW2rbxv39/zTPEeySpHHjjRqeJ53XwPP1X3+tNPNbae9/UmKi9OnnRkOL8BoAAACgfDRt2jTPfWOM4uPjNWXKFE2ZMqVYfVqWpb///tsT5eWYNGmSxo4dq27duumSSy5RnTp1FBoaqqSkJP3zzz/64YcftHbtWkmSzWbTq6++WqRgFwAAAAAAAM5OXEECAA8ZNdbo338dt19+1ejr6VJ0VMmDIyEhlsaMkqKjpM1bpNlzpN698rapXbvg/dStYzkNsGRkGG3a7Lh9+IgUE2NUsWJuu4hwS8M9HKZyR0aG0ZjXjH5elLvsuh7Sk48XbaQrb9PzOksHDxp9/qXj/vSvpZo1jXr3cv2Y0tMdwS7JMRrayDFGqWlS716Wtm4zGjM2N73etYt04w3u1bRvv1HtWirWa/zfPqOvvzFa8HOMUtPyrqtSWWrbxv2+nnjM0q7dRjt3OabDfPFlow/ek4KDPft6BwRYeuA+6alnHM/Xt7Ok3jcY1arlu8cVAADA2eDUv9a0rNzfUbzxrzjj4uL09ddf6+uvvy6wTfXq1TVq1ChdfvnlZVgZAAAAAAAAfFXRhmIBABRo0J2W6p3juP3sCKtYwa6ly43enGjP9yXFufUsrd8gPft/Rm+8ZfTLkpJ/iZGQKF3aSqpTxzFy197/StxlicXFGQ1/Im+w6/prfT/YddI9Qyx16ZR7/823jRYudv1aBgVZmvimpSaNc5e9/qbR5PfseuIpkxOuOqeu9ORjrgN5Bw8ZvfyqXbcNMPprddEeQ0yM0djxdg24w2j2HJMv2CVJdWrnX7bqL6PYOOePtUIFS6++ZCk42HH/373S25NK54u6yy+TLr7IcTsrS3rvA+/7QhAAAAD5nRroOvmvJP2Uhk8++UQvvfSSevToocaNG6ty5coKCAhQSEiI6tatq+7du2v06NGaP3++rrjiilKrAwAAAAAAAGcWRu4CAA9peJ6lqe9Lq9dK7S4v+hcGn3xmNPUjxxcUdWpJN/XOXbdosdErI42y7Y77n00z6tg+dxrG4qhcydLYUd4TmNqx0+iZ54wOHc5ddvNN0sMPnhnBLskxneYzT0tHjzlGTbPbHaO8JSdJvW4o/DFGRlp663XpiaeNNm5yLPtqeu766Ghp7ChLISGun6tvZuYG6N6bYnTJxa6PJWOM5i+Q3p5slJiYd13jxv66oKVd1atJ/n7S+XlnzdGhQ0bPPm8UFCQ99YTzKUtr17b0xHDp5ZGO98APc6VWlxh16ezZ196yLD30gDT4HiNjpF+XSJs2G7VoXv7HmN1uNHK0UfdullpfWv71AAAAeItLL720vEtwS926dVW3bl317du3vEsBAAAAAADAGYRwFwB4UIUKltoVc2aNhITcvzyfPceo5/WSzWZp/s9Go8YY2f8X7Kp/rvT6OKtEwS5vs/hXo9FjjdL+NwqUn5809EFLfW46cx7jSUFBlsaMlIY9ZrRjp2SMNP4No3/3Gj30gKWAgIIfc2iopQmvSQ89YrT9n9zlNps0fqxV6PScpxrY39KPPxmlpkrn1pPS06WQkILbp6QYjR1vtPiXvMsvv0x66IEItWwRoPj4eKejJxhj9NoExwhfqWmOx9rqEudTLna7ytJfq43mLXDcf22CUdOmUs0anj0OGjW01L2bI6wmSRMnG73/TumO4nCq9HSjFSuljh3y7i8mVlqwUFqw0Kj1pUaPPWqpVs0z7z0AAABQVNOmTSvvEgAAAAAAAIByw7SMAFAC6emem9Lt/nsd0+5d1lZ6d5Ilm83Sb787RvI5GexqeJ709huWKlY8MwIf2dlG739g1wsv5Qa7wsKkcWPOzGDXSZGRlt5+w1KL5rnLZs6S7rnfaP2Ggo+p1FSjaV/kDXZJUmam9Psf7u8/OtrS8GGWJr9t6fln/Qod7Wv3bqMh9+YNdtWp4zgOx43x1wUtbYWGoizL0oDbLdWoIQUHS6+NtpwGu0569BFLdeo4bicnSy+9YpSV5fmpE+8ZbCkoyHH7763KF1wrLXFxRg8/avTs/xlt2pz3cR07lnt71V/SfQ8a7djBtJEAAAAAAAAAAADA2cwyzobZKIHY2FhPdgcPsyxLUVFRkqS4uDino6zg7MSxUXQrVhq9Nt7ouWcsXXxR0YJIqalGcXFSjdNGJIqNM4oId0yRt2270UOP5IaeGjeS3hhvKSKibENPpXVsJCYavTzS6M8Vucvq1ZNGv2qpjpsjUPm6tDTHMXRyisSTLrxAuu5aS40aOqY5PHJUWrfe6MefpFN/zNpsjmDXSf1udYQEPTWN5bz5RuPfMEpPz112803S/fdYCgqyinRsJCYa7f1Pat7MdW3/7DC69wGT89juukMafJfn8+hTP7Lrk88ct6tXk774zPG4Ssvhw0aPPmG0b5/jfpPG0pR3c1+v2Fijjz41mjNHOVOwhoVKE8ZZanZ+bl0HDxn9NM9o7Tpp9x4pLc0RnKtdW2rZQrqqi6Umjcv3PcTPFBSEYwMF4dhAQTg2Sld0dHR5l4AiOlOuu/Hehi/heIWv4ZiFL+F4hS/heIUv4XiFrzkTj1lPX3djWkYAKIbUVKPxrxsdPSY9Mtzo5RekTle6DlMYY/Tb79KbE40qRkvvTVae6RWjoxy3Dx8xempEbrCrTp3yCXaVlr+3Gr3wktGhw7nL2l8hPf+sVegoUmeaChUsPf+sdP750vtTHFMXStL6DSp0BC9JatNaeuoJacIbuaN2fTVDOnHCaMRTjik9iys93ejNt41+mJu7LCREGvGk5dZx7kx4uKXmzXLvHztmtGChI/RVo4alXj1z+23U0NL990hvTzYqzZkSb+tr6YcfjU7ESIePSN98K/W/rXT2FRdnNOxxo/37Hff9/KRruud9cNHRlh4bZuma7kZPPGUUnyAlJUvPPGf04QeSsUsT3zH65df8/ScmSlu3Ov7N+NoxreOD91tqUP/seT8BAAAAAAAAAAAAZyLCXQBQDHv+lVJSHbejoqRLLna9zbbtRh9+nDtS1ZEj0g9zpV4987ZLSjJ68mlH4ESSoiKl8WPOjGCX3W40/Wvp/Q+MsrNzlw+609KdA+WxEad8iWVZurm3dGUHaepHRvN/lrKyCm5fs6Z010BL3bs5nq9XXzJ6ZVRu4OfnRVJMrNGoV1SkoFxGhmPKx6ZNpInvKGd0KUlq0EB65UVLdet47vU5ESO9N8URYIuKMnnCXZJjhLDde6Sru1u68ILSOS5CQizdPVgaM85Rx2efG117jSNk5UmpqUZPjsgNdgUFSS+/YOmKy53v5/ymlia9LT38qFFsrOO5eugRo+PHlRP4dGXVX9LadUZ3DpQG3J43RAoAAAAAcJ8xRln/+0X9TPjrcZz5OGYBAMCZJDUzRWlZKeVdRqEqBIQo2BZS3mXgDEe4CwCK4fymlr74VJo42ejyywoPXm3YaPTpNKNVf+VdXqmiI7h1uq3bpH3/C4EE2qTRIy3VquX7wYzYOKORo41WrMxdFhEhPfO0pXYFhFzOJpUrW3r6SUv3DDH6ab60ZYtjGkM/P0eAsHEj6eKLLLVpLQUE5D5fNpulF5+XKlU0+uZbx7LVa6R7HjB64Tmp4Xmun9vdu41eGmm0a5djhK6UUz4jX9tDGv5I8aYrPHDQaOa3Rrt2S2+/kXdaxRMnci8uxsU53icXtMzdR2qqFF1ROq9BkXdbJNdcLX0zS9q1y/G4p35k9MRjnjsejXGM8vf3Vsd9f7/Cg10nnVvP0isvOgJedrtygmEntb9C6nGNpWbnS5GRUnKytG27tGixY0S07GxHSHDqR0Y7dkr/96xKdcpJAAAAADgTOPviyJKlrADHX9okpSbLqPzDMnx5dHYp6hea5XHMckwCAMoSYZ+zS1pWihLSYrzic7gzliypgni9UeoIdwFAMUVHW/q/55yHJRITjRYuln78yeiff/Ku8/OTet8oDbnLUlhY/u0vbWXpjfHSs88bPTbcUovmvh/IWLvO6OWRjpGHTmrZQnrheUvVqvr+4/OkihWt/00N6P7z4udn6eGHpCpVpHfec3y4/fdf6Z77jW7ubXRbX6vQ0agSkxztJUfAyWZzjC716MOWuncr3uuTlGQ04E6jjAzH/d27jeqfMkVgi+aOgOPJEeqee8How/elqv87Hr6eKU37XPppntHwR6SOHUrnOPH3t/TQ/dKjjzuetzk/Stf2MDq/qWf2N2++tGBh7v3Hh7sOdp10zjmO1/TIkdxltWtJzz1jqXmzvH1EREitL5VaX2ppYH+jMeOM1m9wrFu6THo8wei10VJwMO83AAAAACiIsy+OLMtSVoBj+Pbk9JRyHwmJL4/OPkX9QrOsj1mOSeDM5gshGokgzdmGsM/Zx8goI9vNqU3KWKB/hfIuAWcJwl0A4CHGGK1bL839yejXpcoJtZzk7yd1u0rqf5ulc84pPGBx4QWWZnwpp+EvX5KdbfTJZ0afTpPsdscyy5IG9pfuusPKMwIVSsayLN3WV6paRRo73ig1VcrMlL6aIQUFGQ0ZlPtcp6Q4gj9/bzW64nJLF7S09Pij0oQ3HaNWVYx2jJhVpUrxX5+wMEudOxnNX+C4//ufUv36uesjIvz04QdGg+8xOnFCio11BLwmvSWlp0vTv3b8UnbihGN6xo4dpEOHjCa8afTYMEs1anju2Lm0laUO7Y2WLZeMkca/YfTBuyWfyvC//4xefyv3l8sbrpeuv869Po8eNXr4UZMn2CVJnTspX7DrdLVrW3r7DemDj4ymfe5Ytm694/kdM9Ix2hsAAIC3GDFiRJ77lmVp1KhRhbbxBGf7AQAp/xdHlmUpyNgkSRnZaeUe7vKVL498IQzgS0GAonyhWdbHrK8ckzi7+MI5SPKN85C3h2gkgjRnK8I+AM42hLsAwE12u1FSkvJNwZiVZfTLr9K0L4z2/Jt/uwoVpKu7Sbf1s1SzCIEUXw92HTtm9NKruaMHSY6Rmp5/1lKrS3z7sXmzrl0sNW0ijRxjtHGTY9k13fM+3zt2Sk+OcPwyfvSYUdMmlq6/ztLFF0u1auZta7cbWZbjwuDp7HajTZuztHRZhipVtOvq0/Zz682WEhKM+t5i6aIL89dauZKlV1+Shg4zysqS/t4qvfG20ZOPWXr2aUtvvm107rnSHQOk3/4wemWkUXKy9PJIo4lvyqPhwIcfsrTqL6O0NOmff6RvZ0m39Cl+f9nZRiPHOPqTpAb1HftwR0yM0SOPGe0/4LjvZ0mRUdJTT7g/hamfn6V7h1iKjjR6e7LjtV65Sho11uj/nnX+egIAAJSH7777LueziTHGaejq1DaeUNB+fMHxU4dDLqLQ0FAFBwc7XXfixIlif/kfHBys0NBQp+tiY2OVnZ2db7llWcrMzJQkxcfHO913UFCQwsPDnfYbHx+fs31RBQYGKiIiwum6hIQEZZz+l1pustlsioyMdLouMTFR6enpxerX399f0dHRTtclJycrNTW1WP1alqVKlSo5XZeamqrk5ORi9StJlStXdro8PT1diYmJxe63YsWK8vPzy7c8IyNDCQkJxe43KipKAQH5L5NnZWUrMSFRlixlpmdJkpKSktz+cjssLFS2QFu+5Xa7XfFxxa83OqKiVMD3hd50johLi1FiWqwqBAcpOMR5v/Fx8bJn24tcqyQFBgUqNMz5uScxIVFZmVkuerAUXiFaURUq5u3XC88RJ5/LDHv+Nn5+foqMcl5vSnKqYk/EFSuQYclSVEXn9aalpSs1JffcE+gXpKwKlrLd/B67vM4RaZmpSssu+jkzMjKigHNEluLji/9eDg8PU2BgYJ5lfpa/bFagUhKLd2539BuuoKAgp+u86RxxUkhIiKKiopyuK+hzhDtSTZLsARlOj3/3zhHOBQTaFB4e5nRdYmKSsjLc/3wS4BeksKBwhQdFefXnCMc5KCbPOago54iiiq4Y5XR5RkaGkpOcB/YC/YKUWUGFnoc88TnC2WfYgj9HZCkuLs6tfp2JiIjId46QHJ8jYmJiit2vr50jCvtdIz4uXmmZxTvWAgMDFRrmPAyYmJCkrKzinSNstgCFFXCOKOvPEe78zuUrv2uc+lmoOOcId0RGRTg9R2RmZCopqfB6C/ssxDnCwd1zxMljLikpya1+i3M9wh2euh5R0PuruAh3AYCbFv8qjX/daMDtUp+bJH9/ae486YuvjA4ezN/+/KbS9dda6tJZCgkp+IuIlBSjca8bDbnLUq1aZ0bg4s8VRiNHG8XF5y5rfan03AhLFSueGY/Rm9WqZWny29KKldLKVSbfcWU75dryr79Kw4YahYRY+YJdkvTb79Kkd42uuMyo+1WWmjTJbbP9H2nIvY4XuXp1qWuXvIGrhg0tvTa68Ne7RXNLw4Y6RsuSpB9+lJo2kXpeZ6nVJVJWtiOoVKWy0cnfTzZtlj77XBp0Z1GelcJVr2Zp0J2501q+P9WobVupbp3iHa/GOI75bdsdo/b9P3v3HeZU8TVw/DtJtvdCUXpZqmBDqVYERQERBSuigthQwIIg9g6KBTsv9i5WimBFf4qoFEFFytJ72d5Lknn/GHazIdllN5tlEzif5+EhuXMzd5K9mTvJnJx58H5FWNih68rO1oy/Q7N9u7kfGgKPPaLofqp5HWpq+DBFUTHMnGWe13ffQ0pbuOKyGlclhBBCCCECQLt27Xx+7LRp0xg9erTXsh49epCenu5TvRMnTmTSpEley84//3zWrVvnU72jRo3iqaee8lp21VVXsXjxYp/qHTx4MG+99ZbXsttuu405c+b4VG/v3r2ZO3eu17KHH36Y119/3ad627dvz5IlS7yWvfDCC0ybNs2nepOSkkhNTfVa9v777zNx4kSf6gUqnUxYsGAB1113nc/1rl+/3mtQyJ9//sngwYN9rnfx4sV07NjRY/u2zdu44gLf2/vSu89ycvcTPLZnZ+UwoMdFPtc79YVHuWTocK9lgdhHjBo7kutvu8Zr2XWX3sDmDVt9qvfiKy7krgfHey0bf8Nd/PXnKq9lhxJsfUSrti348Ou3vJa98fI7vDx9pk/1xifEsfCPL72Wzfv0a55+eIZP9ULw9RGzF7xPm3atPbZvXL+JYQOu9Lneme+/RLceJ7ltC7WGkZuZT88TT/O53hdefZ7zBw3wWlabPuLBx+5nxDVXAZ7ZpmrTR9x99908+eSTXstqM464auQV3H7/rV6z+tSmjzj7vDN4fMaDXssemvQoPy782ad6u/c8lQ8+fc9r2QP3P8h7b3/gU70p7dqycNHXXsuef3YGM5550ad667KP+H39Iq/bf/nhN6aMe8jneg/3OCI1NZXevXv7XO+cOXPo06ePx/aMjIxavZffeOMNhgwZ4rXMX33Ewbp3705GRqZP9d52+1jG3XGb2zarslJiL2bUZTexKXWzT/VWNY6YePO9ddJHBOI4Ihg/a9RVH7Hg9y+8Bo79/ddqbhkxwed6g62POBzjiIPVpo8I9O8j/J1BV4K7hBCiGoqLNa/NNFmDXp2p2b0b/l0NGze57xcdBecPgIEXKFq3ql4gxgsvab77Hn5drLnrdujfL3iDn4qLNTNf13z8iWub1QLXjzZLBvoSnCJ8o5SiZw/o2cPzNY+Ohm4nmyCfrl0UXoL7yy34xgQvzv4MjusMHTq4ytq3g6QkRXq6Zs8eEwh25hk1b+uFg00Q1LwD3zM897ymQ3tol+Jqe/t2ijGjXcFXb76tOelEs4Spvwy/BH5cZNpSXAyPPaF5+QXflme02RSjrlWc3kezcTO0annoOnJzNRPu0mzaXFYHPPqw8vo3rIkRV0JGJnz6mbn/6kxNSluzHKUQQgghRCCozpdd9b0MmhBCCCGOTqXOYq8BQqVeMqnVrN4Sj3pDrGEU2Wu3xFhBaS7ZRb4FWlWlsDSf7KJ0Wf6ujtidpZX+3YprseycQzsqrbfI7nt2LSEOVtZHeOOsxZKeRfZCj3pDrWE4nL5l/hTuNJrMQu/ZmGqztK3WzkrrLSitXkYmUT/qehzhTW36iKONBHcJIUQ17NkDIQcCYBITwG53D+yKj4dLhymGDoGoqOoHTPzvF83c+eZ2YaF7RqVg89dKzdSnNTt2uLY1agQP3a84rrMEkQSS5s0Uz00/9N+kpESzZm2FxzV3L7dYFBddGEpWtqbbSaWceopvAzClFBPGQeoGzbr1UFIK9z6gef01iIlxtfOy4TBvPmzbbjJj3feg5t03IT7eP+eXzaaYMhlGXa8pKYXV/8GHH8NVV/heZ0qKIiXl0PsVFGjumqRZv97ct1jgwfsUvXp6f24lJZqcXLO05aEopRh7E2zapFnxFzid8MDD5vU9pgZLxQohhBBC1IUffvjBL/sIUd/sztJKJzCKazF56tSOoJtwqazeEodvy9AIIYSoPruz1GswWm05DtQbFRKLVVn9Vq/Wunz5s6M5mN+pnZX+3ZxO35aUAnO9r6xeh9O3ZeeE8MZRVd9Ti/e2w2n3Gggr/ENrJzlFGV6XsK1NAKgTXWkgT2Gp78u/i7pX1+MIr47i639NSXCXEEJUQ4sWivfegh9+BFsI9O4J69Zrdu2Ga642QV3h4TULkkhL10x9ynXBGnAunHVm8AVa5OZqXn5NM3ee+/bTT4NJExWxMcH3nIQRGqqY/SGs+MsEMzZv5rnPhHFmLeusrKxajb/CwhSPPATXXa/Jy4Ndu+DxqZrHHzHBSQA5OZBW4fNAZqbZZ+rjrn1qq1VLxehRrgxhr7+p6dUDWreuu/O4uFhz9z2af1eb+0rBlEmKM8/wPKbdrlmwEN58R9OqJUyfVr122WyKhx6AUWM0+/aZ13LK/ZpXXqRay0UKIYQQQtSVJk2a+GUfIepbsGXcqMsJF2/1KhSljtpluRFCCBEAlKLYXuQWyKu17xl0iuyFZBbuByCvMN8twMCpfQ9qctQiIEqIQJBbnO01YD6ryPvSttWVX5JbaSC+ODpptNegm1oFgGrvdZp6S32vV4ijnNJ+DoXPzPRtPUxxeCiliI+PB8om4iUSUhhybtTcrt2a0NDqZc45mNaayfdqfj2wJO8xjeGt11WNsn4dLlWdGz//onnmOU16he9tY2Lg1psVA87zX8CNCEx10W/8ulgzaYqrnptvVFxxmes8Wrdec+t4TUGFH6jfeovi0mH+O9ccDs3YcZp//jX3U9rCqy+pQwZBbduumf6s5o7xiubNq9ee4mLTF/y51LVt4p2KwQO9P37nTs0VIzSOA9+ZvTRDcXzX6j/3tWs1N99qMpMBDBkMd95uqfbjq0uuKaIycm6Iysi5ISoj50bdSkhIqO8miBpKTU31+bFRUVFERER4LUtPT/f5/RUREUFUVJTXsszMTBwOz8lVpRRxcXEAZGdnez12WFgYMTExXuvNzs6mtNS3SYHQ0FBiY2O9luXk5FBS4p5dKqsog9yiDEoOsfyWzWYjJjbaa1l+XoFHvdVlsViIi/fe3sKCQoqKiokMicXpdOLUpYdsZxmFIj4xzmtZUVExhQW+B44lJMZ7bAu1hhOuYrDZQ32uNzExEYvF8/NLSUkJOTk5PtcbHx+PzWZ+A51ZmEZ2UToljiLsdge5ObkoFNHR5m+bl5fnNbOBN9HRUYSEeqZodzqdZGf53t6G8Y1Jim1IbLhnH56W5vtkrb/7iLL3jiUUIiK915udlYPTx2WVQkNDiYr2vixcbk5eeSagSh9vCSMmPJH48ESPemvSR1RXSEhIeb/n0d7cXIqLK3/vVtUPeesjlFLExMRQkF9I2v60ap+zbnXUoI+o7LWsTHJystftxcXF5Obm1ritZQ7VR1S3Pz9YTGwMNptnpqqyPsJX3vqIqNA47HY7GRlpNW5neR3RkYSGeu9rMzOyfKoTzPs4PDyMqNC4A9cce/m5lZmR5XPWjYjICJIbJAGQn1/g1tdkZ2XjdNS8jwixhmELsREeFeo1uKA6fUSldYfYiI7xfr3Py82jtLT69Va8fjstjnobR1S3jRXPycM9jgDzXs7P8561tDr9kD/GEd7GsBXHERXZ7XaysrLctpl+KBOq0S9Hx0RXPo7IzK5We72Jio4iNMx7H5GXVYCjhmPKMmV9hDdZGdk+XYsAwsPDPMYRZf1QRmYaRaW+nWu1HUdUpqyPiAqJJSYs3m28Vh/jiIpjWK+PLclCRTi89pXV6SMq488+4uB+yJc+ojri4mO99hGlJaXk5VX945eq+qCa9BE1ERsb6/V673Q6ycjwHgRanbFQXY8jvLbrQB+hUMTHxBMbkYTNXr0Mfb58H1Ed/vo+IqU6S/vUgAR3HWXki3FRGTk3KpeVpfn5F7hwkP+CR37+RTPlPvMaKwUvPl+zAI3Dydu5sXGT5qVX3ANSAPqeBeNuVSQmBuZzEf5VV/3Gy685+eBDc9tqgelPKbqd7DqntmzVfL1A88FH5r7NZoKcOnfy33m3fYfmmlGass9EgwfBxDsqD4JyODS33Gayb4WGwuS7Ff36Vt2ekhLNlPs1S353bRt3q2LYxVU/burTzvJMeSccDy88p2oUSPn1As3jU11/q2lPVL78o6/kmiIqI+eGqIycG6Iycm7ULQnuCj5HyvduwfTerhjsE6jKJrgcum6W0PCHUGs4ceFJJER4D+oIFN7+3mWBMmAmz+r7fI0KjSPUEobN6jnhGyisykphaQGF9ryAPSe9TboGqpr2Q4f7nA3m93egCYb+3N9trIvzNRheRwiOdgZDG+Hw9UO1HcMGej8ULH/vYGhnIIzXFIroGBP0kpeb7xFgFwzjNQiOv7eMhfxDKUVCbCLxEcnY7OH13Ry/8Pf3brIsoxBCVCEtzcnd98C69bB7t+aG62sWROFNfr7mueddg6iLLyJgA7sqcjo1S37XfPKp0yOoq2EDuH2Cok+vwH8eIvCNGaX47z/NylXgcMIDD2n+7zU49hhzfrVsoRgzGv7512TXstvhnvs0776piY31TxaqZk0V426FaU+b9+qcudC5k+aCAd7P8Y9nU76sotbQpnXV9dvtmgcecg/suvnGQwd2gVkKduE3mtJSWLkKli6DU0+p1tMC4PwBiqXLNd99b+4/MU3zzhuQkCDvXyGEEEIIIUTdCLGEYlWemW+Eb4rshThLc33OglHXQq1hOHzMyHXYeFlaLhBZlZUSuyxpKoQQVTlc4wytdXlGp/oO9haBr77Ha0op7DaTISu/uMDjnA2K8ZoQwo0EdwkhRCWKijSXXQVFBwKYP/gIzj4L2tUyg+L/vaHZf+B7owbJcP2owA6oKCjQLPimiPc/KGTzFveBntUCF10E118XmEtKiuBksykefgBG36DZtx+yc2DyvZpXX4SICFW+z4P3w6gxmtwcOK03TJwMT0/VREf751wcdAH88w8s+Mbcn/a0pkEynHqKe/1btmpmve76YDT6OkXrVpW3obhY89Cjml8Wu7ZdP8p9+cmqNGqoGDJYM/szc3/mLM0p3Wq2DOrt4xSr/tbs2weZmTD1ac0Tj8pSqkIIIYQQQog6EgSBNMEWRKPRAfur+xBr9ZZRqW/1PelaHTLxKoQQ1XCYxhkKhd1mrr15hZ6ZkKoSbOMM4R/1OV5TShGmTeawEkeRR3BXsIzXhBAuEtwlhBCV+GquK7AL4O67oF1K7QIf1qzVfPa56/74cYEZFFVYqPnjT/jfL5rFSyA/3309aasFzjgDRl2jaNEi8Novgl9iouLxR+HmWzUlJbBxIzw+VfPwA64ApEYNFY8/Ar/9pvnwY5Pla9IUzfRpEBZW+/NSKcUdE2DjZs369eBwwJT7NM88DV2OM/Xb7ZrHntSUHFheu3MnuGx45XVmZ2smTTEZx8pcczWMHFGz9o64UjF3vqaoCNaug//9CmecVv3Hx8Qo7p0M427XaA2/LoZ582HQwBo1QwghhBBCCCGqLdADaSSI5ugUyEFyEBwTr5KZTwgRCA7HOONQmZCqIuMMIY5cMhYSh4sEdwkhRCU2bnQNzK+4DC4YUPvl3tatA4vFBIn06Q2n96l1lX5ht2tW/wcr/oK//9Gs+htKSjz3i4mBwQNh6EWKRg0lqEvUrQ7tFZPugocfM+/FRT/Bwh4w4DzXPl27KPbsAYfT7JOWDjk50KCBf9oQHq546gm4caxm924oLIIJd2oeexi6n6r48GNYs8bsGxoKUyYprFbv742dOzV33K3ZscO1bcRVMOramr+XEhMVwy7WvPu+uT/rdU2fXlR6bG9OOlFx6TDNR5+Y+zNe1Jx0EjQ5Vt7bQgghhAgee/bsITs7m9zc3BovjXLKKTVY21oI4ReBHEgTDEE0QgQkycwnhAgQdT3OOFQmpKrIOEOII5iMhcRhIsFdQghRiXsmWbh0uGb+15oxo/0T7DDkQkXXLvDiK5oJ41S9LoG2f79ZFu6PPzV/rYSCgsr3bdPaylVXhHNan0LCww9bE4Wgfz/F+lQTgDTgXDinr/d9snNgwTea6VMVDgd8/4PmnL7+eX8lJSmeeQrGjtOkp5uMfndN0lx0oearua79xoxWNG/u/Zi/LdE8/qQmK9vct1hg/G2KoUN8b+Pllym++FKTlw+bt8B3P8B5/WtWx5jRiqXLNBs3mcC1J6ZqZjwLFosEeAkhhBAiMNntdubNm8fcuXNZtWqVR5bh6lJK8d9///m5dUIIIcTRSTLzCSGEEOJoJmMhcThIcJcQQhxkfaouX36xTWvFbWP9G+TQurXimafqJ3AiLV3z7Xfw8/9Mpq6qtG8Hp/VRnHG64sQT4lBKkZVVs1+jCOEPN92gaJcC/c6h0oDIYRcrhgyG7Gy4dYJm+3YoLIRBA2v+XrPbNctXmPdAfLx5fLOmildehKtGmmUinU747AvXY7p2gWEXe9a1eYvmzbc1Py5ybQsPh4fuV/TuVbt+IDZGccXlMHOWeU/Oel1z9pkQGlr9ekNDFffeA9ffqLHbYeUq+PQzGD6sVk0TQgghhKgTq1atYsKECezevRtAPpsIIYQQAUQy8wkhhBDiaCZjIVHXJLhLCCEqWLpMM+FOTb9zNBNuU8TGHhnZa3bv1rz1rgnsKi31vk/TpnBKNzjpBEWXLpCcZJ67UvWbYUwIq1XRv5/ndrtdY7O5zs2QEMUrM51s327uT31ak5OrueKy6p3DqRs0X36l+elnyM6B28crhg5xlR97jCKlrffAyJwceOMtzd69mjatwe5Q/LnUZMWrKDkZnnxU0aGDf95Twy6Gzz6H9AxQCnbthpYtalZHSlvFtSPh/143k6Ov/p+m+6nQooW874UQQggROH777TduuOEG7HY7Wmu38V3F2xUDvg4eA0owWGBxOBxoreXvIoQQQgghhBBCCHEIEtwlhBAH5OZqnphqvlT+7nuIitTceXvtgxv+WqlJTjaZfw63ggLNu+9rPv4ESg4K6rLZoNvJJjtX91OgcWMJ5BDBw27XTJqiad1ac+P1qnwZwdvHKXbu1Py72uz3ymvw51LNs097X2rQ4dD8uhhmf6ZZucq97MdF2mPZxD69FQ0bapYug7w81/YtW2HLuxX39JygGnQB3HyjIibGf++1iAjFTTdCbi5cOKhmWbsquvJy+HUxrFkLJSXw6JOaV17ALXhOCCGEEKK+pKWlcfvtt1NaWloesJWYmMjpp59OVFQU7733HmCCucaOHUteXh779u1j5cqV7Nq1q7wsKSmJ4cOHY7Va6+25CBetNYWlBWQVpgfs0hVWZaXEXlzfzRBCCCGEEEIIIcRRToK7hBDigNdmafbtN7ejouDakbWvMy9P8+AjmtwcuHoEXHGZ78EXNaG1ZuE38MprmoxM97ITTzBL1fXqAdHRErghgo/Wmhkvan7/A37/A7Zs1kx9wkzYRUUppk+DseM0qRvM/stXwG0TNC8858rekJOrmTcfPv9Cs2ev5zGOOQa6dMEjK8SIKxVg7n/znZPZn8GWLVBURabd4zrDuFuhYweLf16Ag5zXv/bvY5tNce9kuPZ6s+zkmjXwwUdw9VV+aKAQQgghRC29/fbbZGVllY/Lhg4dyv333094eDg7d+4sD+4CGDt2rNtjlyxZwjPPPMM///xDRkYGy5cv55VXXiEqKuqwPgfhXZE9n5ziDJzaWd9N8SrUGobDGZhtE0IIIYQQQgghxNFDgruEEALYsFEzZ67rfn4+vPeBCciojZmzNOnp5vacuZrhlyhCQ2tX56FkZ2umPq353y/u27scB7fcpDiuswR0ieDmcOAWtNi9u/uyi1FRiuema664GrKzzbaVq+DpZzS9e2l+WWyy8x0ckBUSAn3PhosuVHTq6LmMz8HO7Wfh3H5QWGgCzRYv0az4C/btc9/v39XwxFS4dqTmjNO9ZxALBC1aKG64Hl54yWRNeOMtTc8eZtlGIYQQQoj6NHv27PKxWffu3Xn88cer/diePXvy4Ycfct999/HFF1+wdOlSbrvtNl5//fU6aevq1av55ZdfWLZsGampqaSnpxMSEkLDhg058cQTueSSS+jWrVudHDtYaTQljip+LVGPQqxh9d0EIYQQQgghhBBCCAnuEkKIsixAB/8Y94LzaxfQsPo/zRdfue5PGKeIjKzbIInlKzSPPq7Zn+ba1rgR3HSj4uwzDx2sIkQwsNkUDz8A774P/67WXHShe/nq/0yw1cgR8NY7kJNjtn811/w7WGICDLlQMWQwJCZ6vkfsds3b72r69VU0b+5ZHhGhOOtMOOtMU7Zzp+aj2Zr5X5slDgE2bYb7HtS0bgXXjIQz6yjIy27XrF2nWfQTFBZBRgY4HWC1QsOG0LSpostxkNIWrFbP4w+7GH751QTD2e3w6BOa/3vl8GQcFEIIIYTwZuPGjWRlZQHm88yECRNqXIfNZuOxxx5j+/btLFu2jN9++43Zs2czbNgwv7b1qquuYunSpR7bS0tL2bJlC1u2bOGLL77gwgsv5NFHHyW0rn/5I4QQQgghhBBCCCGOCBLcJYQ46v3vF1jxl7lts8HFF0F2DrRt43swg92umTZdo00CHE7rA6f1qbvgCKdT89Y78ObbrmMCXDoMxoxWhIVJYIY4slgsipEjwOn0DJJathzefPvQdXRoD8MuNoFZlQUv7dlrAiZXroK58zUvPQ9NmlT9fmrSRHHHeMV1IzWzP9N89oXJBggmyOv+BzWtWsIVl5sgr4iI2r0/UzeYYLa/Vpp2lgWUeWc6iIQE6H+O5sLBiubNXMe3WBST74ZrrtMUFsHGjfDyq5rxt0kfIoQQQoj6sWbNmvLbycnJHH/88T7VY7FYmDhxIsOHDwfgww8/9Htw1969Zr3vhg0bct5559GtWzeOOeYYnE4nK1eu5I033mDv3r189dVXOBwOpk+f7tfjCyGEEEIIIYQQQogjkwR3CSGOasXFmhdfdkVDDbsYbrnJUut6P/nUBEUARERQp4ERBQWax5/U/PQ/17bEBJgyWdH9VAnIEEc2b9mvtm3XXvZ0SWkLO3bC2WdB/36eGe2cTs2GjfDDj5rZn7mCpdLS4NPPNeNurd77KiFBMWa04rJLNbM/1cz+FPIOBHlt3gKPPaF55jk460zNuf1MRq1DZcjSWnu096u5mi+/quQBlcjMhI9nw+zPNOf114y+TtGwoam3ybGKW8fCtKfN6/jp59DlOE3fs6U/EUIIIcThVzFrV7t27TzKDx4bFRcXExbmfSm9rl270qRJE3bu3MmaNWvYvn07zZo181tbW7duzYQJEzj33HOxWq1uZSeccAKDBw/m8ssvZ8uWLcybN4/LL79clmgUQgghhBBCCCGEEIckwV1CiKPax7Nh9x5zOyEBRo6offDC7t2aN95yBZeMGa1o1LBugiJ279ZMuleXB5IBdD8V7p2sSEiQQAxxdDqnr6JhQ01uLtisEBuraNQIQkM033xnArsKC+HlVyE/X3P1VTDiWk1kBDgcsGevKa/IaoEbxiguv7Tm7YmNUYy6VjH8EhMs9slsXR7kVVgIXy+ArxdoQkOhfTvNsEsUZ5/p/v598WUna9aa5RVnPOtedtKJii+/8h7QdvFF0LuXorgY9u6Ddes0y1fAvv2m3OmErxfCop81118HFw81yzUOugD+WgnffW/2e/IpTUpbvC5LKYQQQghRl/Ly8spvx8fHe5SHh4e73c/Pz680uAsgJSWFnTt3ArB27Vq/Bne99tprVZYnJiYyadIkbrzxRgAWLlwowV1CCCGEEEIIIYQQ4pAkuEsIcdTKzNS8+54rIOKG0Yro6NoFLmiteeZ5TVGRud++HQwdUqsqK7Xqb82U+zRZ2a5tV1xunofVKgEY4ujVs7uiZ3dv7wFFt26a+x7Q7NhhsuoNukCx+j/Ytavy+rocB7eNVXTsULv3VUyM4rprTIbAeV/Dwm80Gze5yktK4J9/4fzzPB87Zx4UFJilY4uLtdtSqyceD4MGwoknKE48HubM0+XLUn7zHVx5OeVZuUDhdJrlGz/6RPPbErO1sBBmvKRp0ULR/VSTAeOu2yE1VbNlqymfcr9m5iu1X0ZSCCGEEKImqgrUAoiOjna7v2/fPhITEyvdPyYmpvz2/v37a9c4H5x66qnlt7dv337Yjy+EEEIIIYQQQgghgk/t1x4TQogg9c57msIDQViJidCje9VLuVXHop9hye/mtsUCE++sm0Crr+ZqbpvgCuwKDYH77lHcfINFAruEqEJCvOK56YoRV8EtNyoaN1asXOW5X4NkGHAuPPGo4uUXah/YVVFMjOLySxVvva548/8Ulw6Dli1c5a1bez4m/MCcpt2OW0AYmOUf777TQv9zFA0aKK66QlGWgCIvD56YpnE6Xf2bxaI46UTFtCcsvPyCok0bs33Aubgt5RoZqXj0YUXEgWQYm7fAtOkarWvfVwohhBBCVFdcXFz57YpZvMqEhoa6BWxt2rTJY5+KypZ5rKy+ulZaWlp+++AlJYUQQgghhBBCCCGE8EYydwkhjkp79mq+nOO6n5EBwy+HJx7TbsENNeFwaGb+nyvoYdjF0L6df7+st9s1M17UfP6la1tysglA8WfwiRBHMptNccNo1/tl5AiTwSsnFxYs1GzdCmNvVrRoUbfvKaUUKSmQkqK49RbIytJs2Aht23jue8MYRVwcdOkMcXFVtyssTHHvZLh5rMbhhKXL4LMvTJ90sK5dFK+/Bl98BRcM8Cxv2UJx153w8KOmb/vue2jRHK652pdnLIQQQghRcy1auKLgd+zY4XWftm3b8tdffwHw559/cv7553vdr7S0lL///rv8flRUlB9bWj1Lly4tv93aW1S/EEIIIYQQQgghhBAHkeAuIcRR6a23NRV+MA2A1QadOvpep9WqeHoqPD5Vs2cvjLrWv4Ehe/ZqHnpE88+/rm0dO8ITjyiSkyWwSwhfWa2KBg0gNFQzbz7k5cOfSzUvPG+Cnw6X+HhFt5O9l10woGbt6NxJMeIqzVvvmPsvvqxplwLHd/Wsx2ZTXgO/ios1Py6C886FNWtg9mdm+6w3NMc0hnP7S78jhBBCiLrXtm1blFJordm6dSslJSWEhoa67XPCCSfw119/obXm66+/Zvz48cTHx3vU9dFHH5Gd7VrX/nAHVzmdTmbOnFl+f8AAL9H1h3CkZPuq+DyUUgH7vBSgMG0L1DZCcLQzmNtY2e36EsyvZSAJhjaCb+083OdsMLyWwdBGCI52+ruNdXG+BsPrCMHRzmBoIxy+dtbmfA2G1zIY2gjB0c5AaOOhztdAaGN1BEM7pY3+EWifuwKRBHcJIY4627Zpvl7ouj9mtFlKsWMHs1xabTRtqnjhOdiz1yxp5g9aa775Dp5/QZOb69p+bn+YeIciLEwucEL4w7LlUFBobjdvXrtgz8PF4dBYLN4Hutdcrfhzqea/NeBwwL0PaGa9Bo0aHrrPsNs1Dz6i+eVXWLcebrkJdux0LTv72JOakFA4+0zpf4QQQghRt+Li4khJSWH9+vU4HA6WLVtGr1693PYZMGAAb775JkopcnNzufHGG5k+fTpNmjQp32f27NlMnTq1PFAsPDycE0888bA+l7feeqs8c1i/fv3o0qVLjevwFrQWrOx2OwCRkZFEElHPrfHOSghO7cTusBFtO/yZ3qorGNp5pLQxPibhMLfK05HyWta3YGgj1L6dh+OcDYbXMhjaCMHRzrpso7/O12B4HSE42hkMbYT6aWdNz9dgeC2DoY0QHO0MtDZ6O18DrY2VCYZ2Shv9ycw5RUdHY7NJKNPB5BURQhx1Zr2pcTrN7V494OqrLFx9FZSW6qofWE1Wq6LJsX6pio2bNC++rFm6zLXNZoObb1AMu0Qil4Xwp75nK1q2hFdnaoYMVths7u+vvfs0UZEQHX3433d79miioz2P/eHH8N77mjZtNH16Ky6/1FVusykefwRGjdGkZ0BmJvzxJwweeOjjfTUXfvnV3P70c+jeXfHgfXDrBM369eB0wkOPaOyl0L+f9ENCCCGEqFu9e/dm/fr1ACxatMgjuKtr165069aN5cuXA7By5Ur69etHmzZtiI6OZuvWrWRmZqK1+cynlGLYsGGEh4cftufw559/Mn36dACSkpJ48MEHD9uxA1m4LYr4wIzrMrRCOzVO7cRqs9R3ayoXDO2UNvpPMLRT2ug/wdBOaaP/BEM7pY3+EwztDIY2QnC0U9roP8HQTmmj/wRDO6WNfhUe0MFn9UuCu4QQR5X1qWaZsTLXj3IFJYSE+BagsHOnpkkT/wY3rE/VfPix5vsfQFeIOWvaBB64T9GxgwRTCFEX2rRWPPWk9/fXc89r/loFwy7WDLtEEVvLTH/VsepvzXsfaH7/A8berLh0mHt5cbEmLx9W/Q3Nm2vKftVQJjlZ8dgjcOt4zfWjFIMHVq/NFw6CNWth4Tdw9VXQs7t53LNPwW23azZuNNnAHn5Mk5UNwy6WYFMhhBBC1J2yzFxaa+bMmcOdd95JWFiY2z73338/l19+OQUFBSilcDqdpKamlmfqAspvN2/enHHjxh229qempjJ27FjsdjuhoaE899xzJCcn+1RXVlaWfxtXT5RSREdHExESiaPYWf43Cmj2+m5ANQVDO4OsjWXnK0BeXl5gna9B9loGrGBoI1S7nfV6zgbDaxkMbYTgaKcf2ljn52swvI4QHO0MhjZCnbbTb+drMLyWwdBGCI521lMba3S+BsPrCMHRTmmjzw4+Z48E/s6+LsFdQoijysxZrsFL37MhJaV2wQg//qR56GHNVVdqrrla+Rwglpmp2bAR1q6Dn37WrFvvXm61wKWXwqhrZBlGIerDho2aXxab22+9A/36QmxM3R93127XUohfzdEMPyhjn8Ph2rf/Od77huM6K957G5ocW/2+w2ZT3HM39O4JZ57h2h4Xp3juabj9Lk3qBrNtxouajZvg9nFI/ySEEEKIOtG1a1deeOEFnAdSMBcUFHgEd7Vr147XXnuN8ePHk5aWBrjGTWVBXVpr2rdvz6uvvkpU1OH5Jej27du57rrryM7Oxmq18swzz3Dqqaf6XF9ABZXUktVqre8mCFFtsiSICDZyzopgIuerCCZyvopgIuerCDYVz9kj6fsPf5F3tBDiqGG3axokm0App3YPWPDF3n2ap5/ROJzw9rum/uO7ws5dsD9Nk7Yf0jPAbjdLmDkc5n+nExxl9x2Qn2/2q8zpp8GN1yuaN5egCSHqS34+tGwJW7bA2Wfh8X50OjUWi+/vUYdDs/o/6NrFvY6zz4QZL5rjN2sGeXkQUyGobMxoC5cM1fy3Fo7v6l6n1ponpmouOF9xfFfPtq36W/P7n5qrr1RERHiWWyyKs870bGtUFDw3HabcDytXmW3zv4Z16zQP3AetWkpfJYQQQgj/69ev3yH36datGwsXLuTDDz/kxx9/ZOvWreTk5BAXF0eHDh0YMGAAF1100WELKtq7dy/XXnst+/btQynF448/Xq3nIYQQQgghhBBCCCFERUr7OeQtMzPTn9UJP1NKlad/y8rKkohHUe5oOjfWr3dy01goLoGTToSHH1DEx9csGMFu19w6XvPPv+a+zWaCuPwlLAzOOhMuv1TRpnX9BkocTeeGqJmj7dxwOjX/+wVatYQWLdzflx99ovlxkeb88xRnnAEJNehTXn/Tydz5kJYGH7zjGci55A9N61bQqGHN+oJ58zVPPqWxWuCmG82SjmXZKxwOzagxJmNgUiKcPwD69VW0alX18orFxZrJ92qSk02mrudfhLnzXOWhoXD1VYorLlM0apQAHB3nhqi+o63fENUn54aojJwbdSshIaG+m3DEysjIYMSIEWzYYNKd3n///Vx55ZW1rvdI+d5N3tsimMj5KoKNnLMimMj5KoKJnK8imMj5KoLNkXjO+vt7N8ncJYQ46qxYqSguMReEjEyIja3Z451OzZT7XIFdUPvArqgoaNvG/OvcWdGnF0RGSvYbIQKJxaK8ZvzTWvPlHM2OHfDfGs2xxypOPcVVXlqq2bIVSkrMe73lQYFhu3abwC6Ar+Zpbr3Zvbxn95r3BQ6H5oOPTD/ncMK69Rpw1fPzL7Bho7mdngHvvg/vvq+Jj4fjOptgsoQERUQ4NGoEp3RTlJRo7r5Hs2y5eVxhAYwZDW1awSszobjYPMdZb2jmztfcdXsx550bWuO2CyGEEEIEu9zcXEaPHl0e2HXHHXf4JbBLCCGEEEIIIYQQQhydJLhLCHHU6dUDNm+Bb76FKy9T1V5KzenU/Pw/eO4FTXq6Z3lEBHTsAK1bQ8MGiuRkSE4ymWwsFvPPagGLtcJti8nSlZxcdbYcIUTg2rYN9u0ztyMj4YTj3cv37YdrR5tAq149YdoT7u/1fn0V33xrsmElJfqnH7BaFTOegwcfNsedPFG59TFnnQEP3Kd4daZm717X47Ky4NfF5h+Yx558kgnuCgmBpk0pD+5a9LP5Bwf6NKtZbhZg71648+48npimOK+/ZtS1itBQ6eOEEEIIceQrLCxkzJgxrF69GoAbb7yRMWPG1HOrhBBCCCGEEEIIIUQwk+AuIcQRb81aTXISNGhgAguaN1dMnqgYfa3JUlMd//yrefZ5zfpU9+0WC5zWB/qfo+jRHcLCJHhBiKNNixaKLz+DH3+E3Dw8gpgK8l23d+70fHy3k2HGs4rju5qgLH9JTlI8Nx2KijzbpJSiX184+0z4cxl8+51mxQqTxetg4eGux9w+Dhx2zdz57vs4nd7bkJ6uef9D+HqhZtAFmtP7KFJS4PkXNNt3QIsWJpNZq5bQqhXExkgfKoQQQojgVVJSwtixY1mxYgUAV199NRMmTKjnVgkhhBBCBC6tNfYDy2IcCcsvCSGEEELUFQnuEkIc0ex2zcOPmcw0F1+kGTlCER1tggfKgr2qkpmleeU1zdcLPMsaNYTXXoHkJIu/my2ECDKxMYohF3ovUxZo385k8fO2vLbNpjjpxLppl82miI723L7iL02X4yAkRNGzu1n6UWvNjp2wYQNs2Qp5+ZqiQmjTxtVXWiyKu+6A1A2ateuq347MTHjnPXjnPU1srAkGy8uDpcugLEMYQFKipk0b6NpF0bULdO4kQbNCCCGECB533HEHv/76KwA9evTgkksuYf369ZXuHxISQqtWrQ5X84QQQggh/KO00PzzA6VAW0rM7cI8/BbfFRJh/gkhhBBCHCEkuEsIcURb+A1s325uz18A11xdvcdprfnmO5NdJjfXs7x5M3j1JUVsrAQdCCGq1raN4vWZgdNXfPeD5pHHND17wCMPurJ6KaVo1hSaNS3b03ubLRbFqy+ZJR9/+p9r+5jRcOYZipwcyMlR5OSG8+viUlavLmV/mmu/nJzK25aeYf79udR8k2ezwUszoHOnwHn9hBBCCCEq8+2335bf/v333xk8eHCV+zdp0oQff/yxrpslhBBCCOFfpYWowkwq/mDPVwpQFJvbFdPf17JWDRLcJYQQQogjigR3CSGOaC1aQJfj4J9/4bTeEBZ26Mfk5Gieekaz6Cf37ZERUFBoMvBMnyaBXUKI4LNpkwnscjph8W8wc5Zm7M0178tsNsUD90HRvZrf/zDbZs6ChHgYNFChlCI+PoLLL40gPT2T337X/PKrZuky2Lev+sex2+GuuzWxsZqICBPsZbFAVhYkJUFUFNisEBIKYaGmjw8Lh/g4RUICJCVCchI0aQKRkdJnCyGEEEeCoqIi5s+fz++//86aNWtIT08nNzcXh8NRo3qUUvz333911EohhBBCiCOdRtmLa12LUmDVoea2o9gf8WJoWzUmAYQQQgghgowEdwkhjmhdjlO8/AJ89InmpVdg6XLNVVfA0CHeJ/mXLtM89qQmrUKWmWbN4I7xJlBg1uuae+9RREVJkIAQIvi0bq245mp44y1NSlu4+irf+7KQEMVjD8Odd2v+Wmm2TZuuCY+A/ue46rVaFX16QZ9eZunHbdtg2XJYsVLz72pIT6/6ODm55t/Bdu6q6lGe3wQ2aqQ5rhN07qzochy0SzFtE0IIIUTw+Oijj5g+fTp5eXmAybgcSNatq8G61UIIIYQQQgghhBBCVJMEdwkhjnhKKf7+x3zpv28fpG7QHLzcWHGx5tWZmtmfuT/2kqFw0w2KsDCz/xOPSSCAECK4XXeNIikJzjydWmcgDAtTTH0cJtypWf0faA2PPqaJCNcMGui5v1KKFi1MVsWLh5pjFxRotu+AbdvNMrrbd2i2bzfBW96WxfXV3r3m3w+LzPUgPh569dSc1ltxSjcID5f+XQghhAhkjz76KO+//355QJdSJlso1CzISykVcEFhQgghhBBCCCGEEEJURYK7hBBBT2vN5s3w3xrYsFGzazekpUObVjBlsgWtNcd3VaxZazJybdwId0x0EhoKVitkZMDadVBS4l7vsIth3K2W+nlSQghRhy4c5L9ApshIxVNTYdwETeoGcDjhvgedJCSU0Kd3aLUe376dWfLWcLXN6dTk50NuHhQVgt0Bf/xploL8bw2UlnqvMzoaGjeC2BjIzoEdO6H4oJUCsrLg6wXw9QKz5OPZZ2nOP0/RtQvlE8VCCCGECAxz587lvffeA1zBWVprQkJCaN68ObGxsdhs8hWXEEIIIYQQQgghRDDSWmO328tvC0/yzZcQIijl52v+WGom+f/4E7dlFMuEHOjhlFJcNhwuvgieeU4zd371jrFps//aK4QQgW7V35p339c8eJ8iOrpmwU2xMYpnnoZbx2m2bDVBV+Nuz+W1l2Np28b3NlksipgYiIlxbWuXohhxJRQVaZYth//9qvntN8jKdu2Tlwcb8uCh+xV9z1Y4HKZd/66G1avN4/btd+1fWAjzv4b5X2uaNoGhQ2DgBSbwTAghhBD1b8aMGYArsKtz587cdttt9O7dW4K6hBBCCCGEEEIIIQ6ltND8C1BKgbaUQGhkfTclYMk3YEKIoLJ1q+aDjzXf/+CZheVg69ebYIXju5rJ+ZAQRYMGAJVH+8bGQO/e0LOH4vQ+/mu3EEIEsn9Xa+68W1NYCDffqnlqKjRqWLPApoR4xXPT4ebbNLt2QVER3HxrLs9NV3Ts4P82h4cr+vSGPr1N8NY//5olFxctMoFeERHQu5fZ12pVtGkNLVto2rZRTJqo2bBR8cuvmv/9Ahs3uerdsRNmvKR58x0YOkRzyVBFQoIEeQkhhBD1Zf369Wzfvr08s+aZZ57JSy+9hNVqreeWCSGEEEIIIYQQQgSJ0kJUYSZVzZPXJ/OtT9nk/6FXhTkaSXCXECKo5OaZ7CoHS0iAk04EhwN++tls0we2V3TB+RqnEz76xAQelGnTGqZMhnYpsgyjEOLos3GTyV4FUFgEoSG+1ZOcrHh+Otxym2bffpNl8fa7NC88p2jbpu4CpKxWxQnHwwnHK8aN1fy5FPbtMwFgFf3+B9x9j6Z9Oxh1LVx3jWLUtYr1qZqvF2i+/R5ycsy+ubnw9rvw8WzNZcM1V1ymJJOXEEIIUQ9Wr14NmJT8NpuNhx9+WAK7hAhWAf5LcQBCIsw/IYQQQgghhDjiaJT9ENlT6olSoIgK0NCzwCDBXUKIoHJcZ0WvnprflkD7dnD6aYoe3SGlLWRnwxVXu7r8IYOh4godmVmaF15yBX8BWK1mcv/Ky8Fmk0l7IcTR6cJBiuhoeOElzfSptctUdcwxiuefVYwdp0lP1+TmwuQpmg/eNRkU65rNpujV03vZl3PMNWLdepg4WXPC8TDxTrPUY7sUxc03mgCvDz/SbN1mHlNUBG+9A3PmakZdBxcMkOuFEEIIcThlZGQAZknGLl260LBhw3pukRDCZwH+S3FQpmXBENwlgXIi0Mg5KYQQQgghRJ2S4C4hRMD6d7UmNw96dnefRB97s+K6a6BDe/ftL77sJDfX3G7WDHbthitGaAZeoOnYHl79P8jMdO3frBk8MEXRoYNM0gshRN+zFH16QViYZ5+4d5+u0TKNzZspZr0Ww8jrcrDbNffeow5LYFdVnE7NscdARLjJTgawchVcM0pz4/Uw7BIIDVUMPB/OPw8W/wZvv6tZu87sm5EJT03XfDIbbrgeTutD+fJQQgghhKg7FbN0HXvssfXYEiGEfwTuL8W1Lay+m1B9EignAo2ck0IIIYQQQtQpCe4SQgQcu10z6w3N+x9CXBy8/zbExbkm0Js385xMX7pM8813rvvDhsIzz5vbX34FXx60/8UXwY1jFBERMjEvhBBlvAV2/fqb5t77NcOHaa66XBEbW71+s12KjZmvxJKbm0vHDv5uac1ZLIoJ4xTXjNS8/4Hmsy+gtBRKSmDGS5ply+GeSRAfr7BYFKf1gd694MdF8OpMzZ69pp6t2+Ce+zTdT4W77oDGjeQ6IoQQQtSlxo0bl98uLS2tx5YIIUSgkUA5EWjknBRCCCGEEKKuSHCXECKg7N+vuf8hzT//mvtZWTBzluauOyqfPM/N1Ux9yvWrsAHnQteuipS2mtQN7vs2agT33K04+SSZjBdCiEMpKtI8P0Njt8MHH0J0FFx9VfUf3+U4G1lZCq0D55e7CfGKsTcrzh+geWKqZs1as/233+G6MZqpj0FKirlGWCyKc/qaLF2ffQHvvKfJyzP7//EnjLhGc+MYuOhCs68QQggh/K9DB1eU+Pbt2+uxJYEhLS3N58dGRUUREeE9Y0l6errPY7aIiAiioqK8lmVmZuJwODy2K6XKg/Wys7O9HjssLIyYmBiv9WZnZ/sc7BcaGkpsbKzXspycHEpKSnyqNyQkhLi4OK9lubm5FBf7FvBgtVpJSEjwWpafn09hoW/LoCmlSEpK8lpWWFhIfn6+T/UCJCcne91eXFxMXnomyuHba5EYH4fFYvHYXlJSSk7ZQN0H8bEx2Gw2tDUElCtboN1uJysrC6D8dc6rwXFiY2MJDQ312O50OsuXnPVFTEwMlYWppGVkVlJyaFGRkUSEe685PTOrRn2EMzQKCi1Q4PSpj6gO6SOMQ/URaWlpPvXvNe4jCjNRhVnVen8nJ3pvb3FJCbl5vvc9VfUR2dkF6AgNBc4a1xsfH4/N5jmVVrGP8EWlfURxPhn7dvlcb0x0NGFh3t/LaenpPtcbFRlFRES46ScPCuKraR9RUWREODHR3t/LmVk5OJw17yO0NYzQ+FBiIhO9lksfYQTjOCK3bOkWHyQmJlbSR5SQk5NT7XoOHhMc9j7CH+OIyvqII+SzRnUcDeOI6nzmkj7CxV99xMECqo+oxngtJjqKMC/1Qt1/1lAKIkpAF2rynd7bcLBA7yMqe3/5Smk/z7ZlZvr+RxV1TylFfHw8AFlZvg+4xZEnEM6N1FTNXZM1FcePvXrAnbcrGlayHJjWmoce1Xz/g7kfHwevvGSCEObOd9934Plw6y2KqCiZgK+JQDg3RGCSc+PIt3+/5uHHNH+thNhYmP2hZx/qcGisVvdtVZ0bmzZpnn9R8+D9ioT4+u2P7XbNG29p3n0fypoYHg4P3a/o3cuzbTm5mrff1cz+FJwVvg8+4Xh44F5FgwZyfTkU6TdEZeTcEJWRc6Nu+ftLprpy2WWXsXLlSiwWC4sWLaJRo0b13aR6U5tloadNm8bo0aO9lqWkpJDu44TvxIkTmTRpkteynj17sm7dOp/qHTVqFE899ZTXskGDBrF48WKf6h08eDBvvfWW17JrrrmGOXPm+FRv7x6nMvfTD7yW3TXlAV5/+32f6m3fri1LflzotezJ6c8z7dkXfKo3KSmJ1NRUr2WzZs1i4sSJPtULVDqZ8OUn73Hdjbf5XO+GxXO8BoX88udfDBrpe71L5rxDx5RWOMNiwBpq/gFr1q2nd9/zfa53zifv0adXD4/taenptDu+u8/1vvHqiww57yxUab5HlqT4jqf5XO9T907g+iuHei1r02sg6ZnZPtU7ccKtTLpjnNeynmefx7r1G7yWHcqokVfy1GMPeS0bdMkVLP79T5/qrbM+ondv5s6d67Xsrrvu4vXXX/ep3vbt27NkyRK3bWXjpwcffJCHHvL+Gh1KXfYRWWt+8br9y4WLuGbC/T7XW1d9xOLFi+nYsaPH9jVr1tC7d2+f650zZw59+vTx2J62PbVWfcSbMx5nyIBzvJYlpJzqc73THriL668ahraGgXagnPbyPqg2fcSkW67l8cmmj8jNy6XicL/HwBGs3bjFp3pHjbySpyq5RgbkOOIw9hFlnnzySaZNm+ZTvfUyjvjyS6677jqf612/6g+SvQSb/Prb7wweXoNfsx5k8Q9f07F9O4/ttR5HVNZHpKXRrp3n8arrjTfeYMiQIV7LEhO9B0RWh3zWMKSPMIKyj1i/3mvg2K+//srgwYN9rvewjyNq2Ue89ezDDDnvLK9lAflZI8D7CH9/jymZu4QQAWHJ75r7H9QUFpn7NhvcfKNi2MVVf3m9YCHlgV0A/c6Bm8aajF9lkpJg0l2Knj1k0l0IIWqiQQPFjGfhl1+hoBCPwK5t2zW3jtec119zwfnK67K5FaVu0Ey4Q5OVDePv0Mx4xn3Z3cPNZlOMGa048QSTNTI3F2xWc93wJjZGcevNin5na56Yptm4yWxfuQquvV7zwL1wSje51gghhBD+dsMNN3DTTTehteall17i4Ycfru8mCeHJaUcVVvIL6VosU6acjkrrVXbffkkvqmAvQpXkAxpV7NsEQxlVkuv1b6cKs2pVL/ZC8DH7WX1Q9sLKz2EfMvKUsxdX/p5z2n2vV4ggpxz2Olkes6xeba1eJo36J9/PCHeqMAtV6HleqBLfM/0AqOJs79f7Wo4jhBBHiKJsKPAyZi2qZR9RlOO93kJJxHQkk+AuIUS9+/xLzXMzdHkWlNhYeOJRxfFdDxEkkKp5+llXxGtSEsz+zH2f/ufA+NsUsbHyYU4IIXyhlOL0Sn6QMf9rTXo6vP8h7NqteeTBqvva3buhLDPyvn2wbz9Ukk36sDqlm2LmK/Dwo5rxtyk6tK/6eXTooJj1mnneb76tcThMUPHtd2muHQkjR+CRzUwIIYQQvjvrrLO48soref/995k9ezadO3fm0ksvre9mCeFOOyudTK9VAIvWlU/S16ZeUQXzmiu7b8vxlHOUev3b+bospUuQZbF0Oio/h2vxS3ZVZb01X3qvnKPE+0RZWZnP9ZZWXq+9yPd6hRDeOR1VvJdr0b/XVR8h6pxyFHu/btTmfACUvZLrfW3HEUKII0JdBYDW2Q9JRECT4C4hRL3R2iyH9ebbrm1Nm8BTUxXNmlY9KZ6Zpbnnfk3F5akrZnU99liYcJtk6xJCiLr010rX7YHnH7q/Pf00xf33wXMzNNOnKVLaBk4f3aypCfCq7lJHISGKa66Gk0+CBx7S7Ntv5iXeeEvzz79w/xRISAic5yeEEEIEuylTpgDw/vvv8+CDD7J8+XJuuukmWrVqVc8tE3XGXiSTskKIw045SirPNFabPqKOsvsJISqh7ajCTLwGxNYiu1+d9RFCCCGOSHUWAFpnPyQRgUxpPy/0mJkpqd4CmVKK+Ph4ALKysvy+zqcIXvVxbixbrhl/h+s4XY4zGbvi46ueDC8o0Nw2QbO2kmVyGzWCp5+EVq0s/mzuUUv6DVEZOTeEw6FZvgJ+/p/m9vGqPFuVUoq4uDjGTcilU0c7l1zsnsmqoEATGRkcgU9btmry8uC4zpW3NytL8/Bjmj+XurYlJ8OjD6kqH3c0kn5DVEbODVEZOTfqVkJCQn03gcmTJ9do/59++onMzMzygOxmzZrRpk0b4uLiqh2kDebcevzxx2t07ECQmprq82OjoqKIiIjwWpaenu7z+ysiIoKoqCivZZmZmTgcntmllFJERUWhCzIoTN/l9dhhYaHERHuvNzsnl9JS3yZmQ0JDiIuJ9l5vbh6lJa4v2bU11GTkctoP+SW5zWYjPjbGa1lufgHFxb59yW61WEmIj/Vall9QSGFREc7QaLCGgjWk2vUqpUhKTPRaVlhYRH5Bvk/tBUj2ts65slKcl0Ve5j6fJxwS4+OwWDy/6ykpKSUnL8+nOgHiY2Ow2Ww4w2Jcf297MXa7naycXJSC6ChzzuTl51U72VRsdDShoZ5/E6fTSUaW77/Uj0psTFiorbydFaVl+P7dfFRkJBHhYV7L0jNrdg12hkabrHNOO5EhiqhI731PZlYODh8z0IWFhRETFem1LCsnF7u96j6iYhsrnpMhIYfoI0p9m4jztY/Q1jB0RDxEeL9mW61Wj+t52fgpPz+f3bt3+9S/K6VI8vZeBgoLC8nPP6iPKMw0S55V4/2dnOj9uRSXlJCb53vfU1UfkV1YWuXrWJX4+HhsNs88CXa7naysLB9aasTGxhIa6rnEoTMvjcxdm33uK2OiowjzUi/4p484uK+EmvcRFUVGhNO4YUMAcvNy3fpYX/sIZ2g0YaEhxEaGeZ34rk4fURl/9hEV398hISHEVZLePjc31/dxhJc+okx+fj6Fhb4t8VzjPqIGkpOTvW4vLi4mN7eKJRQP0Q/5YxzhbUxQNo44WNk4oowzNArC4iDc+7juYJX2EU4nGRmVBAtXQ0xMDGFh3q/3aWlpUFpkloCuoajIKCIiwr2WpWdk1O6zRqSX631IBJl5RV4/a1RHWFgYMTHer8vZ2dk+X+9DQ0OJjfX+N87JyaGkxLcgUF/6iLLv6ME8J29/A6uzhIRo73+3/IKC2vUR/vysYYuAENNOn/uIQ0hMTKykjyghJyfn0BVU0gdVt4+oqZp+1qhs7Huwuh5HeFM2jlAKIqIT0JEJ5Durtwy0L99HVIe/+oiUlBSfjl8ZCe46ysgX46Iy9XFuaK2Z+brm3fegT2946H5FWNihA7sm3KlZ/V/l+1itMOtVRUqKTKj7g/QbojJybojKKKVYuy6KUWPMh57OnWDGs1X38StXaZo2geTkwOm7V/+nuWuSxmaF12cqGjSovG1Op+ad90zmrrJlhm02uGO8YtDAwHlO9U36DVEZOTdEZeTcqFuBENzVoUOHGgVllal4LtT08eZLQ8WaNWtqfNz6dqR876aUIjo6Gp2fTsH+bQGbtcbbBHYgcrXTQaAu2aetYaAdAf1aVvb3Vgpios0X+wcHHtSHYDgvpY3+o21h6IhEiPQ+QepNvYyfCjJQhRkB+1r68jrWmwB/Lf393qmLPvZIfn/Xi9JC8y+QKSuUFqBK8+v0b16b89UZFnMgGL96AQv1ovx1LCBQx5SGQkckBP57p55VazxQkFF5lsOAESR/76Ps+l0XlILImER0VBJ51QzuCnT+/t5NlmUUQtQbpRRjRkHL5tD3bLDZqv5Cfu9eJzfcAmlp7tuTkmDszbBrF7z+Jlx5ORLYJYQQ9eyrua4PCC1bUmVg19q1mrvu1sTGwTPToEWL+u/D7XbNI49pyn6UM+V+zYvPQ2io97ZZLGaZxi7HwQMPa7KywG6HqU9r1q3XjLtVERJS/89LCCGEOFL4EhAmxJFPB+wX9TqQJzKFCGDaGmIm22vyGK3LsxJJYLwQotZKCwM++KMsiDzg2YtQJfkE6mvpeh0Dd0wJ4AyLrvG18WhU/fFAYP+9tc17tichjkYS3CWEOKzKfiFdRinFuf0P/bhvv3fy2BNQMXuiUjDsYhh1rSIqytR5SjdN2zb+brUQQoiaeuTBKFLaWvnokwLG3lT55GtJieae+zSFRVBYBDffqpn2JHTuVL8TtjabYspkuHW8xm6H/9bAcy9oJt5RdbtOPknx+kyYcp9r+eAv58DGTZpHHoLkJJmIFkIIIQ4mE89CCCFEZZRZHqug+kELSoG2mGWfVGH1lxL1mbIGbAbGMr4EyQkhKgrw4I+gCiIP3NcyeF7Hml8bDztlBZzUZ8rXQ44HguD6LYRwJ8FdQojD5qefNd/9oLl/StUZXCratEnz6kzNb7+7b29yLDz6kOfSi506yqS5EEIEAptNcd01EQy6oIiDl5TXWrN3HzRupAgNVdx7D0yaoikogOwcGHe75pEHoWeP+u3TuxynuG0sPPOc+eQ7Zy50bK8Pucxio4aKl2bA089oFnxjtv3zL4y+QfPoQ3BcZ7lWCSGEEGV++OGH+m6CEEIIEdhqmOlFAQozWasK8uuuXQcER8acIAgEAJloF0KI6gqSLGj1uWz6ocYDwXH9lgBtISqS4C4hxGHx10rNg4+Y7CcT8zRPPAqRkZVPbu/fr5n1pmbBQnA6XdutVrjkIrj5Jljxl2cmMCGEEIElJER5ZOP48GN4823NA/dCn96Kk05UvPQ83Hm3Jj0Diopg0j2aW242GRrrs5+/6EJYuxa+XmjuP/O8pk2bQwcTh4Up7pkE7dvDCy9qHE6zrPCt4zV3jIeBF8i1SwghhABo0qRJfTdBCCGECALVz/SiFFi1yb6iHMV1PqccNJleAjwQAIJnol0IIQJDMGRBq782Hmo8EDTX72AI0JbgbHGYSHCXEKLObdtultw6sLQzmZmU3z5YWpqTp56B35a4Zyu1WOCC82HMKIiPV7z2f5r3PtD0Owcm3VX9TGBCCCHq19JlJiOj0wn33Kd5eiqceorJxPjKS3D7nZodO8HhhBkvav76CybfDbGx9dPPK6W4Y4JZVnHdeigthQce1rz5fxAdXXWblFJcMhTatIb7HtRkZZnHP/mUZu16zbixipAQuX4JIYQQQgghhBCHR+AGAkAwTbQLf5BsNEIIUU0BHqAtwdnicJHgLiFEncrK0kycpMnNNfcbJMP0acpjkj4nV/PRx5oPPgT7Qde/Pr3hhusVrVqax6xbr3nvA1P23ffQtIlm1LUyOS6EEMGgQQM49ljYsQO6doHju7rKjj1G8cqLMPlezb+rzbZfFsO60SbL1/Fd66evDwtTPPYIXDvaXM9274anntE8eF/1soqdeILi9Zkw5T7N2nVm25dfwcaNZpnGpCS5hgkhhBBCCCGEEEIcXSQbjRBCVF/gBmhLcLY4XCS4SwhRZzKznIy/HXbsNPdDQ2HgQJj9uWb7ds32HfDCszBnnuLDjzV5ee6Pt1ph6uPQo7vFbXv7doorLjeBYGedCSNHyKS4EEIEi5YtFK+9BC+/phl7k/LIvJiQoHjxeZj5uunnAfbtg7HjNJcM1Vw/SlW5rG9dadxIMXmiyTYG8MOPcEo3GHh+9R7fqKHipRnw9DOaBd+Ybf/8C6NuMAFex3WWa5kQQgghhBBCCCHEUUWy0QghhBCimiS4SwhRa5mZmrR0aNUSdu2Crdtg6zbNp59DWpprv5ISePMt98dediXkF7h/cImMhF49YPxtZhmubds0zZu7T3qPGaVIiIdhF4PNJhPiQggRTOLiFJMneu+7nU6Nzaa4+QbFSSdoHn3CLGeoNcz+DH5cpBl1HQw4l8O+pOHppymGDtF8/iUoBfv31+zxYWGKeyZB+/bwwosah9NcJ2+5VXPF5ZprRypCQ+WaJoQQ4uiUmZnJlVdeSXGx+SVueHg4r776Ks2aNatVvdu3b+eGG24orzcyMpIPP/yQ6OjoWrdZCCGEEEKI2pNsNEIIIYQ4NAnuEkLUWE6uZts2+OcfzVfzzNJaoaHgcJh/NZFf4LrdsiVcf53i9NPMMlcvveJk7nxNYQF8+jE0aOCa8LbZFJdf6p/nI4QQIjAs+knz8WzNE49BQryiR3fFW6/D9Gc0vyw2+6RnwLSnNW+9DcOHweCB1Ekmr5ISzX9rYMsWsNlg4AXmGLfcpNixUzP8EsjNgx07NE2aVG95RjD7XTIU2rSG+x40gWsOJ7z7PvyyWDNlEnTsIAFeQgghjj6vvvoqmzZtAsz18rHHHqt1YBdAs2bNGDVqFFOmTCmv+//+7/+YMGFCresWQgghhBBCCCGEEOJwsBx6FyHE0aiwULNxk2bXbs90wLffqbnxFs1Lr5rALjBZuaoK7AoJgYYNzf/enHgCvP264ozTVfkEeV6e+edwwvwFtXxCQgghAtrKVZpHHtP8uxpuukWz+8D1JzlJ8fijiocfVDRu5Np/33548WXN0GGaGS860dq/6eu//c4sBfn0s5qv5rrqDgtTPPOUhaQkxUOPaC67SnPtaF3j4594guKNmYpTT3Ft27IFbrhZ89R0JxkZgZmOXwghhKgLWVlZfPjhhyhlPg8OGDCAoUOH+q3+iy++mPPOOw8ArTXvvPMOeXl5fqu/ovT0dBYtWsTzzz/P6NGj6d69O+3bt6d9+/ZMmjSpTo4phBBCCCGEEEIIIY5skrlLiKNEaakmIxMyMiAzE7KyICvblF1xmXuGkHnznTwxzUwqXzoMbr3FvbxFc1i7zvMYSsGxx5h68/PNtk4d4aQTYe482LfPff+YGCgqgtJSOOtMhdXqfpxjjlGApkEyOJ2+PnMhhBDBYPceV5BwaChUXClJKcXZZ0LvnvDFV/DxJ5r9B5b9zcs3ywEfnDmrpERXa4nDggLN2nVw0onu+/bo4bqdneP5uPWprttNa5C5q6KGDRXTp8H8r+GFlzX5+eZ699Vc+PZ7zZWXw2XDITxcMnkJIYQ4sn399deUlJQAYLPZGD9+vN+Pcfvtt/P999/jcDgoKipiwYIFDBs2zO/H6dWrl9/rFEIIIYQQQgghhBBHNwnuEuIIU1Cg+edf2LgJNm3WbNoMe/d4n5gGiI/zDO6KizNBVQDbd5hfNi9YCAkJ0LOHol07xdZtmhbNIS4OmjaFE7oqmjQxGU0KCjT3P6RJ3WAye/23xv2YTY6FkSMU/fuBxQI7d7lP4pe5YACc11/RsKFMagshxJFuwLmKuFiTjevpqYqYGM++PyxMcdlwuPgi+P4HeP8jzZYtcPZZnvve/5Bm82ZN27ZmKcVjj3Hfx27XvDpTM28+lJTCF7PLrn9GcpLinL6a8DBo29az/qRE6NMbVv0NnTvD5ClOxo9TNDpwzfpvjSY3F7qfWvU1TCnFwAvglFPgmec0i38z2wsLYdYbmk8/g4uGaIYOUSQkyPVQCCHEkWn+/PmAuS4OGjSI5s2b+/0YzZs3Z+DAgXz55ZcopZg3b16dBHdVdMwxx9CmTRt+/fXXOj2OEEIIIYQQQgghhDiySXCXEEFOa836VFjyOyxdZpazqmp5xINl54DDobHZXBPG8fEQEQGNGkGDZLj3Ac3P/4OkJHjvLbh0mOLSYd4nmO12zbffm8xeWVnuZU2bmqCufn1xO16zpt7blpQkk9hCCHE06dXTLFNY8RoB5lrncLi2h4QoBpwH5/aHf1dD61bu9Tidmr//gZwcE0B8+zj38p07NQ88rNm502T+Apj2tGbgQEhOguRkiIuFB++rfAXzHt0VPborflvi5JHHITcXcnI1zz9jApefflazfj306qG5fbyiceOqr2mNGiqmPq5YvkLz0iu6PDNYVja8+Ta8/4Hm3P6a4cMUrVrK9VEIIcSRo7S0lL///rv8ftnyiXVhwIABfPnll2itWblyJQ6HA6vV6tdj3HLLLXTp0oUuXbqQnJzMjh076Nu3r1+PIYQQQgghhBBCCCGOLhLcJUSQ2rPHBFF9861m67ZD7x8SYrKMJCaaDFzx8ZAQD/HxymPJw+M6w3cLLOXHGTXGZPFKT4cPPtLccL3npLLWmt//gJdeNVlUKmrWDK4Zoeh7tueEvRBCCFGRt+vEwm/hk9maOybAcZ1d5RaLomsXzzr27YNSs7ITMTEQHq7ZsQOaNjWP3bvPc3nhn3+Bn3/R5fetVoiP18TEQGyMqScmBmKiISbGZBmLjzcZtgoKzGNW/Q1vv6s59hjF+vVm218rwVaDEffJJylmvQbffGfq2rHDbC8phbnzYe58zamnaIZfYgLhLBa5rgohhAhu69evp7S0FIDw8HB69uxZZ8fq0aMH4eHhFBUVUVJSwvr16+nYsaNfj3Hbbbf5tT4hhBBCCCGEEEIIISS4S4gglJmpufRK7TVDl8UC7dtD547QqpWiTWuTGSs21ixxUR1KKbQ2E9yNGyseegDuuEtzySVwzdWedTz3gpOly2DrVvftxxwD119ngrqsVpl8FkIIUXNp6ZrnX9Dk5cGNt2ieeQpOPaXqa0rjxooF82DlKs1Hs2HIJdAuRfPSDPO4tLRDH9fhMEHN6eneSl1BYF2OgzGjFa+8Zra9/S6MHKFp3Qo2b4FBAyE5uWbXQItFMeBc6H8OLP4NPvrEZCIr8+dS+HOpWR552MVw3rkQHi7XWSGEEMFp8+bNgPkc2qJFC0JDQ+vsWGFhYbRs2ZK1a9eWH9vfwV1CCCGEEEIIIYQQQvibBHcJEYQSEhSnn6ZZ9JO5Hx0FZ5wBPU5VnHwSxMb6d4K328mK996BZk3d6y0o0DzymOaXxe77R0ebILChQyA0VCabhRBC+C51Azjs5nbzZnDSie7l23dotm0zwc0d2ptrJJgMYG3bwPLlmtJSk1Vr61ZNixaK3r1g1muKtHQT6JWerklLg7QDwVxpaZCZBVpzSPFxcPmlsHyFCbpyOuGjT0xGLwBvcdV792kaNjh00LXVqjj9NDj9NMV/azSffGqu/WXB3Vu3meUfX5sFFw7SDB2iaNhQrrtCCCGCS05OTvnt5OTkOj9exWNkZWXV+fGEEEIIIYQQQgghhKgtCe4SIoAVFmq+XgBFxXDl5e6TtZdfqigp0ZzXX9GrJ4SF1X4y1+HQvPRKIf37aRo1dC+rGNilteaHH+G5GZqsbPf9hg6BUdcq4uJkclkIIUTt9eyuePcteOMtTc8eymPZxh8Xwf+9bqKwHrrfZIssEx9vgqF/+BHatoHsA3PHUVGKDu0r1uJ5zbLbNbm5kJMDuXmQm2v+5Rz4PztHk50NHdorLBbFvZPhmlGajExXYBe4LyMJkJ2tuWKEJjEBJt+tOelES7Veh04dFQ/ep7j5Bs3nX2q+mmvaAeb/9z6ADz/S9D1bc8MYRSMJ8hJCCBEkcssuaEBCQkKdHy8+Pt7rsYUQQgghhBBCCCGECFQS3CVEgNq3T3PNaE1ODkSEm2WdYmNcE7WdOiqmPu6/idvCQs29D+Sy6KdSvv0eXp6hiInxrH/DRs1zMzQrV7lvDw+H56bDcZ2rN0kthBBCVFfjxop7Jnm/5u3Z40qvtW+/Z/nIEYrLhpusXtVdnhhM5q+EBKh8jtm9rsRExb33wO13udrTqiV06uTaR2vNo09oioth9x64bQK0S3EyaKDivP4QEXHo9jVsqLhxjGLkCM0338LszzRbt5kyhxO+/R5++VVz7TUw/BI8guGEEEKIQFPx+nw4gq3y8vK8HjtYBGObvXF/HsprttNA4NbKAG0jBEc7g7uNB5+v1UjxW4eC+7UMHMHQRvC1nYf3nA2G1zIY2gjB0U7/t9H/52swvI4QHO0MhjbC4Wyn7+drMLyWwdBGCI52BkYbqz5fA6ONhxYM7ZQ2+ourYUfKdx/+JsFdQgSoBg3gmMYmY0hhEcybD1dcVnfH27oNFv9WCsDmzTD3oOMVFWneeFvz8cdm8riiyEh48/+gSRMJ7BJCCHF4tWqp6NPbfDD1FojVutXh+xBw6imKEVdp3n3P3N+8BVb/R3k2TKcTwsLcH7M+FaY/q3nt/2DwQM3QixSNGx26zRERiiEXwuBBZjnITz7V/LnUlBUWwcuvahYshIl3Qpfj5IOQEEKIwBUVFVV+OzMzs86PV/EYFY8dLCpmHgt2drtZezsyMhJFZD23xju7soF2gtOOzRK450swtDPY23hgZXQiY+o+w+ChBPtrGSiCoY3gezsP5zkbDK9lMLQRgqOdddFGf5+vwfA6QnC0MxjaCIe3nb6er8HwWgZDGyE42hkobazqfA2UNh5KMLRT2ug/ZSGI0dHR2GwSynQweUWEqEdaa1I3wPc/auLjFFdc5h6ROuwSePtdzWXDTUaPutShveLJx6K5Y2IeI0coLr/UVbZ8hWba05qduzwfFx4Ozz+jaNJEJo6FEEIcfsOHKYYPC5xr0OhrFRs3an5bYu4/+rimUweTfcxqVTz8gMm29c23sG07FBWZ/fLy4IOP4ONPNP37aUaOUDRteujnZbEoenSHHt0Vq//TTH9Wsz7VlG3eArfcprniMs2oaxUhIYHzOgkhhBBljjnmGMB8Pt64cSMOhwOr1Vonx7Lb7WzYsKH8fuPGjevkOKIGQk1QV/3mQaqCVuYLcJxoS92cl34RDO2UNvpPMLRT2ug/wdBOaaP/BEM7pY3+EwztDIY2QnC0U9roP8HQTmmj/wRDO6WN/hUamD/+CgQS3CXEYWS3a3btgjVrYelyzdKlkJ5hyho21Fw23EzSlunXF/qfo9y21aVz+4fRprWV5OQ8tNbk5GpefkUz72vv+9ts8MSjio4dZLJYCCGEALBaFQ/cCzfcotmyBW66QdG4ses6abEoLh2muHQY5OdrvvsBPv1Ms2WrKXc4YcE38O13mnP7a0ZerWhybPWus507Kf7vVfjyK5j5uiY/32QLe+8D+PsfzWMPQ0KCXLOFEEIElpSUlPLb+fn5rFixglNOOaVOjrVy5Ury8/O9HjtYZGVl1XcT/EIpRXR0NIREkFfsQOuADe9ycR56l4AQDO0MsjaWn6+YpV0D6nwNstcyYAVDG6Ha7azXczYYXstgaCMERzv90MY6P1+D4XWE4GhnMLQR6rSdfjtfg+G1DIY2QnC0s57aWKPzNRheRwiOdkobfXbwOXsk8Hf2dQnuEsLP8vM1u3bD3r2wZy/s2aPZsxe2bzcZOkpLvT9u3z74+x844XjXNqu17iZgv/lWc+qpkBDvfoy2bW1kZcFPP2uefV6XB58B2Kxgd7juT5msOKWbTBILIYQQFUVFKZ6eCv+tgbPPrPw6GRWlGDIYLhwES37XPPAwFBaaMocTvl4I336vGTLYZPKqTmCW1aq4eCiccTo8+ZTm9z/M9r//gdE3ap58FFJS5NothBAicDRr1oykpCQyMsyHz88//7zOgrs+++yz8tuJiYk0b968To5TlwIqqKSW6ipDmxB1QZYEEcFGzlkRTOR8FcFEzlcRTOR8FcGm4jl7JH3/4S/yjhaiFux2zfwFsG69Zts22LYNMjJrVkdiAvToDv3OURzXuW7aWZHdrnnxFc2nn0HXLvD8M7gt07Rnr4OHHnHwv1/cH3daH1izBtLSzf3bxir69ZXJYSGEEMKbxo0UjRt5btdao5T79VMpRXYOFBaaDytWKzgOBFPb7fDp5zB/gebKy2H4JRAZeejrb3Ky4qknYfZn8NLLGofTBJ7fOFYzZXLVQWdCCCHE4XbWWWfx6aefAjBnzhyuu+46v2fVSk1N5auvviq/Dp999tl+rV8IIYQQQgghhBBCiLpiqe8GCBHMrFZ4403NnLmwclX1AruOOQZ69YCbb1S89briq88V90yycEo3hc1W9xOt69bD51+Y23//Ax9+bG7b7Zq33i5k4IVZboFdDRvCU1MVTzxq4cXnFQ2SzRJTwy+RSWEhhBCiJjKzNNffqFnxl+cvTs7rD1MmKWJizBjhtZcVJ5/kKi8shFlvaC67UvPlVxq7/dC/WlHKXK+nP2XqBSguhvsf1Hz6ufzqRQghROAYPnw4YK5dDoeDCRMmkJ2d7bf6c3JyuP3223E6neW//Lzkkkv8Vr8QQgghhBBCCCGEEHVJMncJcQhaa5Yug7nzNX3PUpx5hiuoSSlF166aRT+59o8Ih2OPhUaNoHEjaNxY0agRNDkWWjSHiIj6DYrq3Ekx9maY8aKm3zlw6TD4+x/N9Gc1GzcVlO+nFFx8EYwZrcozhDRtqnjnTYiJkcAuIYQQoiaKijST7tGsXQe336W5cwIMvMB9TDHgPOjVE6KiwGZTPDcdli6DV17TpG4w+2VkwtPPalb9Aw/cW73rcZvWcNMYeONtSEsz256bocnNhWuudmUJOxxB5kIIIYQ3Xbt2pWfPnixZsgSlFBs3bmTMmDG88MILNGzYsFZ179+/n1tvvZXU1NTyrF3du3fn+OOP90fThRBCCCGEEEIIIYSocxLcJcQhvP2uyZQBUFqq3YK7AC4YoOhyHLRuBc2bQYMGeCy3FGiGXQzNmio6tNc8+7xm3tfu5SltYdS14HAqj6WfJLBLCCGEqLn0DNfSxnY7PPmUZvUazfhbFWFhrmtrXJx7wNepp0DnTpqBQ6C01FXfkMGu/Xbt1lw1UoOGlBR47WX35Lxr1sK06eZ2bCzk5Jjbr7+pyc4xGUUnTYGOHTR9eisuv1Su9UIIIQ6/KVOmcPHFF1NSUgLAqlWrGDRoEJMnT2bQoEFYrdYa1edwOJg7dy5PPPEEOTk5KKXQWhMWFsa9995bF09BCCGEEEIIIYQQQog6IcsyCnEI/c4By4F3yh9/QkGB+zJGPbqbJY+6naxo2FAFTGCX1prflmhuv8tJTo57m+122LoNLr8Kt8CuqCjFpImRjL9N8dQzZtmmpctk2SYhhBCitpoca5ZabN/OtW3uPLjues3atVVfazMyXY+LiYbzz4Pju7rGG1pDSQmUlEJOrufjo6Jct1u3MtnBynz6Gbzxlnn8qr8hNVWu+0IIIepH27Ztuffee8uXTQTIzs5m8uTJnHHGGTz77LMsWbKE3FwvF7sD8vLyWLJkCc8++yxnnnkmkydPdlveUSnFPffcQ9u2bev0uQghhBBCCCGEEEII4U+SuUuICrZs1TRsgFu2qibHKi44XxMdBYMHeWayqo3iYs227WbStWED/y6H9OIrmo8/MbenTdc88qC5/cuv8PKrmh073ffve7binrvj+O6HEsbdrrHbzfaHH9N88kH9LycphBBCBLvkJMXLL8D05zRfLzDbtm6DG27WXDxUc901iuhoz+tts6aKV19S7N6t2bffPbALzFLKZfbuNeOZli1cG5MS4bTeEBkFrVspLh0GT0zVfPOdKf93tevxnTt7Hn/uPM3iJZoLB5lMYlarjAmEEELUjWHDhpGZmcmzzz5b/sMprTVpaWnMnDmTmTNnopQiKSmJ2NhYYmJiABPUlZOTQ1paWnlwWNn/FesZN24cl156aZ0+h2XLlrFt27by+5mZmeW3t27dyueff+62/9ChQ+u0PUIIIYQQQgghhBAi+ElwlxBAfr7mjbc1n34Glw2Hm25wn7S8+07fktzl5Gj+9yusWKEJC/esZ8tWGDXGfOHcqBF89rH7ce12U+ZL0NfZZyo+/sQ8ftkyWPit5qs57hO4AC1bwrixigYNFHfcncfKlfbysoQEePQhJYFdQgghhJ+EhSkmT4QTT4DnZmjy88HhhE8+he9+0Iy4Ai4cjNtSjWWOOUZxzDGedcZEa+JiITvHZODatBlatnCVN22qeOIx9/qmTIaISM2XX7m2Hd8VenbXQMWsYJrPv9SkboBfF2sm3624YEDVz3Hq007mzjO3rVazFGRyErRqCe3aKU4/zU6H9jVbWksIIcTRY8yYMbRp04bJkyeXL6cIuAVt7d+/n/3793uUVVSxLDo6mieeeIJ+/frVefs//fRTvvjiC69lK1asYMWKFW7bJLhLCCGEEEIIIYQQQhyKLMsojmpOp2bBQs3lV5ksVw4HfDwbtm33z5JEq9fAk9M0334PS5d6lhcVuW43beJZvmw5nHOe5uprnXw827NNX87R3P+Qk8uucrJzp3t5506Kc/tB37OhXTt47An3wK64WLhjgmLmy2b7taOdboFdnTrCGzOVR3YQIYQQQtSOUooB5yrefkPR/VTX9sxMmPWmdhsfVEdxsaJrV3O7USM4vY97eX6+Zu067TbxbbEo7hivGHaxa79Vf8PLr7qCywG2b4cNG83tiAg46wwzSb76P83Tzzh5933tMaF+IIkKYMZWmZmQugG+/R5efFkz/PJszuibybTpTv5dXT/LQNrtms1bzPLTv/4mS1EKIUSg6du3L5999hn9+/dHKYXWGqWUx78y3srKHtO/f38+//zzwxLYJYQQQgghhBBCCCFEXZDMXeKotXad5rkZ2iOT1QnHg8VP8UynnAzx8ZCVBXv2QkGBdlvWMSQE2reD7GyTzeJgm7eA3W4ycOzf755JA+CffzQ/LjK3V6+BJgcCxBwOzf9+ge074L817nWGhsIlQ02Gst+WwNXXwp69rknNkBC4dqTi8kshJEQCu4QQQoi60riR4umpZsnkF1/R7NoFlw6DuLiaXX+TkxVPPKpYn6pJz/DM+PnjIpj6tOaYxtCtm6bbyYqTToSEeMVtY8Fm03z4sdn3p//BfQ9oHnoAQkMVzZsrPvkA5szXlBTDl3Pg6wWaLVvN/i1baObNh/MHwPnnQYMGigbJCqtFoyyUL/N8sMxMk1FUKTjOy1KQ/lRYqD2ykG7YCKNvMOOfhATo84V7eU6u5uprNcd3ga5dFRddaALihBBCHD7NmjVjxowZbN26lbfeeotff/2V7du3V+uxTZs25bTTTmPkyJG0bNmybht6kCeffJInn3zysB5TCCGEEEIIIYQQQhzZJLhLHHUyszQzZ5mJyIqJJho3glvHKk7vg9svgKtj+w7NrDc0t9yoaNjQ9VibTXHN1eY4JxwP4eHuj+vUUfH6zMqXkcjM1ChlHt+ggWebkpNdt9es0fTpBfMXwCefanbvdt/XaoGBF8A1V5slGL9eoHnyKfdjnnySjQfvjyYxIddre4QQQgjhX0opTj8NevWErxfC2Wd67jP1aSdtWivOPw+3IPGDtUvxXvbNd+aavnsPzJ0Hc+eZ+0mJmpYtzRKOJ58Eyw+sEvXLYpg8RfPYI5rwcAvh4aCdMHe+CVSvqCzI6/9e16xdB088agKhLhlqsqY4HJrcXNizBzZsgn/+geV/KfbscQIw/GLPNpdlWqmN0lLN41M1a9aazGEL5roHZ7VoXvXjd+2EtDT4YRGsW6+5+CJJeCyEEPWlRYsWPPDAAwDs3buX5cuXs2/fPrKyssjKygIgLi6OhIQEGjZsyEknnUTjxo3rscVCCCGEEEIIIYQQQviXBHeJo4bdrvlyDsx6Q5OX59oeGgpXXaG48nIIC6v5ROJnn2teeFljt0NYmOaeu93ruGRo9er0Nol5840WrrvGZMdITPB8TN+zFSltISpKs/wvGDpMk5fvvk9oKPQ9y2TqatPGUuGxZumlrGxISoRR1ypGXBWLxaI48P24EEIIIQ4Tm00xeKDn9o2bNHPnAWhmvQGDB2kuucg9mLwqDoemWTOTqari+AcgPcP8KwvqquiPpdBvAISHOykqcg+IB4iOMmOJFSvN0o0Agy5Q5c+lzD//miym7dpBhw6KQRco4uLi+OdfO8uX59K8ufvzyMzS3DZec9mlcF5/sForf56ZWZqtW2HbdjjjNPeMZyEhilV/a/btM/e3bTdBbGUiIhQnnqAJCQFv8/87d7luly15WdGmTZrf/4Rz+0FSkmT0EkKIw6VRo0acf/759d0MIYQQQgghhBBCCCEOKwnuEkeFFX9pnn9Bs3GT+/YzToexNymOOcb3SbnmzV1LDn3zDYy+Vld7wrU6wsMVHdp7L1PAkt813/8IDod7WXQ0tGkN+fmw8FvodrKiTRtXeViYYuTV5nFDBkNEhEWWGxJCCCECzFdzXFFVeXnwwYfw8SeavmdpLh2uaN+u6mu31aq4+07FHeM161Nh6TJYttxk2SosrPrYWnvu0+RYExB+xulmLFFS4uTyEWAvNfWefJIrWF5rzcOPmQCr6CiY95UJulJK0bVLCElJipWrNBEREBcLjRsr3nlXs3kLPDFV894H0P8cTaNG0LKFolNH9+f69DOan/9nbsfHmQxoFXXqCPv2mUD3Xbvcg7sAXniu8mxcZ50JrVop/v4bWrTwLJ8zT/Pp5/DaTLjlJhg+TMZQQgghhBBCCCGEEEIIIYSoGxLcJY5oO3ZoXpulWfST+/aWLWDcrYpTutV+Iu6UbooB52p274FxY6ufScNXTqfm9z/go080K/7yLA8PN8FmeXmw6m/X9u9/1Jzb371tw7wshSSEEEKIwHHLTYp2KfDRbM2WLWabwwHffg/ffq854XjN4IEmsCk8vPLrus2m6NTRBDyNHKHQWrN3H2zeAlu3wv79mv1psH8/bN0GOTne63n+GROEVSY3V7F3rwlA+3oh3HqLa98NGynPnGWxmoDz+HhX+ZYtMHaceWyX40zdv/7mKt++HV5/09w+t7/2CO5qXmFpxTVrNaef5l4+coTi6qugdSv3bGLVYbEoWrcyjz1YSYnm2+/NbYcT2nsJwvfH0pJCCCGEEEIIIYQ4shUWaoqK6rsVVQsPNxnQRe3J31sIIURtSHCXOCJlZGjeekfz1Vz3jFZRUXDdNYqLL6r5JB/AL79qGjSADu3dH3vn7YrQUO9LK/pLcbHmm+/gk9lmmcbKeBsY2mzmdXA4dJXLGwkhhBAisISFKQZeABecD3/8CR/P1ixd5ipfuQpWrtJERsIjD0L3U6u/HHTjRmZssH073HyjchsjvP2uk/973bV/o4Zw6XBITnavv+KYpG0b97GQ0wkpKZCaaoLFLrhQ06CBg04dcmjf3kZxsSsrWWQkhIYq3n0TPv0c3vvAfRntb74Fm83J9dep8ja0a6s4rrOmeTNo29bzead42eYPSsH42xQLFprg/q5d3MtLSjSXXqHp3FnTp7fivP4y9hJCCCGEEEIIIYSnoiLIyq7vVlQtHoiIqO9WHBnk7y2EbwI9MNJqNclZtA7s74EleDP4SXCXOKJkZmk+/FjzxRdQeFAnf/55cMP1iqSkmndaGRmaZ57T/PQ/M3E56zX34LCy5YfqQmam5ouv4PMvNVlZ7mVWq+dyjGXatIZuJ0O3borju0BkpHTWQgghRLBSStGjO/Torti4SfPxJyZ7VNnS0MVFZoxSUU6uyfbZuBFEhINTQ1YW7NkLa9dp/v7bZOkCaNtGcdKJrseOHGHB6XSWZ87auw/eeRfat4Pju7r2O/EE+PgDxeYtEBrifvz27RSdOmhSU13b9u+Hn/eX8vMvpW77rv4P7prkpEkTaNpEcdcdMP9r+HOpa5/5X8MPP2quvBwuGw5nnak468zDP74JCVH0Pwf6n6MoLvbM0LXqb9ifBj/9DOnp2iO4K3WD5t/V0KABtGoJTY6VMZoQQgghhBBCCHE0Ky6u7xZ4FxZW3y0ILFpr7Ae+jNNaH2Lvysnfu/YCPdgHJJDGnwI9MDIkBLQT7JXM2QeKeCR4M9hJcJc4oqSlwQcfum879RQT1NW+ne8X0JJS+OPA5OKGjfD5FzB8WC0aWg1bt2o+mq1ZuBBK7e5l0dEwZDAMHQLX3wjpGZCUBKd2M8tEnnwSPgWxCSGEECLwtWmtuGeS4obrTVbPBQs1xzT2vPb/9Rc8/Gj1vmj69jvNSSe6P/7akRaaN9c89oSmpMR8gB53u+aO8TDwAhNwZrEomhwLTY71Xm/3UxVKaTZshI0bPYPvy+TlwZLfy+652myxmC+WCgvN/aIieP1NzZo1MO3J+h/reAvwX/2f63a7FM/H/LkUXnnNPMeRI+D6Ue51zP5Ms2aNpnVrRa+e0LpV/T9PIYQQQgghhKiKTLILIerbYemHlKK01Hynk5cP1CDAy2qF4hINSD/kD8EQ7GO11m8gjb+CEQNJoAZGhlT40XOgtjGYgjdF5SS4SwQtp9NMNIaHuwZCKW0VvXpofvvdZJa4cYzilG61Hyg1bqQYMxqef0Ez5EI4f0Ctq/RKa81fK+HDjzRL/vAsj42FUdcoBpznysR11x1mqch2KXW7LKQQQgghAktSkuKKy+DyS13BTxX9/c+hP7RHRMAp3aB3L+9jiL5nKY49BiZN0aSnm0xhU5/WrFgJd4yH6Oiqxx6nn6Y4/TSzj9Op2bVbsWt3JOvWOfh3dSEbN5qsYJV9v+B0up5bo4ZmX4DLLjV1/rta06olREUFzhjomqsVfc+G3//wzKYGsGev68kmJngLDtN8/wOAJi5W0bqVe7kssy2EEEIIIYQINIE+yQ6SrUIIX5QFqASDw9EPKaC01AlAQX7FnyceWllmH+FfgRpIExICRcUaR2Y9NqIawYgS+CxEcJHgLhF00tI18+bDN99p+vSCW25yv+hcP0px0RDo0b3mwU5aa5avgMws6NfX/bFDh0CX4xQd2vv/Ildaqln0E7z7vmbzlsr3O/YYuHio+/H79JaLrhBCCHE0U0oRGem5vWULxTl9Nfv2QemBVRBjYyE52WSD6tAeOnU0ywxWpWMHxaxX4e4pmvXrzbbvvoeVKzW3j4c+vas35rJYFM2aKrocF8a5/SArqwStNSUlmt27YftO2LkTduzUB/6HPXtMgBfAQw/A5s3w+5+wbz+8+n9OPpltnlt4uCYsDKKiTLYvi4KYGEhOMtlNGzY0QVJt25jnX9cB8c2aKpo19V520gkKp0OTkQEtWniWZ1b40qd1a8/ye+7T5OZqzjtXcc7ZsvS2EEIcbdLS0nx+bFRUFBGVzGqnp6f7/GvuiIgIoqKivJZlZmbicHiuTaGUovTAACU7O9vrscPCwoiJifFab3Z2dvnjayo0NJTY2FivZTk5OZSUlPhUb0hICHFxcV7LcnNzKfZx5slqtZKQkOC1LD8/n0JvUf7VoJQiKSnJa1lhYSH5+fk+1QuQnJzsdXtxcTG5ubk+15uYmIjFYvHYXlJSQk5Ojs/1xsfHY7N5fk1ut9vJysqq1vnqTWxsLKGhoR7bnU4nGRkZPrc3JiaGsEp+en+k9BHVIX2Ecag+Ii0tzae/XU37iKwsTU5u9SbZExK89xElJcXk5/veR8TFee8jSktL0DoHNDgcNf/8dKg+wlfSRxiRkZHEx8d7LTsa+oiy947DEUJMjPc+Ij8/l5ISH/sIi5XYOO99RGFhPkVFVY8jSkogL0+zb5/7e0cpRWKi9z6iqKh244ikpMrHEXl53vsIqxUKizRFRarSfqiqPiIvr3rjCKUU0dHRAOTl5aG1Jiam8j4iNzer/H5UFGinxuGsvI0VRUfHEhLivY/Izva9j4iKiiE01HsfkZmZhsPuW19ZH+OI7OxMCgt96yNCQ8OIivLeR+TmZmO3+9ZHhISEEh1t+ojiIsiv0Lzc3Bzsdt/GETZbzfsIhSIi0rwXCwsK0V7CERPirbRqlVhJvYHzWaPiOKM+xhGH6iNKSip/f1e3j6ipmvYRYWFU6/1dn+MIXz53BfpnjcrG6b5S2s95+DIz6zMEVRyKUqp8oJyVlRWUaRj/W6MZc5Npd0wMfDFbuWXv8lV+vubmWzUbN0FEOHz0vqrzpQ2zsjSffaGZ/ZlZjqgyLZrDeecqzu1nJifrwpFwboi6IeeGqIycG6Iycm4cmYqLNS++ovniS/ft3U6Gm26o3hLYNTk3tNZs26b56WdYuhwyMmD7jhplvPcqLhbat4fOnaBTJ0WnDhAXFzgBUutTNetTYdMmzejrlFvwVkGBZuCFmpIDnx3fnKVIaRs4ba8N6TdEZeTcqFv+/pJJ1L3aBChPmzaN0aNHey1LSUkhPT3dp3onTpzIpEmTvJb17NmTdevW+VTvqFGjeOqpp7yWDRo0iMWLF/tU7+DBg3nrrbe8ll1zzTXMmTPHp3p79+7N3LlzvZbdddddvP766z7V2759e5YsWeK17Mknn2TatGk+1ZuUlERqaqrXslmzZjFx4kSf6gUqDUr48ssvue6663yud/369V4Dx3799VcGDx7sc72LFy+mY8eOHtvXrFlD7969fa53zpw59OnTx2N7Wloa7dq187neN954gyFDhngtS0z0PjlXHdJHGEdCH1E2fnrwwQd56KGHfKq3LvuI35Z4P5d+/OEr7r3X9z5i/tfrvE74rljxK2NvudDnehcsWEy7dh08tq9fv5YBA3zvI95//yt69PDsI/Lz0+jatb3P9QZbH3H33Xfz5JNPAp7j/dr0ESNHXsf993vvI664YjB//OFbHzFgwGBefPFNr2Vjx17LggW+9REnntibl172/tinn7qLzz9/w6d6W7Vqz/sf/Oa1bNasqbzxum/jiPj4JH74cb3Xsk8+nsXUqXf7VC/A8hXez6XvvvuKSXcHXh/x3vuLad3as4/YtGktV13pex/x4ktfcdJJnn1EZmYaF5zvex/x6KNvcHZf78+3V0/vwTjVcbjHEZmZmn79erFpk299xNCh13HnXd77iFtuHsxff/nWR5x11mAee/xNoqNNsI/d4Qr2mXLPtSxaFFh9REpKe/74I7g+awTbOCLY+ohgG0cE+mcNf3+PKZm7REDSWrNuPfzyq+b8AYomx7q+vOzYAZocCzt3mfubNpusEzV18JI2UVGK6GjzBissgtff0ky8o24myzZt1sz+TPPNtyaa15uoKOjfDwacq+jYQZZcFEIIIUT9CgtT3DFe0f0UzdPPasp+qLNsOYwao+nRXXPJUEW3k8Fmq/m4xW43Qfar/jZLSv7zD6T7/kPESmXnwJ9Lzb+yBPpNm2o6d4LOnRSdOpoMX748B39ol6JolwIm2b+7teug7MdGx3XGI7DL6TTPx2KRcaMQQgghhBBC+ENunvel3nKr+LF2deTle9YbEuLKvC1qx+GofIk+u933ektKK6+35Cj721WWfao2r2+V9R5lr68Qh4PWJlDOm6Kiuqm3oEB+tCeEryS46whRlqquonlfa9as0eTlQWEhODWgwWI1KYhL7Q4iI00QUUz0geCmKLN0TaNG0LgRJCYenskhh0OzaROs/BtWrdKs+se1JE1UFFxxmWtfpRRjrgeb1Sy9GBZW/fb9u1rz0SeatWvhtD4w7lb3xw4fptiwUTPwArjkIv8+79xcJ+9+AKtWwer/vO+jFJx6Cgy6QNGrJ4SGysScEEIIIQJLn96KE46HWW+aLF5lwUa//wG//6FJTIBTT9WccLyibWs49liTbVUphdaanBwn6RmaLVs0e/dqduzU/Lsa/l1txqxVCQmB5s2gZUto1VLRqJEJaFq23By/qlV+rFYz1vL2JeOOHebfN9+aLxdCQ6FDe/eAr7rKnloTJ52omPslfP+jGasf7NfF8PJrmmFDYcB5smSjEEIIIYQQRyOtNXa7HWfZGveiVkpKvAeb+LhCZ7nSUs96Q0KguKR2k975+ZVPqNdGQYEurzc8HCIiguPzpre/XW3eGk5H5cFHTt9WfhJCiHrjdFYesFqb4K6q6vVxpUchBBLcFfCKijTpGaYDbdPafbD8wyLNO+9q9qfB4IFw4xj38j/+1Cz6yVutlYW3ew74bTZo0EAzcoRi4Pnu9e/erYmKNoFh1c0qZbdrMjJg337YshU2bzYZGtasNR86vPnlV80Vl7nX3/cs78fLydG8855m9x7T9ofud18bt6AAfvrZ3F7rJQtfn15mmUd/TYTl5Tn5/EuYvwB27vS+z3GdISXFZCM7t58iISE4PhQJIYQQ4ugVHa0Yf6vikos0b76t+f4HcBz4cjQjExZ+Awu/cY0trVYICdE4HFBaWv1l3ONioWsX6NJF0bULtG8HISEHj5UUFwwwy0Z+/yMsWKhZucqzLkeFL1nDwyEh3nzRkJ7hGfBVUgJ//2P+lY2RGyRrWrWCRg1NoFdyEkRFQ0QEREaY5wimTq1d/zsc5p/TWeF/p8nLFR5+4EvxcIiNg8QEDrnceGysYugQ72WffKrZsQOenaHJyVVcO7LKqvwmLU3z+FRNZibExsLzz7iPwUtKNF9+BV26QErb+suKJoQQQtQlu73yyfTiYt8n2Z3O4Ps1fWX11jYQQgjhyWsfoRSlpZrCQt/fy5Jxo/4U16JvB8gvqHxCvTYKC131xmM+CwshhDgyeAtatdcyYLWusvsJcTRT2s8LPWZmVn+y5kiXn6+Z/ZnJSlU2kVM2qeMom9w5sL2kxKThzctz/Z+T44pePfZY+OQD90mShd9qHn3c/PnO7Qf3TXEvn/qUk7nz/fNcJt2lGHiB+yTM1dc62bTZ/Jrkw3cVjRu7ynfv1kx/TlNcbJ5DQQHk5EJ2tvlgWB2JCdCrJ5xxuqJnD1O33a5ZvsJk4Nq+Ax64V7kFluXlac4baA4QGQnfzHcvz8nRnD/YlCckwFefKb9nJtuf5uSLr+CHH1xLRx7MaoUzz4Dhlyg6dwqMyS2lFPHx8YDn2vbi6CbnhqiMnBuiMnJuHH1279bMmaf55jvYt8/3epoca4K5unZRdOkCLZr7tjT1zp2aeQs0C7+B/fur/zjLgeF0ff7AXSnzIwWbDcLCIC4OGiRDq5Zw21hV6euRlaW5aqQmK9uMzz/9SJGU5L5vZpYmIb7mr6fDofnnX/hvDezYqZl4h/vnjqwszcAh5n0eHw/zvnQv37FDc9lVVY/Bpd8QlZFzo24lJCTUdxNEDaWmpvr82KioKCIqmYlNT0/3+f0VERFBVFSU17LMzEwcDs9ZAaUUcXFxAGRnZ3s9dlhYGDExMV7rzc7OptTHdatCQ0OJjY31WpaTk0PJQRFIWVmanCqyg5ax2UKIiYnzWpafn0tJSSWzG4dgsViJi/P+Xi0szKeoqBCbDbRT43DW5DqvSEhI8lpSVFRIYWElv8KshoSEZI9tISEQFlqMUr6vY5aYmIjFYvHYXlJSQk5Ojs/1xsfHY7N5/gbabreTlZVVrfPVm9jYWEJDQz22O51OMjJ8X388JiaGsLAwr2VpZWun+yCQ+ojqCJQ+orpCQkLKz6OD5ebmUlzZDChV90Pe+giFIjIqkoKCfDIz0tFeftR9aNXvIyr2QVU8jXLe+giAkpJi8vOr0eFWIi7Oex9RWlqC1jk1amNFMTGV9xG5uVk+thaio2MJCQk9aBs47A7SMzJr3M4yUVExhIZ67yMyM33vIyIjoggLjyAsDOLjcPuRem36iMjISJo0aQJ4HSFQIQABAABJREFUjvdr00cUFoZid8R4fR1zc7Ox+7jGX0hIKNHR3vuIvLwcSkur30dERbneOw5H3YwjrBYrsYcYR1S3jRVfS/M5zXsfUVxUSIGfxxFQdR9RWTsrqqqPyMur3jhCKUV0dDQAeXl5aK2r3UdUp40VeesjwIwjsrN9H0dU1UeUlKQRGqqxWWv+3VFUVBTh4d7HERkZtRtHREa6jyOsVigo1OzZk0VhoW99RGhoGFFR3scR/ugjoqPN39vucP29a9pHVOTLZw1v52tFUVFgURaiohO9npPV6SMq488+4uD3Tn2MIw7VR1T1/j6c4wiovI8IC4PYGIg/xHfD9flZw5fPXYH+WSMlJcWn41dGgrvqUFqaZsgl/nl5w8Ph+4XuHcqKvzS3TTD1n3oKPPOUe/lfKzU7d5oOJeJANgGLxXTkSpmOPD9fk5dvsmbl5UFuriYtDfbshb37ID3dBGM9+7TilG7ub/bzLnCSd6DvXThPER3tKk9N1Vx7fc2ee+NGcPzxcHxXxQldoVkzz8k8h8MEZ5Vl+fr0Y0XjRu77DBjkLF+SZ/5Xirg4z4xnrVqayUKrDwMUb1I3OHn3ffjrL8jMqnw/m81MWD5wHyQlel4g6pNMmojKyLkhKiPnhqiMnBtHL6dTs3EjLFsB61M1mzdDWhpk57gC/GNjFclJFuLiHCQnmzFgSorJzJWc5P+g9737NH8u1Xz3vclukZ4Be/f6/TCHRVwstGpl/rVupYiL0+zeBaecomjT2vzy7bvvTZbc665xfy3379dcfKmmeXPo11cxcoR7eVGRprAQ0tLN3yQmxlVut5sfUJRlB5n7hXu2WadTc9Y52mQkU/DT98ptnL18hWbc7eYEOPkkz8xehYWa4hJFq5bmC2fpN0RFck2pWxLcFXyOlO/dgum9nZlpgqd9nWQ/HLxNHgWa6GgIDdWEBHgGT29LjQXT+RpICgt1rbLL1TWLxUxyHSpzbiCoaT+klCqfjMrNza3zczZY+qBAbyMERzu9BXfVRl31sXL99o9gaCMcvnbWpn8NhteyYhsDWUhIcL2W9dXGQ52vgdDG6giGdgZDG/19/a4LR+LnLn9/7ybLMtahsqVZaiMiwrzRoqNh9X9OQkMUKBOw1bqV5p03FMkNzNKIBzvxBMWJJ7hvM2+KEACyspSXLFrub+jSUs2+/SaLVkUlJZpGjYB9ZpLs4IDIyoIgrVZISoSkJGjWFFq1UrRuBW3bQqOG5tibNml+/gWWLtOMvRnapagKj1d06qhZuszc37zFTD5VdOvNiogIOKaxZ7ug8iUdq0NrE/y2ZSts3WYmLVeugl2VZOgC80VB+3Zw6TA4+yy8Rv0KIYQQQhwJLBZFSopZcrriuNLpNJlsLRZFcvLhDeBp1FAx6ALFoAvMfa01e/fB6v9g9WrNj4tMQFN1DL0I2rZRLF+h+eFHs81iOXyZvrJzYOUqDiw76XrtXpmpsVigYQNo1w66n2J+3R8f7xp3LvrJtHPLFti2TXPwuH/GS5o5c83tJx9T9OntKrPZFB3au5a7XLceenR3lVssimenQ0yM+dxw8HA3KQnOHwB//21+yHGw736A6c86OeP0HEZcGUE7//6gSQghhBABorgI8mu5vEtdiyc4lhoL9MCpsowahYWBO3kUEgLFJbp85YxAZbWadh48fhdCCCHqUqAGqIC5hgshaiYkxD+xK3VJa439wLqdR0JgV12Q4K46FBEBo65VWCxlWbPAZgXLgdtWi1m2MDcfCvLNhTK/AHIPLF+YkWEmmnbvMfXdcDNwUArluFhNcgNo3QrapZh/7dvhlkWrNkJCFE2O9dweGqp4+w3XUokHZ9hq2tRk+woNNa9DZIQJUIuN5ZDLIH70iebrheb2H3/iMblzTl9F69aaDu0V7b1M/Jw/oObPvbhYk51tXvesA//MfU1GhslitmOnyfJQnSx7Vit0aA9DBsPZZynCwuTDtxBCCCGOXhaLGRP7ssSivymlaNzI/ECg71mK28aa7LA7dmj+/sf8eGDPHjMOz8oyY/P8AhMY1eNURa+eipNPguM6m/refFtTi1WAvIqMNIFaUZFgCzGZYffvp8qJJ6fTZN/dsxf+9ws89QzYbE4S4s3YvLDQZJG12yEp2UwIVsxKYavw4d5bZrMzz1C0aK7p1EmR0taz/KQTK//btmyhuOduU+5weH4wX7DQBP/9uKiU3r1CJbhLBByHQ7N7t8mK17aNyUAohKg9h8OB1lq+tD0KBepkYSWrjwSkoiLz/WWgMhk1zO1A/XuHhARHwGHF11IIIYQQQghfFRVrHIGcDFwpSkt1UPzYpr5IcFcNZGdrFv3smlQpm5sq/79sxwrbo6OhoAAyszS5uZCbAzm5ZjmYffugxLeldV1tyjH/Nm6E7743X4ZZLdCpk6b7qYpTTzHBXv5aftAbm5d06tHRilO6ed+/sND86n/ZCk1iguLKy90ff+opiq8Xmufy51LNiCvdyy8YoKjql0p2u3mts7LNhFz2QcFa2dlmgiw72/WvsJa/dIuMhKZNoHlzuGCAyZrm7XURQgghhBCBx2pVtGihaNHCe7ndbgL+D2Qyp8mximEXm9uFheaHAmXz0jabIjraZNaNioK4OEhM1KAhI1OxbRts3qLZstWM4dMzPI9XUGAyxQI8dL+i79kKrU0bNm02wVA5uSYQLS2t8qy5djvsTzP/KvrgQ/jgQ01IiCY83Cw/VFDAgQA8ePX/NG++oznzdLhsuMLphEuGmjH4b0s0X82F+HgnFgWRUQqLgtBQ8y8szHU7Lhbi480PQyq+1hUVF+vyX1yGhMB554aCdh+cz/5M07YNdO7kXpcQh8t/a+CmseZN/tRURc/uh3iAEKJatNYUFmoys8BLavmAIBlzRKAL5MCpYBKoryME32sphBBCCCECU6D/sEEB9lInYJExcCUkuKsKJSWaggLX5MTEyZrV/x3eNihlljFJTDRBW1qbf7l5kLYfSrxkkXI44Z9/4Z9/NbPeMNmyTumm6XGqovupZoKlPq1PhbsmmS/tmjfTHsFd3U7W9OsLHTuaX0Wv+luTlwf5+ZCXD3l5kJevyc8z9/MPbCsL4MrNrfvnEB4O5/WHli0Vx3Uyy0pKMJcQQgghxJHJZlM0bOi97Oqrqv7hgWHKmzWD47u67gOkpWnWroO16w78v9Y9C0OH9gdqUIqkJIiM1Ey402yLi4VF3yn27YO/Vmr++NMs2ZieUb058tJS8+/g8XNhofn35Rz4co4mNBRGXwdNmsC332l+/l/FvQ99oBNP0LzwnPtajRs2arZth+QkmDxRYXfArl1RxMdZyMpy7bd3n+b5F8wxkpLgi9mHzgQsRE3Z7eaz/u9/aP5cCjOeVURFuc6ztm3MZ3OtzedwIYT/FBaa73ICNLZLMuYcZSpbqkSWBxFCCCGEEEIcKQL1hw1KQWRUfbcisElwVxWWLTcBXQCn9a59li1v4uOgYcMD/xpAw4Zm4qjRgfsNGlQeNKS1yVC1axes3wDrUzXr1sG69WZZljI5OfDDj/DDjxrQdGifxWl9QjnheE3HDrpOfv0++zPNqr81qanwzptmecbMLM36VEhNNVkBnP/P3n2HOVG1fRz/zfbKFrp0kEWlSC8iojQREWmCUh8QEREVFbH7iA3rowIqiIiCvIoUERRFBClKF5AiTXpv23vJvH/EDRs220sS+H6ui4spZ87c2ZyZTCb3nGORjh2XxjxmsQ5PGWftVSDzhLJ8he2VFnt8l/P3s/YykFt35t5e0o03Su3aGmrTRrqmMj8qAQAAoGjKlTN0cznp5rbWa0vTNHX2nLRvn3TgH1PXXDZE+omTl6bDwq2JTpUqSXd0NXRHV2nR96befb94r59TU6WPpxa+Tj8HQxz9tsrUl7Ptl4WHJWj6jCSFh2eoXDmpfDlDhw9f2u8N12VP7Pp+iam535p69mlDDRtwfY78i40ztWGjtG69NTEya5Ljlj+l9rdcmvf3N9S8man0dOvDUwCKmem6N5d5Wvjq43Cokn+HB5GsD5o6OxuRHuUAAAAA4OpDclcusiZz+fhIE1839MtyKTHROuzK/gPS5i3W9dfWkVq2uPTd3jSlkyetyUqhoVKd2tZensoEW28Gh4RYk7f8/Ar/JdwwDJUpY63vuuukzC/0cXGm/twqbdxsfer47Fn77fbuy9DefdaxJX28pXr1TDVsIF13naGa1a1P5Pv65hyXxWJq6zbrk83R0VKXzoZq1bS+1r/3mNq8WVq99tLwlbffab0JnpPtfxX6T1Akr78iXX+doZAQ6+uNijZ1V0/7mzO1akqNG0utWhhq1tR6Ux8AAAAoKYZhqFJFqVJFqf0t2a89fX2kbndIJ05IlStl3z4th+tuT08pLEwKD7N+Pwnwlw4clFJTpOQU6xCOGRnWBzAyMor3N8tNW6T7Bll0zTXW6+tKlaTtO7KXi4wyFRmVtW9waxAN6lt76m3e/NLf4423LIqKsn7XOXZc+nmZqQP/WHszy/y+FRb6bw/IxTBEfWYvHYbB9wF3duy4qT/WSX+sM7Vzp7XXa0c2bDSzHX/vv+vhuDAA4IriaKgSQ1JamvVDIzGhNB5DzR09ygEAAADA1Yfkrlx4eEhlw6WUVGsXcJUqGhoySMpMopo23WJL7urYwdDggfY3f9/7wKK1f1in27Q2dMft9uv/7xtT//xjka+vNGigoSrX2K9f8J2p5GRrF3R9etknXFkspr5bZA3Fy0u6+65L64KDDbVsYSo+wVD9G0wlJ0kWi6ENm0xt/8s+aS01LXMIRynrrQnDyDpt/WexOP6R57vvc0/eym1dXjJ/O3G0384dpXbtDAUFSoGB1l7Qnnne1OEj+as7LMxQhQqX/m5hoYba32KqXFmp8Y2GGt9oLQMAAAC4iurVDT33dM7XqJ06Sg0bGPL0tPZM6+cr+flLwUEFS0zKyDB17py1pzDrP1MnT1qTyk6esg7nmP+6pOMnrP82bsr/dpl27bZ+N/t4qqkZM015e0tRUfa9FX+/RMrpp9Z6Eab8/Kzl0zOkjHQpJtY67L1hWLeyZFgT4zIT2yyWSwlvGenWJKBy5aQXnpWaN+M7gjua87WpT6bl/HN85UpSm9bW7+5Nm5RiYAAAl5S1NznDkHx8reM1pqQ6veMuepQD4FQ5DWFbWAx9CwAAkD8kd+XilnaGbmmX84375s0MyTB19ox0Xb3s67P2mFWxYvb1f6wz9de/T6zf3SP7+i9nmYr8txvwO+8w5JtlOBOLRXp/kvVC19fXPrlLkqKipTfftq6vVk36erahfvcYSkmRDvwTqHkLkrViZc6/yGS9hs7rerogyVteXpKfnxQcLFW5RurW1VB4uHU+KEjy9jYV4C8FBBjZhlxJTzcVHy/bv/LlpbJl7cu0u9lU7drW9XFxUmKi/f49vS49zR8QkD2+11/haWwAAAC4r7BQQ2GhRa/H09NQ5cpS5cpSi+ZS1mF/MjJMnT//b9LXCWvi14mT0rnz0oXzsn2HKU4Wi/VH1sIM27Vvf/HEcOGC9NPPppo0ts57eNCTlytITbUOZXrmjHTqtHT4sHV+4mv23+3qXmu/nYeHtVe4tjcZuqmNVLMG7ycAAACQHw6HsC2sEhj6luFrAQDAlYjkriJo1tRQs6Y5Xxz27mnoxkbSmbOmatXMvj5r8pefX/b1WS9hjctyjrJe33o4CiGH9X5+htrd7KOAAMOW3FWnjtS2jXT4sHVIk6PHcnpFOfP3l8qWtQ7zEh1tna5YwTrEY61a0rW1pWuuyZ6wlV3O6728DIWGWoeRycnIESRnAQAAACXJ09NQpUrW4RWbN5Muv4ZPTzcVFSVduChdvGjtWXf/AenIUenUqfwlaPn7Wb9jpKZZex5OS3NeLxnGv70lV6ok9bjL0JIfpXf/Zw3Gy8uUp6d1vaen5OVp/d/wsH4Pu7OboWFD7f8+H0626M+tl3pI9vCw/z9z2tNTGjY0+3fO9z6wKDHB+uCKp2eW/V4+72mob28pKOjS9omJplasvNRDsvUFXnqdWRf5+0u33Wq/75MnTe3YZf+3uawa27JKlaRGDe2337HT1LFjkuXf3tFkWqfNrP8s1mUtW0i1a9lvP/kji06cNBUbK8XGWntgi8rhR6WoKNOuJ+YG9a0P+jRrJrVtY6h1KykkhB97AAAAgIJyNIRtYZXE0LcMXwsAAK5EJHeVoNatrDeMc0pYeupJQ/HxUnKKVL5c9vX9+hpKTDIlU/L1sV9nGFK/vtab34664g4IkHrcZV1fNjz7+vLlPdT9TkPe3qaqVzN0T59LMZ45Y9HBI9KB/Zd+yAgJkby9JA9P6xAvwUHWYRBDQ629YGUdMhIAAADA1cvLy1D58taediVDN7e9tM5iMXXkiLTtL2nPXlOHDklHjliTuLK6u4c0ZvSlBzdM09RzL5pa+7t1/rlnrA/bZGRYh05MT5ceHG1m67m3qOrfIE372P4Bkl27L/3ckJ5u/ZdTwlp8fPanxc+clQ4dzt/+Y2KzL1u9Or+9o5m68w5DQUGXlkRFS2+9m7+fSypXyp7ctWOX9PrE/G3fuVP25K6ffzG1eEm+Nte4JwzVrmW/bP0GM98PIx08lJl8aBUQYGjJIuXjgSOg+Jw6dUqzZ8/WqlWrdPr0afn4+Kh69eq64447NGDAAPn7+zs7RAAAgEIrTM/KlyuJoW8ZvhYAAFyJSO5yolYtc7+pPHigoZwSw7y8DD06Juftw8IMjX8y5/XVq3nq2fEeDscwr1TJQ5UqSW1b5xoeAAAAABSIh4eh2rWl2rWlzO866emmTp8xFBsbqFOnLDp0OFEN6ttvZxiGQsqYKl/OmsxVvpyhihXsv+80b2YqNVUKDJSCAq3/BwYa1ukg67KAAOtw8FnLeHkZSkgwdf6CdP68tcexCxek8+dNlS+f/TtVaqrk422NIyOPp8EdjfJXkB8rPD2zL8sowBPyl29fkG1LQkHSqlId/FDk65t9mbe3tdfoihWtvYXVqG7o2jrSdfWylyWxC6Vp1apVGjdunOLi4mzLkpKStHPnTu3cuVPz5s3T9OnTVa1aNSdGCQAAAAAAAHdAchcAAAAAwGm8vAxVr2YoNNTaXXF0dLLDh1CeGZ/7EOxvvFr4IdoDAw0FBko1a2Rd6jgRaNjQS0MtWiymLBZr711ZexHLHGLQzy/79k+ONTT6wSzDEf47DOHl/2dkSNUd5Hw8+7Sh5OQs+8u4NJ25/8zpyzsFCgyQeva4NJ/5Z876185cFlIm+76rVpG6d8t5m6wLb7gh+9/vxhsNGYYpw8P61/XwkGRYh7A0sv7zkOrWzb7/hx70UGqqqZAQaw/SZYKt/5O0BVezd+9ejR07VklJSQoICNCDDz6oVq1aKTk5WUuXLtW3336rw4cPa+TIkZo/f74CAwOdHTIAAAAAAABcGMldAAAAAAAUgoeHIQ8P61D2+eWoN7CCuLlt4bcvW9bQuCcKv33DBoYaNij89l06GerSqfDbt2xhFMswLUBJe/3115WUlCQvLy99/vnnatKkiW1dmzZtVKNGDb3zzjs6dOiQZs6cqTFjxjgxWgAAAAAAALi6wj/aDAAAAAAAAMBmx44d2rRpkySpT58+doldmYYPH646depIkmbNmqW0tLRSjREAAAAAAADuheQuAAAAAAAAoBisWLHCNt2nTx+HZTw8PNSzZ09JUkxMjC0ZDAAAAAAAAHCE5C4AAAAAAACgGGzZskWSFBAQoPr16+dYrkWLFrbpP//8s8TjAgAAAAAAgPsiuQsAAAAAAAAoBgcPHpQkVa9eXV5eXjmWq127drZtAAAAAAAAAEdyvssEAAAAAAAAIF9SUlIUFRUlSapUqVKuZUNCQhQQEKDExESdOXMm3/swDKNIMboKu9dhuO7rMiSZ/4bmqjFK7hGnO8eY07SzuPPf0pW4Q4xS4eIs7TbrDn9Ld4hRco84izvGkmiv7vB3lNwjTneIUSq9OIvSXt3hb+kOMUruEacrxJhXe3WFGPPDHeIkxuLhat+7XBHJXQAAAAAAAEARJSQk2KYDAgLyLO/v76/ExEQlJibmex+hoaGFCc0lpaenS5ICAwKUjz+XU3h5WpSRIWV4S4GBrjsAgjvE6f4xZkiSQkP9Sz+wy7j/39I1uEOMUlHiLL026w5/S3eIUXKPOEsmxuJtr+7wd5TcI053iFEq7TgL117d4W/pDjFK7hGn68SYc3t1nRhz5w5xEmPxyUzpCgoKyrU39KtVsf9FwsLCirtKlJAr6YYgihdtAzmhbSAntA3khLaBnNA2kBPaBnJC24CrS0lJsU17e3vnWd7Hx0eSlJycXGIxuTIvLy9VqCBVqODsSAAAAAAAAFyb66blAQAAAAAAAG7C19fXNp2WlpZn+dTUVEmSn59ficUEAAAAAAAA90dyFwAAAAAAAFBEgYGBtun8DLWYlJQkKX9DOAIAAAAAAODqRXIXAAAAAAAAUES+vr4KCwuTJJ05cybXsjExMbYEsEqVKpV4bAAAAAAAAHBfJHcBAAAAAAAAxaBOnTqSpGPHjik9PT3HcocOHcq2DQAAAAAAAOAIyV0AAAAAAABAMWjWrJkk67CMu3fvzrHc5s2bbdNNmzYt8bgAAAAAAADgvkjuAgAAAAAAAIpBp06dbNMLFixwWMZisWjRokWSpDJlyqhVq1alERoAAAAAAADcFMldAAAAAAAAQDFo1KiRmjdvLsma3LVt27ZsZT7//HMdPHhQkjRkyBB5e3uXaowAAAAAAABwL4ZpmqazgwAAAAAAAACuBH///bfuu+8+JScnKyAgQKNGjVKrVq2UnJyspUuXau7cuZKkmjVrasGCBQoKCnJyxAAAAAAAAHBlJHcBAAAAAAAAxWjlypV66qmnFB8f73B9zZo19emnn6pGjRqlHBkAAAAAAADcDcldAAAAAAAAQDE7efKkZs2apVWrVuns2bPy9vZW9erV1bVrVw0aNEj+/v7ODhEAAAAAAABugOQuN3bx4kXt2LFDO3bs0M6dO7Vz505FR0dLknr16qU333wzzzoOHjyo9evXa+fOndq/f78uXryoqKgoeXp6qmzZsmrYsKG6d++ujh07yjCMEn5FKC7F0TZykpSUpO7du+vEiROSpCpVqmjlypXFETZKQXG0jYULF+rZZ5/N1/4mTpyo3r17FyVklJKSOG/s2LFDCxcu1MaNG3X27FmZpqmyZcuqdu3aatOmje6++26Fh4cX8ytBcStq2zhx4oQ6duxYoH3y2eIeivO8cfLkSX399ddat26djh07pqSkJAUGBqp27dpq166d7rvvPs4XbqY428fx48c1e/ZsrVu3TidPnpRpmqpYsaJuuukmDRgwQHXr1i2hV4GSsHv3bq1du1ZbtmzRgQMHdPHiRXl7e6tChQpq0qSJ+vbtq+bNm+e7vjVr1ujbb7/Vjh07FBkZqfDwcDVq1Ej9+vXTLbfcUoKvBEBhnTp1SrNnz9aqVat0+vRp+fj4qHr16rrjjjs0YMAAkt6QI1f8DElKStKcOXP0888/69ixY0pLS1OlSpV06623avDgwbrmmmvyVc+BAwc0e/ZsrV+/XmfPnlVAQIDq1Kmju+66S3379pWXl1e+Xxdc39tvv60ZM2bY5mfNmqVWrVrlug3tFaUpMjJSCxYs0IoVK3T8+HHFxMQoNDRUlStXVvPmzdWlSxc1adIk1zposygNqamp+v777/Xzzz9r3759io6Otl0bNG3aVP3791fjxo3zrIf2isIq7t9VrsS2+OOPP2rhwoXat2+fYmJiVL58eTVr1kwDBw7M1/GJ4lUcbTYlJUVr167V+vXrtWPHDh09elQJCQkKDAxUrVq1dPPNN6t///6qUKFCvmKizeYfyV1urF69ejmuy+/BN27cOC1ZsiTPci1bttTkyZMVGhpakBDhJMXRNnLy1ltv6fPPP7fN8wO8eymOtkFy15WpOM8bqampeuWVVzR//nzldpnx0UcfqVOnTgWKE6WvqG2jMMldN998s92Nbrim4jpvLFmyRC+++KKSkpJyLBMaGqoPPvhAbdq0KXCccI7iah9z587Vq6++qrS0NIfrvb299dxzz2nAgAGFihOla9CgQdq8eXOe5e6++2699tpr8vHxybGMaZr673//q7lz5+ZYpn///powYQIPKgEuZNWqVRo3bpzi4uIcrq9Vq5amT5+uatWqlXJkcHWu+Bly7NgxjRw5UocPH3a4Pjg4WO+9957at2+fa8zz5s3TK6+8otTUVIfrGzdurKlTpyosLCzXeuAe9u7dqz59+ig9Pd22LLfkLtorSttPP/2kl19+2fZDryMdO3bUxx9/7HAdbRal5fTp0xo5cqT279+fa7n//Oc/euaZZxy2N9oriqq47n9diW0xJSVFjz32mH777TeH6z08PDRmzBg9/PDDucaC4lXUNrt3714NGDBACQkJuZYLDAzUa6+9pm7duuVajjZbMKT3XiEqV66sOnXq6Pfffy/Qdl5eXrrxxhvVtGlTRUREqFy5cgoPD1dsbKwOHTqkuXPnav/+/dq0aZNGjRql//u//5OHh0cJvQqUhMK2DUf+/vtvffnll/L19ZWXl1eeJ264tuJoGzNmzMg187pSpUqFrhvOU5S2kZqaqocfflhr1qyRJDVv3lw9e/ZU7dq15eXlpZMnT2rfvn36+eefiztslILCtI2KFSvmK5F82rRp+uGHHyRJPXv2LGyIcJLCnje2bdump59+WhkZGfLw8FDPnj3VsWNHVahQQadPn9Z3332n3377TdHR0Ro9erSWLFmiqlWrltCrQEkpbPv48ccf9dJLL0myfpEfNmyYWrduLR8fH+3Zs0efffaZjh49qldeeUXh4eHq2rVrSYSPYnT27FlJUoUKFdS1a1c1b95clStXlsVi0fbt2/X555/r7Nmz+v7775WRkaH33nsvx7o++OAD203PG264QSNGjFC1atV0/PhxffbZZ/r77781d+5chYWF6fHHHy+V1wcgd3v37tXYsWOVlJSkgIAAPfjgg2rVqpWSk5O1dOlSffvttzp8+LBGjhyp+fPnKzAw0Nkhw4W42mdIQkKCHnzwQduPEP369VO3bt3k5+enjRs3atq0aYqLi9Njjz2mb775Rtddd53DetauXauXXnpJFotF5cqV06hRo3TjjTcqOjpa8+bN0y+//KLt27frkUce0axZs7gv6+YsFoteeOEFpaenq2zZsrp48WKe29BeUZoWLVqkZ599VhaLRWXLltV9992nZs2aKSQkRBcuXNCxY8f022+/5drzBW0WpSE9Pd0usatevXoaNmyYatWqpYSEBP3555+aOXOmEhMT9cUXX6h8+fIaMWJEtnporyhORfld5Upsi88995wtSaZVq1YaMmSIKlSooP3792vatGk6duyYJk2apAoVKuiee+4p8N8MRVeYNhsfH2/LD2jatKluu+02NWjQQKGhoYqMjNQvv/yi+fPnKyEhQePGjVNgYGCOiVm02UIw4bY+/PBDc+XKleb58+dN0zTN48ePmxEREWZERIT59NNP56uOtLS0XNenp6ebY8aMsdW7YsWKIseNklccbeNy6enpZq9evcyIiAhzypQp5m233WZGRESYt912W3GGjhJWHG1jwYIFtm2OHz9ekuGiFBXXeeODDz6wbTdjxoxcy6amphYpZpSOkvhMuVx6erp58803mxEREWaTJk3MxMTEYqkXJas42saDDz5o2+arr75yWGbixIm2Mq+++mqxxY+SVdT2kZiYaLZp08aMiIgwGzdubO7bty9bmbi4OLN79+5mRESE2bZtWzMhIaHYXweK18iRI80ff/zRTE9Pd7j+4sWLZpcuXWxtZfPmzQ7LHTlyxLzhhhvMiIgIs3fv3mZSUpLd+sTERLN3795mRESEecMNN5hHjx4t9tcCoOAGDRpkOy63bt2abf306dNtx//kyZOdECFcmat9hkyaNMm2r+nTp2dbv3XrVtt+Bg8e7LCOtLQ0s3PnzmZERITZtGlTh/t6+eWXbfv57rvvHNYD9zFz5kwzIiLC7Nq1q/nee+/Z3tsNGzY4LE97RWn6559/zAYNGpgRERHmgAEDzNjY2BzLpqSkOFxOm0Vp+fnnn23vXf/+/R1eH+zcudOsX7++GRERYbZo0SLb76G0VxSH4rg/eiW2xY0bN9rKPPjgg9mO0YsXL5q33nqr7fiMiYlxWA+KX1Hb7J9//mk+9thj5oEDB3Iss3z5crNevXpmRESE2alTJ9NisTgsR5stONJ63dijjz6q2267TeXKlSt0HXmNLerp6WmXzZ6f7s/hfMXRNi43a9Ys7d69W7Vq1dIDDzxQbPWidJVE28CVoTjaxvHjxzV9+nRJUu/evTV8+PBcy3t7exd6Xyg9pXHeWLdunc6dOydJuv322+Xv719i+0LxKY62sXXrVknWYRcHDhzosEzWbo4zy8P1FbV9rFmzxtaTwZAhQxQREZGtTFBQkG2o6PPnz+u7774rfMAoFdOmTVO3bt3k6enpcH14eLieeeYZ23xOPX1+8cUXtqGMXnzxRfn5+dmt9/f314svvijJ+kT3l19+WRzhAyiCHTt2aNOmTZKkPn36qEmTJtnKDB8+XHXq1JFkvQeR05C8uDq50mdIWlqaZs2aJUmqU6eOw+++TZo0UZ8+fSRJGzdu1K5du7KVWb58uY4ePSpJevDBB1W9evVsZcaPH6+QkBBJYuh6N3f69Gl9+OGHkqSXX345X/dEaK8oTa+++qpSU1MVFhamyZMnKzg4OMeyOQ19S5tFacl6f2jkyJEOrw8aNGigW2+9VZIUExOjQ4cO2a2nvaI4FMf90SuxLX722WeSrHkGL7/8crZjNDw8XOPGjZNkPT7nz5/vsB4Uv6K22aZNm+qDDz7Qtddem2OZTp06qUuXLpKswy7u2bMnWxnabOGQ3IU8Zf2BNadxSnFlO3nypCZNmiTJevMhpy9vAK5uc+fOVVpamgzD0OjRo50dDtzIokWLbNO9evVyXiAodZk/2uY21GJwcLDCwsLsyuPKt3PnTtv0LbfckmO5li1bytfXV1LOP+LCvbRs2dI2ffz48WzrTdPUihUrJEm1a9dW48aNHdbTuHFj1apVS5L066+/yjTN4g8WQL5lHreSbDdnL5c5RLNkvVmamQwG5FdpfYZs2rRJsbGxkqxDyuc0rEfv3r1t08uXL8+2/tdff7VN5/Q9yN/f3zb09P79+3XkyBGH5eD6JkyYoMTERPXq1UutWrXKszztFaXp4MGDWr9+vSRp0KBBCg8PL3AdtFmUpqz3h6pVq5Zjuazrsv6+SXuFq7gS22JCQoLtM+Wmm25SpUqVHNbTuXNnBQUFSZJ++eUXh2XgvrJe7x47dizbetps4ZDchTz9+OOPtunatWs7MRI4S+bNh7vvvlutW7d2djgAXFTmj+oNGjSwfXG2WCw6c+aMjh8/ruTkZGeGBxcVHx9v+wJbpUoVtWjRwskRoTTVrFlTknTixIkcy8THxysqKsquPK58MTExtuncniTz8vKyPXm1bds225OOcF9Zb9IbhpFt/YkTJ3T27FlJyvMzI/NH/jNnzuR6ngFQ8rZs2SJJCggIUP369XMsl/W4/vPPP0s8LlxZSuszJLM9Zy3nSIMGDRQQECDJcXvOXFarVi2VL18+z1hyqgeub+nSpfrtt98UGhqq8ePH52sb2itKU9YHZTJ//JSs38uOHDli+06eG9osSlPW+0OOErovX2cYht02tFe4iiuxLe7YscOWTJlbLD4+PrZktp07d/JQ7xUma0Kto8Qt2mzhkNwFhyIjI7Vt2zY999xzmjZtmiTrcDl33XWXkyNDafvxxx+1evVqhYSE6Omnn3Z2OHAxzz77rG666SY1aNBArVq1Ur9+/fT+++/bLkZx9YiMjLR9WW7cuLHi4+P1+uuvq3Xr1mrfvr06deqkZs2aadCgQVq1apVzg4VLWbZsmZKSkiRJd999t8MfYXDl6t+/vyQpOjpaX3/9tcMyH330UbbyuPJl7T04Li4ux3KmaSo+Pl6S9QfdzG644b42b95sm3b0cNHBgwdzXZ9V1vWXD8EBoHRlHrvVq1eXl5dXjuWyHrdZj3cgP0rrMyS/9Xh5edkefLq8PSckJOjMmTMFjoXjwv3ExsbqjTfekCSNGzcu3z0i0V5Rmv766y9J1p6z69Spo8WLF6tHjx5q2bKlbr/9drVu3VodO3bUlClTlJCQ4LAO2ixKU/fu3W29p0yfPl0ZGRnZyvz999+2+9B33nmnrbxEe4XruBLbYtbY8qonszey9PR07uldYbL2xF2U72a0WXskd8Fm8ODBqlevnurVq6c2bdro3nvv1YIFC2SapkJDQzVlyhSVKVPG2WGiFMXExNhuPjz55JMqW7askyOCq9m0aZMuXryotLQ0RUdH66+//tLUqVPVuXNnffPNN84OD6Xon3/+sU37+fmpV69emjVrll3PK+np6dq8ebMefPBBTZw40RlhwgVlHZIxcxgeXD3uuece28MDr7zyil544QWtXLlSO3fu1C+//KIxY8bo888/lyQ98MADuvnmm50ZLkpRnTp1bNNZf6i93N9//63ExETb/OnTp0s0LpQsi8WiTz/91DZ/xx13ZCuT9T3OqZt0R+tpG4DzpKSk2Hr8yOu4DQkJsT2Vm3mTFsiP0vwMyWybAQEBed4rrVy5siTrA1FZn14/c+aMbTidgsTCceF+3nnnHZ0/f15NmjRR3759870d7RWlKfO+XpUqVfTqq6/qqaee0r59++zKnDhxQpMnT9a9997r8MFe2ixKU3h4uN588035+flp69at6tu3rxYtWqTt27dr3bp1mjJligYNGqS0tDRdf/31euaZZ+y2p73CVVyJbTFrbBUrVsxXLJdvB/e2d+9erV69WpJUt25dXXvttdnK0GYLJ+dH5YB/DR48WA899BCJPVeht99+WxcuXFCTJk3Ur18/Z4cDF1KtWjV17txZTZo0sX0gnjhxQsuWLdOyZcuUkpKi//73vzIMg15WrhJZk7i+/PJLpaamqkmTJnryySfVsGFDpaSkaM2aNXrrrbd0/vx5ffHFF6pZs6buu+8+J0YNZzt16pQtaaNJkyaqUaOGkyNCafP09NS7776rDh06aPr06Zo3b57mzZtnV6ZVq1YaOXIkiV1Xmfbt28vb21tpaWmaOXOm7r777my9HFgsFr3//vt2y3J6ihzu4YsvvtCOHTskSZ07d1bDhg2zlcn6HmcmgOQkaw9wWZMAAZSughy3kvXYTUxM5LhFgZTmZ0hmPfltz1m38/HxKXAsWddzXLiXLVu2aN68efLy8tKECRMK1FM17RWlKfO+3qFDh7R3716VKVNGTz75pLp06aKgoCDt27dPkyZN0po1a7R//3499thj+r//+z+7YZZosyhtnTt31oIFCzRz5kwtWLAg28gz5cqV06OPPqp+/fplawe0V7iKK7Etct/m6paamqrnn3/e1qPi448/7rAcbbZw6LkLNm+88YaWLFmixYsXa86cOXr22WdVs2ZNzZkzR88//7wuXLjg7BBRijZv3qwFCxbIy8tLL7/8MsNkwaZz585avny5nn76aXXp0kWNGjVSo0aN1K1bN3344Yf65JNP5O3tLUmaOHGizp8/7+SIURqyXsSkpqaqfv36+vLLL9WiRQv5+fkpJCREd911l7766ivbxdGkSZOUnJzsrJDhAhYvXmx7soJeu65eBw8e1A8//KD9+/c7XL99+3YtWrRI586dK+XI4EyVKlXSvffeK0k6e/as7rvvPv3666+Kj49XSkqKtm/frgceeEBr1661XXdI4nPFjW3atEnvvfeeJKls2bJ6+eWXHZZLSUmxTWd97x3JvNkj0TYAZyrIcStdOnY5bpFfpf0ZkllPQdrz5fvP+sQ5n2dXptTUVL300ksyTVNDhw5VvXr1CrQ97RWlKSkpSZL1vfb09NT06dN17733Kjw8XD4+PmrYsKGmTZumW265RZK0bds2/fLLL3Z10GZR2tLS0rRkyRL99ttvtvuLWV24cEE//PCD3dBgmWivcBVXYlvMWmfWcgWtB+7plVde0a5duyRJvXr1UseOHR2Wo80WDsldsKlWrZoiIiJUr149NW/eXP/5z3+0ePFitW/fXr/99pv69u1LN59XidTUVL344osyTVNDhgzRdddd5+yQ4EKCg4NzTfa77bbb9PDDD0uy3hiYP39+aYUGJ/L19bWbf/zxx7Mtk6SaNWvafqyPjIzUunXrSiU+uKbvv/9ekvWCuFu3bk6OBs6wZcsW3XvvvVqxYoUqVqyot99+W3/88Yd27dql1atX66WXXpKfn5+WLFmie+65RwcPHnR2yChF48eP12233SZJOnLkiB5++GE1a9ZMjRo1Uv/+/fX777+rWrVqGjx4sG2bwMBAZ4WLIjhw4IDGjBmj9PR0+fj46IMPPlC5cuUcls16fZGWlpZrvVlv8vj5+RVPsAAKrCDHrXTp2OW4RX444zMks56CtOfL95/1RwE+z65M06ZN08GDB3XNNddozJgxBd6e9orSlPX97tq1qxo3bpytjIeHh8aPH2+b//HHH3OsgzaLkpaYmKhhw4Zp6tSpio6O1ogRI7R06VLt3LlTf/75pz7//HM1a9ZMO3fu1KhRo/Tll1/abU97hau4Etti1jqzlitoPXA/06ZNs43KUb9+fb300ks5lqXNFg7JXciVr6+v3njjDfn7++v06dN65513nB0SSsEnn3yiw4cPq3LlyoW6+QD069fPlgCWOeQarmxZf0z39vZWq1atcizbrl072/TOnTtLNC64rh07dujQoUOSpA4dOuQ5rjquPKmpqXriiScUGxur8uXLa+7cubr77rtVrlw5eXt7q1KlSho4cKDmzJkjX19fnTlzxu5GMq58Pj4++uSTTzRx4kTVr1/fbsiPMmXKaPDgwfruu+/stgkJCSntMFFEx48f1/DhwxUTEyNPT0/973//U8uWLXMsn/WaI6/uzzN7IJDy1807gJJRkONWunTsctwiL876DMmspyDt+fL9FySWrOs5LtzDwYMHNW3aNEnSCy+8UKj3jfaK0pT1Pc7sncuRunXrqmLFipKy39OjzaI0TZ482fa7w+uvv66nnnpKderUkY+Pj4KCgtS2bVvNmjVLrVq1kmmaevPNN7V3717b9rRXuIorsS1y3+bq9M033+h///ufJKlWrVr67LPPcn1PabOF41Xqe4TbCQ8PV9OmTfXHH39oxYoVSk9Pl5cXTedKNn36dElSmzZttGrVKodlMk9uiYmJtqd0wsPD1aZNm1KJEa6tbNmyCgsLU2RkpM6ePevscFAKKleubJsuV65crl2XVqpUyTZ98eLFEo0LrmvRokW2aYZkvDqtWbPG9hkxaNAglS9f3mG5unXrqkePHpo3b5527dqlvXv30qvoVcQwDPXu3Vu9e/dWQkKCLl68KG9vb1WoUEGenp6SpH379tnK16lTx1mhohDOnj2rYcOG6dy5czIMQ2+88YY6d+6c6zZZryPy6lk66/qs1yoASpevr6/CwsIUFRWV53EbExNju9+Q9XgHLufMz5BKlSrpr7/+UmJiomJjY3N9UOX06dOSZBvarKixcFy4hy+//FJpaWmqVq2akpOTs/VwJFl7ncu0YcMGXbhwQZK1R/yAgADaK0pVpUqVdP78eUmyJW/lpHLlyjp79my2e3q0WZQW0zS1cOFCSdZRInr16uWwnJeXlx577DENGDBAFotFCxcu1HPPPSeJ9grXcSW2xazzZ8+eVcOGDfOMReK+jTv74YcfNGHCBElSlSpV9MUXXyg8PDzXbWizhUOGDvIlLCxMkjUbMTIyUhUqVHByRChJmV0XLly40HaRnJOoqCg98cQTkqSWLVuS3AUbR+Pc48pVo0YNeXt7Ky0tTRkZGbmWtVgstmmSha9OaWlpWrp0qSRrMmjW3txw9cjsuU2SbrjhhlzL1q9f39al86FDh0juukoFBgZmG3YxNTVVO3bskGQdZj6vGwdwHZGRkRo+fLiOHz8uSXrxxRfzlex77bXX2qaznkccybq+du3ahQsUQLGoU6eOtmzZomPHjuX60GDW45aEXeTE2Z8hWdvmoUOHHA5fJknp6em2GC9vz4GBgapcubJOnz5doFg4LtxD5nAtx48ft903zc3HH39sm16xYoUCAgJoryhVdevWtfXElfW+nSOZ9/0u/yynzaK0XLhwQdHR0ZLyvp/UoEED23TW95r2CldxJbbFy2PJzeHDhyVZP1OqV6+ea1m4phUrVujpp5+WxWJR+fLl9cUXX+Qr+ZQ2WzgMy4h8OXfunG2abhEB5OXixYu2L1gkg14dvL29bRdfFy9ezLXr0mPHjtmm83oaEFem1atXKyoqSpLUvXt3kvyuUpm9LknKMyk0PT3d4XbAmjVrFBcXJ0m64447nBwN8isuLk4jRozQP//8I0l68sknNXDgwHxtW7VqVdv1ZV7Df2eur1ixoqpWrVqEiAEUVbNmzSRZe//evXt3juWyHtdNmzYt8bjgflzhMySzPUvSpk2bcqxj165dtu/GjtpzZj2HDx+29ZjjSNZ9cFxcPWivKE3Nmze3TWe9b+dI5g+sl9/zpc2itBTkflJmRwaSfUIi7RWu4kpsiw0bNpS3t3eesaSmpmr79u22bXIbDQauaf369Ro7dqzS09MVGhqqmTNn5jvhiTZbOCR3IU9nz57Vtm3bJFm70gsKCnJyRChp+/bty/NflSpVJFnbROay2bNnOzlyuIq5c+faeu5q0aKFk6NBaenSpYsk65fqFStW5Fhu+fLltumsF3C4emQdkjGnrtNx5ct6E2LLli25ls16c4MEDWRKT0/XpEmTJFmTjPv16+fkiJAfSUlJGjlypC25Y9SoURo5cmS+tzcMQx07dpRkfZou86bK5bZv32572q5jx44yDKNogQMokk6dOtmmFyxY4LCMxWKxXSeWKVNGrVq1Ko3Q4EZc5TOkZcuWCg4OlmT9bpNTz+VZe8PPegxkyoxFkr777juHdSQlJennn3+WZO3ZoVatWg7LwbW8+eabed5bHTNmjK38rFmzbMszv+/QXlGaOnToYPtRM+t9u8tt2rTJ9kBv1oQwiTaL0hMaGmr7nXLbtm12DwReLqf7SbRXuIorsS0GBQXZRnlav359jsPlLV++XPHx8TnGAte2detWjR49WqmpqQoKCtKMGTNUt27dfG9Pmy0ckruuYocPH9b69etzLRMXF6cnnnjClt3eo0eP0ggNgIs6ceKE/v7771zL/Pbbb7bu5H19fdWnT5/SCA0uoE+fPipbtqwk6f3339eFCxeyldm4caO+//57SVJERATJXVeh6OhorVq1SpK1DVx//fXODQhO06ZNG/n7+0uSvv76a+3bt89hudWrV9tuLlesWJE2cxWJjIxUUlKSw3Wpqal67rnnbO1mxIgRqlatWmmGh0JITU3VmDFjtHXrVknSkCFD9Pjjjxe4nqFDh9qeun711VeVnJxstz45OVmvvvqqJOvT2UOHDi1i5ACKqlGjRrYfgRcsWGB7iDCrzz//XAcPHpRkPT9k/sgMSK71GeLj46PBgwdLkg4ePKgZM2ZkK7Nt2zZbImPLli3VqFGjbGU6d+5se7J92rRpDnvLefvttxUTEyNJuv/++/P9OnFloL2itISFhalv376SpD/++EM//vhjtjLx8fF64403bPP9+/fPVoY2i9Lg4eGhW2+9VZJ11KGpU6c6LBcTE6N3333XNp+5TSbaK1zFldgWhw8fLsn6YOaECROy9bIXGRlpOz7LlCmje+65x2E9cE179uzRgw8+qMTERAUEBOjTTz+1GwY3P2izhcMYOG5sy5Ytdg00c3gjSTp69KhdJqMk9e7d227+3Llz+s9//qPrrrtOnTp1Uv369VWuXDl5eXnp/Pnz2rp1qxYsWGDrwi4iIqJAT8PBeYraNnDlKmrbOHnypIYMGaImTZrotttu03XXXaeyZcvKNE0dP35cy5Yt07Jly2wZ1k8//TTD7rmJ4jhvBAYG6oUXXtATTzyhkydPqm/fvnrggQfUqFEjpaSkaO3atfriiy+UkZEhLy8vvfzyy/Si4QaK+zPlxx9/tCWN02uXeytq2yhTpoweeOABTZo0SQkJCbr33ns1ePBg3XTTTQoJCdGFCxe0YsUKzZs3TxaLRZJ12B0PD55PcQfFce7YtGmTXnzxRd1111266aabVLlyZSUlJWnPnj365ptvbMMx3XzzzRo9enQJvRIUpyeffFK///67JKl169bq27ev9u/fn2N5b29vh08j16pVS8OHD9enn36qXbt26b777tMDDzygatWq6fjx45o+fbrtgYT7779fNWvWLJHXA6Bgnn/+ed13331KTk7W8OHDNWrUKLVq1UrJyclaunSp5s6dK0mqWbOmhg0b5uRo4Wpc7TPk/vvv19KlS3XkyBG98847OnbsmLp16yY/Pz9t3LhRU6dOVXp6uvz8/PTcc8/lGOMLL7ygUaNGKT4+Xvfdd58eeughNWrUSDExMZo3b56WLVsmydrr9d13312QPxmuALRXlKZHH31Uq1ev1qlTpzR+/Hht3bpVnTt3VlBQkPbv36/p06fbeo257777HP7ASptFaRk9erRWrFihpKQkTZ48Wbt27VKvXr1UrVo1paSk6K+//tKXX36pU6dOSbI+YHjzzTfb1UF7RXEojvtfV2JbbNOmje688079+OOPWrlypYYNG6ahQ4eqQoUK2r9/v6ZOnWo7Pp988kmFhITk8BdGcStqmz127Jjuv/9+xcbGSpIee+wxBQcH5/rdrGzZsraOIbKizRacYebUxxlc3jPPPJNj93KOXN4bwsaNGzVkyJB8bXvrrbdq4sSJCg8PL1CMcI6ito386NChg06ePKkqVapo5cqVBd4ezlFa5w1/f389++yzDp/ggmsqzvPGnDlzNHHiRFsCz+UCAgL0zjvv0NWumyjuz5R+/frpr7/+kqenp1avXq3y5csXNUQ4SXG0DdM0NXHiRM2aNSvHrpcl65e0xx9/nCcT3UhxtI+ff/5Zjz32WK7b9e7dWy+//LJ8fX0LHCNKX7169QpUPrfvGhaLRS+88EKOw7tJUt++ffXqq6+SFAq4kJUrV+qpp56yDWVwuZo1a+rTTz9VjRo1SjkyuDpX/Aw5evSoRo4cqSNHjjhcHxQUpHfffVe33XZbrrF+++23euWVV3L8Dt2oUSNNmzaN+7JXmMmTJ2vKlCmSrMMy5jQULe0VpengwYN66KGHdPTo0RzL9OnTRxMmTMixh03aLErLunXr9MQTT9glJjjSunVrTZo0yeEP8bRXFFVx3Tu/EtticnKyLXHYEQ8PD40ePVqPPPJIrrGgeBW1zS5cuFDPPvtsgfY5ZsyYHN9n2mzB0HPXVaxp06b66quvtGHDBv355586ffq0Lly4oOTkZAUFBalKlSq68cYb1b17d4bNAiBJql+/vt555x1t375du3bt0vnz5xUVFaX09HSFhITo2muvVZs2bXTPPfc4zMLG1WHgwIFq2bKl5syZo3Xr1uns2bPy8PBQtWrV1K5dO1u2O64+R44c0V9//SVJuummm0jsggzD0HPPPacePXpo3rx52rp1q06ePKnk5GQFBASoevXqatmypfr37++w5wVc2Zo3b67x48drw4YNOnTokC5evCjDMFShQgW1atVKvXv3VuPGjZ0dJpzEw8NDb7zxhm6//XbNnTtXO3fuVFRUlMLCwtSwYUP1799f7du3d3aYAC7ToUMHLV68WLNmzdKqVat09uxZeXt7q3r16uratasGDRpkG7YZKCnF9RlSo0YNfffdd5ozZ45+/vlnHTt2TGlpaapUqZLat2+vIUOGqEqVKnnW069fPzVu3FizZ8/W+vXrde7cOfn7+6tOnTq66667dM8999iG6sHVh/aK0lSnTh0tWrRIX3/9tZYtW6ajR48qISFBZcuWVdOmTdW/f3+1bt061zposygtN910k3766SfNnz9fa9as0T///KO4uDh5enqqXLlyatiwobp3766OHTvmOHoE7RWu4kpsi35+fvr000+1ZMkSfffdd9q7d69iY2NVrlw5NWvWTIMGDVKTJk3y/TfClYk2WzD03AUAAAAAAAAAAAAAAAAALoixCQAAAAAAAAAAAAAAAADABZHcBQAAAAAAAAAAAAAAAAAuiOQuAAAAAAAAAAAAAAAAAHBBJHcBAAAAAAAAAAAAAAAAgAsiuQsAAAAAAAAAAAAAAAAAXBDJXQAAAAAAAAAAAAAAAADggkjuAgAAAAAAAAAAAAAAAAAXRHIXAAAAAAAAAAAAAAAAALggkrsAAAAAAAAAAAAAAAAAwAWR3AUAAAAAAAAAAAAAAAAALojkLgAAAAAAAAAAAAAAAABwQSR3AQAAAAAAAAAAAAAAAIALIrkLAAAAAAAAAAAAAAAAAFwQyV0AAAAAAAAAAAAAAAAA4IJI7gIAAAAAAAAAAAAAAAAAF0RyFwAAAAAAAAAAAAAAAAC4IJK7AAAAAAAAAAAAgMts3LhR9erVs/2bPHmys0PK0aZNm2xxNm3aVBcvXnR2SHZ/u8GDB+dadvLkyXblN27cWEpRFo+CvFZ3cKW9nty8+OKLttc6evRoZ4cDAIBDXs4OAAAAAAAAAAAAACWjQ4cOOnnyZK5lPDw8FBgYqODgYNWoUUPXX3+92rdvr1atWskwjFKKFIWVlpamCRMm2OZHjhypsmXLOjEiwH08+uij+uGHH5SYmKgVK1Zo1apVuvXWW50dFgAAdui5CwAAAAAAAAAA4CpmsVgUFxenU6dOaf369fr88881dOhQdenSRatXr3Z2eMjDV199pX/++UeSVL58ef3nP/9xbkCAG7n8mHn99deVlpbmvIAAAHCA5C4AAAAAAAAAAABkc+zYMY0cOVJTpkxxdijIQVxcnKZOnWqbHzZsmPz8/JwYEeB+hg4dqoCAAEnW8963337r5IgAALDHsIwAAAAAAAAAAABXif/973+68cYb7ZZl9tx14MABLV++XCtXrpTFYrGtnzx5smrWrKnu3buXdrjIw4wZMxQdHS1JKlOmjO69917nBgS4odDQUN177736/PPPJUmffPKJevfuLX9/fydHBgCAFcldAAAAAAAAAAAAV4ly5cqpatWqDtfVr19fPXv21IYNG/TQQw8pMTHRtu7dd99Vly5d5OPjU1qhIg8JCQmaM2eObb5nz54KDAx0YkS4Uuzbt8/ZIZS6AQMGaObMmTJNU+fPn9fChQs1cOBAZ4cFAIAkhmUEAAAAAAAAAABAFq1bt9ZLL71kt+z06dNav369kyKCI/PmzVNsbKxtnl67gMKrVq2a2rZta5v/8ssv7XowBADAmUjuAgAAAAAAAAAAgJ27775bYWFhdss2bNjgpGjgyDfffGObrl+/vurUqePEaAD3d9ddd9mmjx49qj/++MOJ0QAAcAnDMgIAAAAAAAAAAMCOh4eHGjZsqDVr1tiWnTlzpsD1HDt2TIcOHdLJkyeVkJAgSQoJCVGFChV04403Kjw8vNhizpSSkqI///xTJ0+eVGRkpIKCgnTNNdeoRYsWCgoKKvb9OcO2bdt0+PBh23zXrl0LXVd8fLwOHjyow4cPKzo6WomJiQoMDFRISIgiIiJUr149eXp6FkfYLik+Pl7bt2/XuXPnFBUVpfT0dAUFBalq1aqKiIhQ5cqVi7yP06dPa+fOnTpz5oySk5MVFhamevXqqUGDBvLwKHxfHO7w3pXU8RgTE6M9e/bo6NGjiouLU2pqqvz8/BQcHKwqVaqoTp06qlixYoHq7Nixo7y9vZWWliZJ+u6779SuXbtCxwgAQHEhuQsAAAAAAAAAAADZlClTxm4+JiYmz20SExO1atUq/fLLL9q0aZMuXryYa/n69evrP//5j+688858J6E888wz+u6772zzK1asUNWqVRUbG6sPP/xQixcvthuuMJOXl5e6d++uJ554osBJHwVx9uxZjRo1Sn///bdtWePGjfXxxx+rbNmyxbKPH3/80W6+Q4cOBdp+//79Wrp0qX7//Xf9/fffysjIyLFsYGCgevToofvvv1/VqlUrVLyuxmKxaNmyZfryyy+1c+dOpaen51i2Zs2a6ty5s/r371/g179161ZNnjxZGzZscDjEX7ly5TRq1CgNHDgw30lepfHe1atXzzbdsmVLzZ49O8eypX08btiwQdOnT9f69etzfe2SVLFiRd1yyy0aNGiQrrvuujzrDg4OVsuWLW09dv36669KSkqSv79/vuMDAKAkMCwjAAAAAAAAAAAAssnsaSuTj49Pnts88cQTevzxx/XTTz/lmdglSbt379ZTTz2l4cOHKzIystCx7tixQz179tRXX33lMJFEktLT07Vo0SL16dNHe/fuLfS+crN792717dvXLrGrW7dumjVrVrEldknS6tWrbdPlypXTtddeW6AY77rrLn3yySfauXNnngkyCQkJ+vrrr9W9e3d9//33hY7ZVRw+fFi9evXS2LFjtW3btlwTuyTpyJEjmj59uj766KMC7Wfq1KkaNGiQ1q1b5zCxS5IuXLig1157TY8++qhSU1PzrNNd3ruSOB5N09Rrr72moUOH6vfff8/ztUvWRMt58+bpp59+ynfsrVq1sk2npKRo/fr1+d4WAICSQs9dAAAAAAAAAAAAyGb37t128/np+cc0Tbv5oKAgXXvttQoPD1dgYKBSU1N15swZ7du3T8nJybZyGzZs0IgRI/TNN9/kK4ksqyNHjujJJ59UdHS0JOuwjw0aNFBYWJgSExO1a9cunTt3zlb+/PnzGjNmjBYvXqyAgIAC7Ss3v/76q8aNG6ekpCTbslGjRmns2LEyDKPY9nPkyBEdO3bMNt+sWbMCbX95opFhGKpatapq1KihoKAgeXl5KTY2Vv/8849OnTplK5ecnKzx48fL19e3SMNAOtPGjRv18MMPKy4uzm65l5eXrr/+elWsWFF+fn6Ki4vT4cOHdfz48WxtOj9mzJih999/3zZfq1Yt1apVSwEBATp37pz++usvpaSk2NYvX75cH374oZ566qlc63WH966kjsepU6dm60HMy8tL9erV0zXXXCN/f3+lpKQoJiZGhw4dsttHQTRv3txufu3atQXuGQ8AgOJGchcAAAAAAAAAAADsrFixIltyRNYebXJz3XXXqUePHmrfvn2OPUolJSXphx9+0Pvvv2/r4Wv37t2aNGmSxo0bV6BYx40bp+joaFWpUkXjx49X586d7YZ4NE1TS5Ys0UsvvWRLvDp+/Lhmzpyphx9+uED7ysmMGTP07rvv2pJvvL299dprr6lnz57FUn9W27dvt5vPz3Bzl/Pz81O3bt3UsWNHtWnTRoGBgQ7L7d+/Xx999JF+/vln27LnnntOLVq0KNaeyErD8ePH9cgjj9gldoWGhuqhhx5S3759FRQUlG2byMhI/frrr1qwYEG+97N//35t2bJFktSpUyc98cQTqlOnjl2ZmJgYvfnmm1q4cKFt2cyZM3XfffepatWqudbv6u9dSRyPcXFx+uSTT2zznp6eGj16tIYMGZJt+NhM586d09q1a7Vo0aICJVded911MgzDltR3+fEGAIAzkNwFAAAAAAAAAAAAm4MHD+qll16yW3bNNdfolltuyXPbF198Mc/kFEny9/fXPffco7Zt22rAgAE6ffq0JOnrr7/WqFGjHCba5CQqKkp169bVrFmzFB4enm29YRjq0aOHAgIC7JJH5s+fr9GjRxepV620tDRNmDBB8+bNsy0LDQ3VlClT1KJFi0LXm5tdu3bZzUdERBRo+1q1amnNmjUKCQnJs2xERIQ+/PBDTZ48WVOmTJFkHerv//7v//TII48UaL/O9tRTTykmJsY2X7t2bX322WeqUqVKjtuEh4erX79+6tevn86fP5+v/WT2WDVixIgce+IKCQnRxIkTFRMToxUrVkiSMjIyNH/+fI0dOzbHut3hvSuJ43Ht2rV2PZ099NBDGjNmTK5xVKhQQX369FGfPn3segnMS2BgoKpWrarjx49LsibJpaSkyNfXN991AABQ3DycHQAAAAAAAAAAAACcx2KxKDo6Wlu2bNHEiRPVp08fXbhwwbbew8NDL7/8cr6GS8xPYldW11xzjZ599lnbfHx8vFauXFmgOry8vPThhx86TCTJqlOnTmrQoIFt/tSpUzp69GiB9pVVbGysRowYYZfYVbNmTX377bclltglSYcPH7abzy05yZGgoKB8JQdl9fDDD6tevXq2+SVLlhRoe2f7448/tG3bNtt8QECApk6dWqC/Xfny5fNdtlmzZnryySfzLPf444/bzW/YsCHX8u7w3pXE8Zh1iElJuv322wsUk5+fX4HKX3PNNbbp9PR0W6IXAADOQs9dAAAAAAAAAAAAV4khQ4YUqLyfn59ee+01tW/fvoQikm677TZ5e3srLS1NkrRt2zb16NEj39t36dIl27B3ue0ra89Xf//9t2rWrFmgeCXp2LFjGjlypF2iVcuWLTVlypQCJ98U1MmTJ+3mK1asWKL7k6wJfp07d9a+ffskSUePHlVkZGSeCTyu4uuvv7abHz58uGrUqFFi+xs1apQ8PPLuY6Nu3bqqUqWK7T3du3dvscdS2u9daRyPmUO5lpRKlSrZzZ88eTLHIWYBACgNJHcBAAAAAAAAAADATnBwsLp3764HHnigwD1DOWKxWJSYmKiEhARbEldWoaGhtmHvDh48WKC6C5J4Vrt2bbv5yMjIAu1LkrZs2aKHH37YNvyeJPXu3VuvvPKKvL29C1xfQV0ec3Emk6Wmpio+Pl5JSUkyTdNu3eXD0h08eNAtkrssFos2bdpkt6x///4ltj8/Pz+1bt063+Xr1KljS+5KSkpSQkKCAgMDC7xfV3nvSuJ4vLzcBx98oEaNGhXq75QfZcqUsZsv6WQyAADyQnIXAAAAAAAAAAAA7CQnJ8vDw0PlypUr1PaJiYlatWqVVqxYoT179ujo0aNKT0/P17axsbEF2ldBetS5PBEqLi6uQPtatGiRXnjhBVuCmmEYGjt2rEaNGlWgeooiKSnJNu3t7S1PT89C17V//34tXbpUf/75pw4cOKCoqKh8bxsTE1Po/ZamgwcP2sVaq1YtVahQocT2V7169XwNYZrp8kSi+Pj4fCUtuep7VxLHY5s2bVS2bFlbktX27dt1++23q0+fPurcubNuuOGGfPWUll/+/v5281mPOQAAnIHkLgAAAAAAAAAAgKvE//73P9144412y5KSknT8+HGtXbtWCxcuVHJystLS0jRnzhzt379fn332mfz8/PK9j3nz5ul///tfoXrFkgqecFWQnqu8vOx/Gstvwpkkff/99zp+/Lht3s/PT2+99Za6du2a7zqKQ0ZGhm26sIldJ0+e1BtvvKFff/210HHEx8cXetvSlNkjXKa6deuW6P4uT9bKy+W9vTnq2S4rV3/vSuJ49Pf314QJE/Too4/KYrFIsr6vU6dO1dSpU1WmTBk1btxYjRs3VvPmzdW4ceNsvZUVxOXHVV7vCQAAJY3kLgAAAAAAAAAAgKtEuXLlVLVq1WzL69atqw4dOmjo0KG6//77deLECUnS5s2b9d///ldvvfVWvup/44039OWXXxYpxsuHlMuLYRhF2l9+ZU3skqzDz91+++2lsu+sfH19lZiYKElKSUkp8PYHDx7U0KFDsyU9FVRmko2ryzp8plTw5KuCKs4epC7nDu9dSR2PnTt31meffaYJEybo6NGjdutiY2O1Zs0arVmzRpIUEBBgO581atSowPu6/LgKCAgofOAAABQDkrsAAAAAAAAAAAAgSapZs6amTZume+65x5ZAtGjRInXo0CHPRKaffvopW2JX3bp11a1bNzVq1EhVqlRRuXLl5Ovrm23Yug4dOujkyZPF+2KKWevWrbVjxw7b32XZsmV6+umn9cYbb2TrgagkBQUF2WIwTVNJSUnZhpHLSXp6uh5//HG75CBfX1917dpVbdq0Ud26dVWxYkUFBgbK19fXrgejhQsX6tlnny3eF+MEpZUMWNx476S2bdtq6dKl+u233/TTTz9p48aNunDhQrZyiYmJ+uGHH/TDDz+od+/e+u9//1ug3gczj69MQUFBRY4dAICiILkLAAAAAAAAAAAANtdee60effRRvfnmm7ZlEydOVPv27XNNkJg8ebLd/GOPPaaHHnooX8k07jDEX/PmzTV27Fg9+OCDiomJkWQdqjEuLk4ffPBBkYaBK4jKlSvr3Llztvnz58+revXq+dr2l19+0b59+2zzNWrU0IwZM1StWrU8t3WH98iRsLAwu/nM987dXI3vnSNeXl7q3LmzOnfuLEk6evSotm3bpq1bt2rdunXZethbuHCh4uLiNGXKlHzvI+vxJUmVKlUqeuAAABRByfULCgAAAAAAAAAAALc0aNAg1ahRwzZ/+vRpffXVVzmWP3LkiA4ePGibb9GihUaPHp2vxK7k5GTFxsYWLeBS0qRJE82ePVvly5e3LVu5cqVGjBhRagk0lyfznDlzJt/brlixwm7+lVdeyVdykJQ94cVdZH2vJOmff/5xUiRFczW+d/lRo0YN9ezZU6+88op+/fVXLVq0SN27d7crs3z5cq1bty7fdZ49e9Zu3tFQtgAAlCaSuwAAAAAAAAAAAGDH29tbjzzyiN2y6dOn55jAdPToUbv5W2+9Nd/72rZtm0zTLHCMzlKvXj19/fXXdok1mzZt0pAhQxQZGVkq+8/q0KFD+d426/sUEBCgVq1a5Xvbbdu25busK6lTp45CQ0Nt84cPH7Yb2tBdXI3vXWFcf/31eu+99zRgwAC75cuXL8/X9qZp6vDhw7b5smXLqkKFCsUaIwAABUVyFwAAAAAAAAAAALK58847VatWLdt8dHS0Zs+e7bDs5T1vBQcH53s/3333XeECdKJq1arp//7v/xQREWFbtnv3bg0cOFCnT58u0X03bNjQbn7v3r353jYuLs42HRgYmK+e1SRrYtHWrVvzvR9XYhiGXSKUaZqaO3euEyMqnKvxvSuKvn372s2fOHEiX9sdP35ciYmJtvlGjRoVa1wAABQGyV0AAAAAAAAAAADIxsPDQw899JDdspkzZ9olmWQqU6aM3Xx+e5PauXOnli5dWvggnahChQr66quv1LhxY9uyQ4cOacCAAXY9/xS3xo0by8fHxza/Y8eOfG+b9X2KjIxUTExMvrZ75513ZLFY8h+kixk4cKDd/MyZM3X8+HEnRVM4V+t7V1ienp5281mPmdxcfjy1bNmy2GICAKCwSO4CAAAAAAAAAACAQ927d1fNmjVt8zExMfriiy+ylbvuuuvs5hctWpTn0HfHjx/XY489prS0tOII1SlCQkI0c+ZM3XzzzbZlp06d0oABA/T333+XyD79/f3tEk727NmTree0nGR9nzIyMjRjxow8t5k0aVK+h7RzVa1atVKLFi1s8/Hx8XrooYcK1Muas4dyvFrfO0lavHixDh48WKBtvv/+e7v5OnXq5Gu7jRs32s23b9++QPsFAKAkkNwFAAAAAAAAAAAAhzw9PbP13vXFF19k6zWoYsWKatasmW0+OjpaQ4YM0fbt27PVmZqaqnnz5qlfv346efKkfH19FRAQUCLxl4aAgAB98sknuv32223LIiMjNXjwYG3evLlE9tmpUyfbtMVi0YYNG/K1Xbdu3ezmp02bpvfff18JCQnZyh46dEhjxozRRx99JEkKDw8vQsTO99Zbbyk0NNQ2f+DAAfXu3VuzZs1SfHy8w20iIyM1b9489e/fX++9914pRerY1fze/fzzz7rzzjs1ePBgzZkzJ9chFiMjI/XWW29p5syZtmUeHh7q0aNHvva1bt0623StWrXynRQGAEBJ8nJ2AAAAAAAAAAAAAHBdd911lz755BMdOXJEkrXXo88//1yPP/64Xblx48Zp8ODBSk9Pl2RNMOnfv79q1aqliIgIeXt768KFC9qxY4cSExNt27344ov65JNP7Ja5Gx8fH33wwQd66aWXNG/ePEnWv9OIESP0wQcf6LbbbivW/XXr1k1vvPGGUlNTJUnLli1Tly5d8tyuTZs2uuWWW7RmzRrbsqlTp2rWrFlq1KiRypcvr8TERB05csSup6Q6dero3nvv1euvv16sr6M0ValSRVOmTNHo0aNtPZ1FRkbq9ddf11tvvaUbbrhBFStWlK+vr+Li4nTkyBEdO3ZMpmlKsib6ONPV/N5Jkmma2rRpkzZt2iRJCg0NVd26dRUaGip/f38lJyfr+PHj2r9/vzIyMuy2ffDBB3XttdfmuY/du3fbJY716tWreF8EAACFRM9dAAAAAAAAAAAAyJGnp6dGjRplt2zWrFmKjIy0W9a0aVO9+uqr8vb2tlt++PBhLVu2TD/88IM2bNhgS+Ly9PTU888/r3vuuadkX0Ap8fDw0GuvvaYRI0bYliUnJ2vMmDFavHhxse4rJCTErveuVatWKSUlJV/bvvfee2rQoIHdssTERG3YsEFLlizRihUr7JKDrr/+es2cOVNBQUHFE7wTtWjRQnPnzlXdunXtlqenp2vHjh1avny5fvjhB61evVpHjx61JXa5iqv5vbtcdHS0Nm/erOXLl2vx4sX65ZdftGfPHrvELi8vLz3yyCMaO3Zsvur86aef7Lbt2bNnMUcNAEDhkNwFAAAAAAAAAACAXPXo0UM1atSwzScmJuqzzz7LVq53796aM2eOWrZsmWNdvr6+uv322zVv3jwNGTKkROJ1pqeeekpPPvmkbT49PV3jx4/XnDlzinU///nPf2zT8fHxdokpuSlTpoy+/vprPfzww3bDFF6uVq1aGjdunL799ltVrFixiNG6jtq1a+v777/XW2+9pQYNGsgwjFzL16lTR6NHj9ajjz5aShHm7Gp9755//nm98MILat++vUJCQvIsHxQUpF69emnx4sUaM2ZMvvaRnp6uRYsW2ea7du16RfztAABXBsN0tZRzAAAAAAAAAAAAuL1Tp05p69atOnfunNLT0xUeHq4KFSqoadOmV2RPQs4wcOBAbdmyRZLUpEkTffPNNwXaPjU1VX/99ZcOHDig2NhYBQQEqFy5cqpTp47q1atXEiG7nMjISG3fvl3nz59XdHS0DMNQUFCQqlatquuuu04VKlRwdogOXa3vnWmaOnr0qI4ePapTp04pLi5O6enpCggIsA3VWLduXfn4+BSo3mXLltkl8C1YsCBbL2kAADgLyV0AAAAAAAAAAACAG9qwYYOGDh1qm//222914403OjEiwD3de++92rZtmyTptttu09SpU50cEQAAlzAsIwAAAAAAAAAAAOCGWrdurZtvvtk2/8knnzgxGsA9rV+/3pbY5eHhoSeeeMLJEQEAYI/kLgAAAAAAAAAAAMBNjR8/Xl5eXpKk3377TTt37nRyRIB7mTJlim26b9++ioiIcGI0AABkR3IXAAAAAAAAAAAA4Kbq1aunwYMH2+bffvttJ0YDuJfly5dry5YtkqTQ0FB67QIAuCQvZwcAAAAAAAAAAAAAoPAeeeQRBQUFyTRNSdLFixdVtmxZJ0cFuL6EhASNGTNGktS0aVOFhYU5OSIAALIzzMyrPAAAAAAAAAAAAAAAAACAy2BYRgAAAAAAAAAAAAAAAABwQSR3AQAAAAAAAAAAAAAAAIALIrkLAAAAAAAAAAAAAAAAAFwQyV0AAAAAAAAAAAAAAAAA4IJI7gIAAAAAAAAAAAAAAAAAF0RyFwAAAAAAAAAAAAAAAAC4IJK7AAAAAAAAAAAAAAAAAMAFkdwFAAAAAAAAAAAAAAAAAC6I5C4AAAAAAAAAAAAAAAAAcEEkdwEAAAAAAAAAAAAAAACACyK5CwAAAAAAAAAAAAAAAABcEMldAAAAAAAAAAAAAAAAAOCCSO4CAAAAAAAAAAAAAAAAABdEchcAAAAAAAAAAAAAAAAAuCCSuwAAAAAAAAAAAAAAAADABZHcBQAAAAAAAAAAAAAAAAAuiOQuAAAAAAAAAAAAAAAAAHBBJHcBAAAAAAAAAAAAAAAAgAsiuQsAAAAAAAAAAAAAAAAAXBDJXQAAwOWdOHFC9erVU7169TR48GBnhwMAAAAAAABcEbjvBgAA4Pq8nB0AAACAO9uzZ49+/fVXSVLLli3VqlUrJ0cEAAAAAAAAuD/uuwEAAFjRcxcAAEAR7NmzR1OmTNGUKVO0adMmZ4cDAAAAAAAAXBG47wYAAGBFchcAAAAAAAAAAAAAAAAAuCCSuwAAAAAAAAAAAAAAAADABZHcBQAAAAAAAAAAAAAAAAAuyMvZAQAAABRGSkqK5s2bpx9++EFHjx5VQkKCKlSooJtuuklDhgzRtddem696/vrrLy1evFibNm3S2bNnlZiYqNDQUF1//fXq3LmzevXqJW9v72zbTZ48WVOmTLFbNmXKlGzLJGnixInq3bu33bK9e/dq9erV2rJliw4ePKiLFy8qIyNDoaGhqlu3rtq1a6d+/fopKCioAH8VAAAAAAAAoGi47wYAAOBaSO4CAABu58yZMxo1apT27Nljt/z48eOaO3euFi5cqGeeeUaDBg3KsY74+Hi98MIL+umnn7KtO3/+vM6fP681a9bos88+00cffaS6desWW/xPPfWUFi9e7HBd5r7XrVunTz/9VB988IFat25dbPsGAAAAAAAAcsJ9NwAAANdDchcAAHAraWlpevTRR7Vnzx6VK1dOnTp1UuXKlXXhwgWtXLlSJ0+eVFpaml599VUFBARke3JPst5gGjhwoPbu3StJ8vX1Vbt27VS3bl35+/vrzJkzWr16tU6ePKmjR49qwIABWrhwoapVq2aro23btgoICNCuXbu0dOlS27K2bdtm21/Dhg3t5iMjIyVJ4eHhaty4sWrVqqWQkBClp6frxIkTWrNmjS5cuKCoqCiNHDlS8+fPV0RERLH9DQEAAAAAAIDLcd8NAADANRmmaZrODgIAACA3J06cUMeOHSVJhmHINE116dJFb775pgIDA23lUlNT9dprr2nu3LmSpMDAQP3000+qWLGiXX1jx461PTnYqVMnvfrqqwoPD7crk56erg8++EDTp0+XJDVt2lRff/11ttgWLlyoZ599VpI0ZswYPfLII3m+npkzZ+qGG25QixYt5OHhkW19amqqPvzwQ3322WeSpJYtW2r27Nl51gsAAAAAAAAUBPfduO8GAABcX/arGgAAABdmmqbq1Kmj9957z+4GkyT5+PhowoQJatmypSQpISFBX375pV2ZHTt22G4wtWzZUpMmTcp2g0mSvLy8NG7cON1+++2SpK1bt2rz5s3F8hqGDRumVq1aObzBlPk6nnrqKXXo0EGStGnTJh05cqRY9g0AAAAAAAA4wn03AAAA10RyFwAAcDsPP/ywfHx8HK4zDENjx461zS9evNhu/Zw5c2zTjz32mDw9PXPd17Bhw2zTK1euLES0hde9e3fb9J9//lmq+wYAAAAAAMDVh/tuAAAArsfL2QEAAAAUhKenp2677bZcyzRr1kzlypXThQsXdP78eZ04cUJVq1aVJG3YsEGSFBAQoGbNmuW5v+uuu842vWvXriJE7tiFCxe0Z88enT17VgkJCUpPT7etO3r0qG368OHDxb5vAAAAAAAAIBP33QAAAFwTyV0AAMCtVKtWTQEBAXmWi4iI0IULFyRJR44cUdWqVRUdHa0zZ85IkhITE+1uIOVHVFRUwQPOwdq1a/Xxxx9r27ZtMk0zz/KxsbHFtm8AAAAAAADgctx3AwAAcE0kdwEAALcSFhZW4HKZN2iio6OLtO/ExMQibZ9p0qRJ+uijjwq0TWpqarHsGwAAAAAAAHCE+24AAACuieQuAABwRXL0VF5GRoZtunz58ho2bFiB6gwODi5yXH/88YftBpNhGOrevbtuv/12RUREqGzZsvL395enp6cka1f2Q4cOLfI+AQAAAAAAgOLCfTcAAIDSRXIXAABwK/ntoj3r04JlypSRJIWGhtqWZWRk6P777y/O0PJl9uzZtunnnntOQ4YMybFsfHx8aYQEAAAAAAAAcN8NAADARXk4OwAAAICCOH78eL66ad+/f79tumbNmpKk8PBwW7fxkZGROnz4cInEmJu//vpLkuTn56d7770317IHDhwojZAAAAAAAAAA7rsBAAC4KJK7AACAW8nIyNBvv/2Wa5mtW7fqwoULkqzdwFetWlWStTv2Nm3a2MotWLCgyPF4eV3qCNViseRZPi4uTpLk7+8vHx+fXMsuW7asaMEBAAAAAAAA+cR9NwAAANdEchcAAHA7n3zyidLS0hyuM01TkyZNss336NHDbv3AgQNt07Nnz9bff/+d7/2appltWXBwsG06a5f0OQkJCZFk7eb+9OnTOZb77rvvtGfPnnzHBgAAAAAAABQV990AAABcD8ldAADArRiGoQMHDujJJ5/M1k18amqqJkyYoPXr10uSAgICNHjwYLsyzZs31+233y5JSk5O1rBhw7R8+fIc95eamqpff/1VgwcP1u7du7Otr1Wrlm168+bNeT5F2KxZM9v0Cy+8oISEhGxlFi1apJdeekmGYeRaFwAAAAAAAFBcuO8GAADgmrzyLgIAAOA6GjdurIyMDC1btkxbt25Vp06dVKlSJV28eFErVqzQyZMnbWWfe+45Va5cOVsdEydO1KlTp7Rz505FR0drzJgxqlmzplq3bq2KFStKsj4NeODAAf3111+2G0GOniCsWbOmatasqSNHjujAgQMaMGCAbrnlFpUpU8ZWpk2bNqpTp44kacSIEfr111+VkZGh33//XV26dFGHDh10zTXXKDY2Vn/88Yf27dsnDw8PjRw5UtOmTSvWvx8AAAAAAADgCPfdAAAAXJNhOrpaAgAAcCEnTpxQx44dJUktW7bUW2+9pVGjRmnfvn0Oy3t7e+upp57S0KFDc6wzJSVFr7/+uubPn6+MjIw8Y6hYsaK++uorVa9ePdu61atX6+GHH86xy/qJEyeqd+/etvm5c+fqlVdeUXp6usPy/v7+evnll1W5cmUNGTJEktSrVy+9+eabecYJAAAAAAAA5Bf33bjvBgAAXB89dwEAALdzzTXXaO7cuZo7d65++uknHT16VAkJCSpfvrxuuukmDR06VHXr1s21Dl9fX73yyisaMWKEvvvuO23cuFHHjh1TdHS0PDw8FBISopo1a6pRo0a6+eab1apVK3l4OB7Run379po3b55mz56tbdu26cyZM0pKSnL4xKEk9e/fX40aNdLMmTO1efNmnT9/XgEBAapYsaLatWun/v37q0aNGtq4cWOR/1YAAAAAAABAfnHfDQAAwPXQcxcAAAAAAAAAAAAAAAAAuCDHafAAAAAAAAAAAAAAAAAAAKciuQsAAAAAAAAAAAAAAAAAXBDJXQAAAAAAAAAAAAAAAADggkjuAgAAAAAAAAAAAAAAAAAXRHIXAAAAAAAAAAAAAAAAALggkrsAAAAAAAAAAAAAAAAAwAWR3AUAAAAAAAAAAAAAAAAALojkLgAAAAAAAAAAAAAAAABwQSR3AQAAAAAAAAAAAAAAAIALIrkLAAAAAAAAAAAAAAAAAFwQyV0AAAAAAAAAAAAAAAAA4IJI7gIAAAAAAAAAAAAAAAAAF0RyFwAAAAAAAAAAAAAAAAC4IJK7AAAAAAAAAAAAAAAAAMAFkdwFAAAAAAAAAAAAAAAAAC7Iq7grjIqKKu4qcRnDMBQaGipJio6Olmmazg0IKGUcA7jacQzgascxAHAcABwDxSMsLMzZIaCArpT7bhzDcCe0V7gb2izcCe0V7oT2CndCe4W7uRLbbHHfd6PnLgAAAAAAAAAAAAAAAABwQSR3AQAAAAAAAAAAAAAAAIALIrkLAAAAAAAAAAAAAAAAAFwQyV0AAAAAAAAAAAAAAAAA4IJI7gIAAAAAAAAAAAAAAAAAF+Tl7AAAAPmTnGwqIUHy9ZWCggxnhwMAAAAAAAAAAAAAAEoYyV0A4OJOnjL13vumNm22zhuG1KK5qd69DLVtIxkGiV4AAAAAAAAAAAAAAFyJSO4CABe2YqWpN982lZR8aZlpSps2S5s2m7q9szTuCcnfnwQvAAAAAAAAAAAAAACuNCR3AYCL+nOrqVdeN5WRYZ339JDCw6WLkZLFYl22bLnUrKnU7Q7nxQkAAAAAAAAAAAD3lpGYJktiurPDyJNHgJc8A7ydHQYAlCqSuwDABR07bur5ly4ldtWqKb30gqG61xo6f97Ul7NNLVosdbhNuqOrU0MFAAAAAAAAAACAm7MkpisjKkUynR1JLv4dyIbkLgBXG5K7AMAVmdK1daTtf0kVKkgfvGeobFnrFWv58obGPWGoRQtTLZpJhsGQjAAAAAAAAAAAACgiUzKTM5wdRY4MP09nhwAATkFyFwC4oOrVDU3+wDrsYp3asiV2ZdW+neOkrowMU56eJHwBAAAAAAAAAAAAAFybaZpKT0+3TSM7krsAXDUOHjK1Zq105Iip1FSpUSNDN7eVqlV1zUQowzDUtUv+y2dkmJr8sanEBOnZp+nRCwAAAAAAAAAAAABKUkZimiyJ6c4OI2eehmSaksXZgeTMMAylpXjJI4AUppzwlwFwxTt3ztTUT00tX2H93Mq09g9TH0+VBtxrasRwQ97e7psMlZ5u6sWXTa393TpfubI0bKhzYwIAAAAAwN25/E36f3kEeMkzwNvZYQAAAADAVceSmK6MqBTJRTucMnw9ZLGYMtJNl41RhqG0FE95y1/ydXYwronkLgBXtKNHTY0ZayoqyvF605TmfC1t+dPUO29K4eHOS/CKibH2LHZ7F8nHp2BxeHpKZctemp8x01TZslKP7u6bsAYAAAAAgLO5+k16SdK/X/1J7gIAAAAAJzElMznD2VE4ZPh4WCdcOEYZhhTg7CBcG8ldAK5olStLVavIltx16y1Su5sNWUxp2S+mtvxpXb5vv/T086Y+/dh5wxnOX2hq5pfSjC+kR0ZLHTvkPw7DMDT2EWsvZevWW5e9/a6pjAyp190keAEAAAAAUGiufANckuHn6ewQAAAAAABACSK5C8AVzcfH0BuvSk8/Z+rhhwzd2OhSolPXLtKixdIHk0x5e0uPjDacltiVmGhq/kLr9IULklchHrb18jI04SXp8XGmdu22LnvvfVOnT5saOcKQlxdJXgAAAAAAAAAAAAVlmqbS09Nt0wBKR0ZimiyJ6c4OI2eehiwpLhwfrhgkdwG44oWFGZrmoEcuwzDU626pQnnJz09q1NB5yU9Lf5bi4qzTNWtI7doWrh5/f0P/e0d66hlTf+2wLvu/b6QdO02NfVS6rl7erzE+3tSJk1JCgpSaJvn6SB4eUkqKdGMjyc+PJDEAAAAAAAAAAOAaSiP5wzAMpaVYf1pPj08ucIKXR4AXw2gDhWBJTFdGVIrkojmVhq+HLBZT/HqKkkZyF4ArSlycqX8OSk0aZ0/kyknbm5z7cWuxmJq/8NIVyb39DHl4FD6mgABD774lvTbR1Oo11mW7dksjHjQ1aICpUSM9bGWTkkyt/V06eMjUocPSwYPSufM51710iSE/v0vzpmkd2rLxjZK3N5ctAAAAAFCSLly4UOhtAwMD5e/v73DdxYsXC937gL+/vwIDAx2ui4qKUkZG9uEMDcNQcrL1B7H4+HiH2/r6+io4ONjhupiYGKWlpRUqXh8fH5UpU8bhutjYWKWmptotS4tMliUqRWZK7sMyenl6KyTYcb3xifFKSU0pVLweHp4KKxPqcF1iUqKSUpJk+HrKQ77ylp/Dco4YhqGyZcs6XJeUlKSEhITChCtJKleunMPlKSkpist8sq0QwsPD5eHhkW15amqqYmNjC11vaGiovLyy3yZPT09XdHS09Yfcf9tbTExMvo+VMmXKyMfHJ9tyi8WiyMjIQscbHBwsX19fh+uulHNEfrjKOSK/vL29FRIS4nBdXFycUlIKd47w9PRUWFiYw3UJCQm6cOFCod47zhGX5HWOKCzOEVYBAQEKDQ11uI5zhFVJniOSkpIKVa8rniPSIpNlic45+SMsJMzxOSItVXHx+Tz3GIbi/j0OEpOSJNNUSHBIjueImLiYLNtKHqG+8g7P3/Was84R+b32vVyAf6D8fR2/tsjoSJmFzMrx9/VXgH+Aw3WcI6xyOkfk5xrWXc4RWdtl2VDH9aakpig+0fF3y/wIK5PLOSIh93OEEewt0zRlpJnZjp2QoFzOEfEx2ZbnV3BgsHy8HZ8jomKjsseYkXOMWQUFBMnXx/E54mL0xULHm69zhGEoWSnykr9SfPOXrOvq3zVyOr4Ki+QuAFcM0zT1xlum/lgnDf+PNGSQCp0kFRtr6tx56do6JZ+wtHGzdOKEdTqkjNS5U9Hr9Pc39NoE6dv50tRPTWV+xoSG2r+ejAzpldfzd1Ht7S0FB9kvO3zYOgxkcLB0SztTHW8z1LSJGAISAAAAAEpAREREobd9++23NWLECIfrWrdurYsXC3ejdvz48XrmmWccruvWrZv27dtXqHqHDRiqN19+w+G6gYMGaN2m9YWq966ud+qzSZ86XPfIow9ryc8/FqreNje21PwP5zhc98an7+rLRY7X5SWi5rX67YufHK775JvP9L8vJxeq3rJly+rAgQMO182ZM0fjx48vVL2ScvzB8aefftLw4cMLXe/+/fsd/uC7adMm9ejRo9D1/vHHH7r++uuzLT9w4IDati1k1+qSFi9erJtvvjnb8sjIyCIdy59//rl69uzpcN3VdI64//779c477zhcN2jQIP3xxx+FqrdHjx764osvHK579NFHtXjx4kLV27ZtWy1ZssThuldeeUUzZswoVL316tXT+vWOz4fvvPOOJkyYUKh6OUdcwjnCqqTOEU8//bTefPNNh+s4R1iV1Dli8uTJevvttwtVrzueI3Ys2uAwKWTzti265/FBha535cylqlerbrbl/xz+Rx2GdSt0ve52jnj9sf/qP70c/x3bD+2qyJjsySb58cTQR/TksEftlhk+HpKnwTniX1fbOeLkKsf1/rJupUa9/KjDdfmR0zliy65tJXKOOHj8cJHOEfPe/0o3NWmVbXlUbJQa9Wxd6HqnvjxJd916h8N1Ram3pM4Rrv5do7iH8CW5C8AV4/vF0trfrdOffW6qaRNDjRoWvJ7f/zD1znumfHylL2dYe8IqSfMXXDqx97hL8vUtnv0ZhqH+90jtbpamTTe18jepZXPruqQkU/7+hoKCDFWsaOrsWfttrcNUWhO6UlIk05R8faVxT5uqU8dUgxsM3dLO0IZN1vJxcdKPS6Ufl5oKDZHa32KqYwdDNzaSPD1J9AIAAAAAFIwlJUMZkY57qTDTLIWu10y15FxvauHrdTsWU2kXHD+JnxFfuJ4KMuVUryW1cE9NA6XJTM3IsQ2bRWjDZpol52MjqWSHEQOuRpb0nI+5ol1HlMw5AkDBWJLTpYzCJ01YktJL9hzhaVh/WLPYryt0vSV1HeGiwxwCcIzkLgBXhJOnTH30yaWrkAH3So0aFjypKDHR1Jtvm4r+tyfMT2eYGvtIySUnHT9hauO/CVKeHlLPu4t/X9dUNjThJUOPjTHl7W3qjTdN/b3Xmrjm6WmoZw9DaWnSNZVNvfWuZBhS927S2Eftux/9dr6pSVOs8Xa93dQt7QyVCZaqVr3U85gkRcdI3y+Rvl9iKjxMurW9NdGrYYPC96QGAAAAALjKZJgyk3P4AcRS+F8hzFzqNYvwA5G7MU3lmORmSSxacpejeg0fjyL9UAaUlpJKADXTcq7XUsChr1C60qNTHP6gnh5duGHybNvHOK43I6lo52D8K82ijCjHQ/SRJA64P0tyRpGu3Uv6QRLD10MWiykj3bSdh1zyOqII36sAlD6SuwC4PYvF1MS3TCUlW+fr1JEeuL9wSUQBAYYeHyv9d4L1gua776S77zJVq2bJJCUt+eHShVO7m6WKFUou+SkwUBo6XDpx0jq/7Bep2x3S4IGZ+zR0exdThmE47CZyx45LyxrfaN2m+52G7uwmHfhHen2iqYOH7LeJjJIWLpIWLjL1yMPWnsQAAAAAAICTmbkkz6UV7UceR/Vak7uKlsCSFpmsNDlIsIgpYoJFZuKGpyEPP095+nsXqT64txJLALXkcsxdRYml7sgSk+rwB3VLTGrR6o1Ny16vIVlMkv2Kjen4M4kkcQAl/SCJ4fNv5wlZzkNcRwAoKsMs5oEeo6IKNx4m8s8wDIWGhkqSoqOji32sTsDVXX4MzP3WokkfWY8DLy9p+lRDda8tfJKUaZp6crypTZut8y1bSO+9bcgwijfxKjXVVO97LvUS9v67hlo0L9merb6YZeqzz61/q/79pEdGe+SxxSXnzpnas1c6eky6vUv2RLQHRlm0Z691usNt0q5d0rnzl9Z/PFlqUN+w9d5lmqaOH5eqV6c3r4LicwBXO44BgOMA4BgoHmFhYc4OAQV04MCBQm8bGBgof39/h+suXrxY6OPI399fgYGBDtdFRUUpI8NBoo9hKDAwUGkXkxV7MlJmcvahRHx9fBUUEOSw3pi4WKVnFK5nE28vH5UJCna4LjY+Tmnpl36sN4K9ZZqmjDRTZh5PxHt5eiskuIzDdfGJ8UpJLVwCkoeHp8LKhDpcl5iUqKSUpALFmcmQofDQcIfrklKSlZiUUKh4JalsaNlsyzzKeCspJVkJMXGFHv4lLCRMHh7Z72OkpqUqLj6ucJVKCgkOkZeXlwxfD8nHQx7enpKk9PR0RcfGyJBha+MJCQky8/kCygQFy8fHJ9tyi8WiyOjC30MPDgqSf2igPAOyJ6FduHCh0PW60jkiP3x9fRUc7PhYjomJUVpa3ueItMhkWaJS7I6bgpwjCqKw5wjD11MeYb7yDvdzuN7T0zPb53nmdVJCQoJOnz5dqPfOMAyVLZv9WJakpKQkJSQU/hxRrlw5h8tTUlIUF1f4Yzk8PNzxOSI1VbGxsQ7f7/wICbKeIy6Xnp6umPiYQscbHBgsH2/7c4Th5ykj1FtxHo6H3spXvcHB8vX1dbjOVc8RlSpVkqRs739RzhGe8ab8U70dJkOU1nVEXrIe397e3goJCXFYLi4uTikphbuOcHSOyJSQkKCkpLzbWkZSmixJ9n9HQ4bKhudwHZGcpITExIIH+69y4Y7PPSmpKYqLj3e8kYchS1KalJiR4zEeViaX64iEfJ57DENBQdbPtPj4BMk0832OyOt8frkyZcrkfB0RGZm/eB3I6xxR2HNlgH+g/H0dv7bI6Mh8Xz9dzt/XXwH+AXbLPMp4y2Kair4QpYykwn0ul/R3jcwYjbRLSVmlfh3hoL3arfb1lHdZf1W49hqH9eb3HOFIcV9HZG2Xjr5rSNZzRHxiDueIfCjKOSK372OleR0hWc8RUbHZv2vk9ztjUECQfH0cnyMuRl8sdLz5OkcYhgJDg+QV7q8U3/wNN+rK3zUkqW7duoXaf05I7nJD3MTG1S7rMfDXjij9536LUv+9HnrgfkNDBxc9WejIUVNDh5nK+LeX1LfeMNT2puJNQjp4yNTYJ01FRUnXXCN985VR4sMWpqebeuG/prp1NXRLu+Ld12sTLdr9t3TypLR0saGAAGnXbmnlKlOnTknH/x26ccQwQx1ukw4ekoaNMNXtDmnk/YbKliXJK7/4HMDVjmMA4DgAOAaKB8ld7udKue9mGIaCgoKUdiFJ0ccuykzK343b0uboRxlX5A5xulWMWYbPkWT9kSHA+qNiQmJith/GSp0heYb5yruc4yQL5F/ahSRlRKa4bJuUrMk+nuEFe7+5TnLMHd5vjzLe8gjxkXdY/pI/nCUjMU2WxOL57M68JpCk+Pj44mmvnoYsiWkyEzJc+v0uzPHtDGkXknIc4tJV2IbAK+nrDMNQcLC1vcbFxRfomsCt3m83OFe6zXWlM2PMo726S5uUXL9dusT7nQd3iFGGoaDwYHmX81dyPpO7XF1x33djWEYAbis93dRrEy8ldl1/nTTwvuKpu2YNQ716mZq/wDo/+WNTLVtI3t7Fl4BUp7ahhd9Kf6yTMiwq8cQuSfLyMvTm6yWznxeetWa0p6SY8vW17qNRQ6lRQ0PrN5h66hnrhePrb5q6sZGhFb+ZMk3px6XS2t9NPfm41PE2ErwAAAAAAIATXT6Ml2HI8Lbe0zCTM5ye3OVRxlvy5P7J1cLw8Sjw+22aptLT023TcC+W5HTrULGuKjNxKjGjeJJ9DENpyf/2mJiYUiznWFuiT5Frgk1OQ1y6CNsQeC6sMOdzoCTRJgH3Q3IXALc188tk/f23ddrHW3r+WUNeXsV3ITL8P4aWLzcVEyudOCHNXyjd1z/v7dLTTe3YKcXGSunpUt1rpRo1HMfl7W3o1vbFFrKdXbtN7f5b6n9P6V6cZSZ2ZRUdLZUpY/2bDBpgqFw5Q4kJl76ox8ZK/51gasufpp4cW7zvIwAAAAAAwJXEHZI/ZJqSxdmB5MLTkCXFPXoEKOj7bRiG0lKsP/2kxyeXfIIX73exsiRnyIxPd9lekmyJU8WV7FMCCbTukOiDq5M7fH67y7kSxcPl26REuwSyILkLgFtKTDQ1a/alC44HRhiqmUMCVWGVCTZ0/3Dpfx9Yv1B+MctU1y5SWFju+0lLk5553lTmsPIPPmBocI1iDS1PBw+ZGve0qfh4KTrG1Mj7DRmG8xKm7uhqqP0t0rwF0r39rMsef8xD7W8x9dY7pk6esi5b8oN05oyp1yZIgYEkeAEAAAAAAFzObZI/Lh/i0oW4U88+BX6/S6AnpFx3x/td/Fy4lyQSp4DCc5vPb2cHglLj6m1Sol0CWZHcBcAtBQQYmvt1iJ59PlqpqVK/viWznx7dpUXfS4cOSwkJ0vTPTY1/MvdLCH9/Q506mlq8xDrfrKn9+rQ0U15e1l69zp6Vzp6TUtMkmVJwsBQeLlWqWLRhGv/va2tilyQtXSr16yMV87C+BRYQYGjoYPtlTZsY+vQTU2PHSQcOWJdt3iI9/5Kpd98SPXgBAAAAAAA44g7JH+4Qo7soyN+ylIcS5f0GgALgXAlX48JtUqJdAlmR3AXAbV1T2VMfvOeh2DhTniU0LrSXl6FHx0hjnzRVubLUqqX9fkzTVEqK5Odnv7xnD0Px8aa8vaSIupfK7tsnvf2eqX8OWu+r5HRvJThYurGRqZtvMnTLLdZexAri6acMJaeY2rpNev9dI8/expwlI8PUu+9bE7uqVpFOnLQu3/KnNOUTU2Mfcc24AQAAAAAAAAAAAAAoDSR3AXBrhmGoTHDJ7qN5M0OvvCy1bSP5+l5KNjJNU1M+NrVzl/T+u/bDCEbUNfTKf63zMTGmli039eNPpg4ezN8+4+Kk3/+Qfv/D1HsfSJ06mLrvXkO1a+Uv2cnHx9CEl6RTp6Xq1Vw3QWrjJum3VdbpEyel9u2k1Wut8/MXSDdcb6pLJ9eNHwAAAAAAAAAAAACAkkQ/dgDcRlqaqb37nDPwc4dbDbvELkma+qmpufOkv/dI4542lZhoH9uFC6Y+mGxRr3tMTZriOLHL319q2kRqe5P1X8MGUtmy9mXS0qSflklDhpl64y2LYuOy/w1MB12AeXkZLp3YJUk3tTE0epQ1xsEDpVcnSF06XVr/6woXHugbAAAAAAAAAIBCMHw8pBIakQQAAFx56LkLgNuY87U0Y6apfn0teupJU/7+zv3iExJiSLImH1WqJPn4WJefP29qztemFi+RUtNy3r7utdJn04xsQ0qapqnTZ6T1G6zJTTt3XVq39CdpwwZTjz8m3dre2nNZSoqpZ18wdecdUscO7vdlcMC9hm64Xmp8ozX28eNMHTxs6o7bDd3Tx8nBAQAAAAAAAABQAizJ6Uq7kOTsMHLmaciSku7sKAAAgEjuAuAmDh029cUsU6YpzZ1nqmGDFPXq6eeUWEzT1MrfpIAAacJLhv5YZ+r5Zw0lJEhf/Z9F8xdkT+q64XqpZk1rcpYkVSgvTflQ2RK7JGvC1jWVpT69pD69DO3bb2r2V6ZWrbGuj4ySXnzZVLubpUdGW4dt3LRZ2rzFVHyCdPdd7pfglZnYJUl+foZmTLP2PAYAAAAAAAAAwJXIkpwhMz498xlyl2P4eshiMcWdegAAnI/kLgAuLyPD1Jtvm0r/9wGRGxtJd/fwdUosUdGmnn/R1I6dkq+v9MUMQze3NfTNt9LsOabi4+3LN2ooDf+PoRuuNzVgyKXl/e4xFBiY/SvRtOkWNahvqO1Nl9bVizD02iuG1m809e7/TJ09a12+9ndp924pJMQ6b5pSSkpxv2Ln8PIytHmLqRsbST4+fHUEAAAAAAAAAFyBTMlMznB2FA4ZPh7ODgEAAPyL5C4ALm/eAunvPdZpHx/pmfEe8vAo/YQf0zRVJlhKTbXOp6RI48abSkmRLly0L9uwgTRiuKGmTaw9cc2YaerCBeu6CuWlnj2y1//Dj6Zmz5EkU11vN/X8M4YM49LrbNPK0OyZ0qefmVrwnTWZKzLK+q9suHRPX6lfX/dPhEpIMPXhFFNLf5IGD5QefMCQxWLq+HGpRg33f30AAAAArkzx8fFavXq1du7cqV27duns2bOKjIxUSkqKgoODde211+qWW25R3759FRYW5uxwAQAAAAAA4CZI7gLg0s6cMTV9xqU+ie8fZqh6Neck+Ez52FRKqjTuCenB0VJGhnTylH2ZmjWlUSMNtW0jW2LWqdOm/u+bS2VGjTTk52f/GtLTTX0999LrDA+XXWKXxWIqJlb65x+p/z2G2t8iTXjtUsLYxUjpwgVrL2eOhnp0J2vWXhq+cs7XUtmyFv24VDp7Tpr3tRz2eAYAAAAAzrZjxw498cQTDtdFRkZq06ZN2rRpk2bMmKF33nlH7dq1K+UIAQAAAAAA4I5I7gLg0j6aatqGGoyIkPrf45w41qw1NXeedfrnZdbErqyCg6Uxow117SK75KqkJFPPvnDpNdxwvdSpY/b6vbwMfTJFmvKJqW3bpWFD7BOYdu6SHn7Umvx1Tx/psUc8NPMz6aWXreUlaf5CKT7B1LPj5dYJXl1vl35dKW3cJHXqIM2bfymJbtFiaeB9zo0PAAAAAHJSuXJltWrVSvXr11flypVVvnx5WSwWnTlzRsuWLdPy5csVFRWlhx56SPPnz9d1113n7JABAAAAAADg4kjuAuCytm4z9duqS/PjHjfk5eWcpKWVqy71qpWcnH19QoKUnCR5XDYEfXz8pWkfH2ncE0aOQ0qWKWPouacNJSSY8ve3LxMScml66c/SA/ebCgs19L93pDffNrVsuXXdz8skyb0TvAzD0DNPSceOS82aGvr5F1OvvWH9+8/91lTf3pKvr3u+NgAAAABXrlatWmnVqlU5ru/WrZt+/fVXPfzww0pLS9NHH32kyZMnl16AAAAAAAAAcEseeRcBgNKXnm7qw8mXEqq63SHdcH3pJ/QcOmTq1dctWrHSfrmPt3RPX2tvYpJksUjvTzI17mlTW/40ZZrW2MuXNzR1iqGOt0lPjzMUUTfv1+Bo2MHQECksTKpdS7qjq5Saal3u7W3ohecM9el1qezPy6SJb5vKyDCz1eMuypc31Kyp9e/QqYNUuZJ1eWSU9MNSJwYGAAAAADnw9PTMs0ynTp1Uu3ZtSdLmzZtLOiQAAAAAAABcAei5C4BL+n6JdPCQdTowUBr1QOkmdu3abWr2HFN/rLNfbhjWRLPh/zFUsYKhmBhTTz1j6u891vUbN0mhoaaaN7uUO+vvb+jll6w9UhVWaKihJd853t4wDI19VJJMLfjOuuxK6MErk5eXoYH3Se++b01W+/obUz17uP/rAgAAAFB4qamp2rdvnyIjIxUXF6f09PQC19GzZ8/iDywf/P39JUkpKSlO2T8AAAAAAADcC8ldAFxSm9bSn1ulNWulYUMNhYeXfCJPWpqpVWukBQtN7dqdfX3bm6QHHzBUu9alWEJCDH00SZo63dTcb63Ljh7Nvm1RErvyI6cEr5Ayph552P2ToDp3NvXxVCkxSTpzVvpjnXRLO2dHBQAAAKC0LV68WN9++622b9+ujIyMItXljOSugwcPau/evZJk68ELAAAAAAAAyA3JXQBc0jWVDb3xqqGt20w1bFCy+zp12tSyX6RFi01dvGi/zjCkDrdKAwfkPKSit7ehR0Yburu7qTW/Swf+cc5wiI4SvObOkypXNtW3t/smeB07burFl62JXZkWfGfqlnbu+5oAAAAAFMzZs2c1duxYbd++XZJkmoX73mUYhkzTLPEHcLJKSkrS2bNn9dtvv+mzzz6zJaUNGTKk1GIAAAAAAACA+yK5C4BLa9qkZG64nz1natVqacXKS0MqZmUYkmlKjRpIYx81FBaWdxzVqxsaNECSnJd0ZBiGHntEio4xtWKlddmHk01VrSK1buWeyVDhYVJ0lP2yP7dKhw6bdr2oAQAAALgyxcbGatiwYTp8+LAtMSszSaugCpsUVlALFy7Us88+m+P64cOHq0ePHgWutzST0kpS1tdhSDJd9XUZhgxTkkzrjQJX5Q5xunGMWcM1DMl04n2fzCDc9W/pUtwhRqlQcZZ6m3WHv6U7xCi5R5zFHGOJtFd3+DtK7hGnO8QolVqcRWqv7vC3dIcYJfeI0wVizLO9ukCM+eIOcRJjsbBvs64Zo7OR3AXgipaeburceen0aWn/AenvPaZ2/y2dO+e4fMWKUv0bpJW/Wed3/S2dPCWFhZVezEXl4WHo+WekixdNbf/LmqQ24TVTn02Tqlzjfh+GQUGGHnlY+mCSqfIVpAMHrMsXLjI17nH3ez0AAAAACmbKlCk6dOiQXVJXuXLl1K5dO9WpU0chISHy8nKPW1zXX3+9JkyYoBtvvLFQ24eGhhZvQE6Unp4uSQoIDJACnBxMDkxvycyQTK8MeQZ6OjucHLlDnO4eY2ZaaGBYcOkHdhl3/1u6CneIUSp8nKXZZt3hb+kOMUruEWdJxFjc7dUd/o6Se8TpDjFKpRtnYdurO/wt3SFGyT3idJUYc2uvrhJjXtwhTmIsRv/+7BsUFOQ293lKk2EW8yOLUVFReRdCkRiGYbuZFx0dXWpPnQIl7cA/plauMjWgv6HgYMdJO3FxpvbuMxQZ5a/TpzMUFZWipGRTyclScrKUmiqlpFj/j4mRzp+XMiy579fHW2rdWrq9i6G2bSQPD+nL2dKMmaZGjzI04F73TCCKiTF1/0hTZ85a5+vUkaZOMeTv736vxzRNJSVJhw5Lox62nvPKlJEWLzTk5eV+r6eo+BzA1Y5jAOA4ADgGikeYGzzFkpKSopYtWyo1NVWmacrT01Pjx4/XoEGD5OnpujckY2NjdebMGUlScnKyjh8/rp9++knLly9X9erV9dxzz+m2225zcpTOlZ6erozENFkS050dSo4shinTYpEscun25g5xEmPxcYc4ibH4uEOcxFh83CFOYiw+7hCnO8QouUecxFh83CFOYiw+7hAnMRYvjwAveQZ4k9zlAMldboib2LhSPfeiRWvWSsHB0vPPGLq5rTVp59RpU8t/ldb+bmr/AcmSR7JWfgQESDc2kjp2MNSurRQYmD1BaMdOUw3qW3vCclf7D5ga9bCp1FTrfKeO0n9fMNy2O0vTNPXM86Ya1Dd0x+1SuXLu+TqKis8BXO04BgCOA4BjoHi4Q3LXunXrNHz4cNt3mGeffVZDhgxxclSFt2jRIj3zzDMyDEOvv/66evfuXaDto6OjSyawUmYYhoKCgmSapuLj4zmG4dIy26sk2ivcAm0W7oT2CndCe4U7ob3C3VzeZq8Exd37OuluAFzCocOm1qy1TsfHS1WrSgcPmfrsc1Nrfy98vZ4eUoUKUqVKUrVq0g3XG7rheqlGdcnTM/fEoEYN3T9xKKKuofHjpNfesF60/bpCuv46qf89Tg6skAzD0FtvuP/7AgAAACB/jh07Jsn6oEdYWJgGDRrk5IiKpmfPnlq1apV++uknvfrqq+rYsaNCQkLyvf2VdEPe1Z8WBrLiqXG4G9os3AntFe6E9gp3QnuFu8naZq+k+x/FhSMagEuYPefSCbrtTdK3800t+UG6/Lzt6WlNTrrhel9VqeIpT88k+flJ/n6Sr6/1n4+P9f/AAKl8eeU5bF9KiqlVq6UuneW2PVpJ1mS43X9LZ8+aatbUUNMm1tfStYuhvftMzV9gLTflY1OGYapLJ0Ohoe75ei9cNDVrtqlePQ3VqumerwEA/p+9O4+zqf7jOP76zr6bQdaIUGRLi8jSok2hDdWvVUopKSqlJIRIWpTShlYt0qJVu9Ime9mVshXD7Pvc+/39cczcGXOHcefOcnk/Hw8P9yz3ez73zjnfe+45n/v5ioiIyIGlpqYCzne19u3bExQUVMURlV+PHj349NNPyczMZOHChfTu3buqQxIRERERERERkWpMyV0iUuW2brV89bVneuVKSE3zTBvjJHydc7ahU0eIjg4iPt4py5icnFOuzN3cXMvosZZFP8KSZXDXMAgLq77JQtZatm+HtDRo2bJ4nAu+sLw+x3kcFGQLk7sAhgw2fL7AkpbmJMxNexqmPW1p3szSrSucd66hYYPq+7qL+nyB5ZGplpwc2LPHMn5cYMQtIiIiIiIHr2hVq9jY2CqMxH9q1qxZ+Hj79u1VGImIiIiIiIiIiAQCJXeJSJV7e67F7fZMF03s6t4NbhxYcdWZPvkUFv3oedylM5zWvUI25bP8fMuvi+H7RZbffoMd/8Lx7eHpJ4u/Jw0aGMBJdMvIKN5GSIihyVGWVb8Xn79xk/Nv1suWjidbrr/O0KZ19U6Wat4ccnOdx98uhMlT3Nw13BxwmE0REREREQk89erVK3xcUMUr0P3333+Fj6OioqowEhERERERERERCQRK7hKRKpWaavnks5Lz6xwBdw03nNq5YhN2+vSGDRvhg/kwcIDhtO7VI0HIWicR6/MFlm++g33vYaxe7VQdK1pl7Nhj4ILzoX49Q9s2Jdu85irDV99YPvvc+zZ/XQy/LracfprljtsMtWtXj/diX82ONpzVw/LTT5CeAfM/hjNOh44nV3VkIiIiIiLibyeddBKRkZFkZ2fzxx9/VHU4fvHZZ54vwcccc0wVRiIiIiIiIiIiIoEgqKoDEJHD27z3LdnZxecd1wpefK7iE7sAgoIMdw4zPPKwYcC1VZ/MlJdn+XyBZeBNlltus3wwv2RiV0wMdO4M6enF57c81jByRBDXXWM48YSSr6VzJ8OokUH06e2ZFx7uJEUFB3vmffsdXHmt5YuvfB/usqKNuNNwYR/P9MefVN9YRURERETEd9HR0ZxzzjlYa9m9ezc///xzVYdUqnnz5pGTk7PfdWbPns13330HQMOGDTnxxBMrIzQREREREREREQlgqtwlIlUmI8PNy68Wn3d6d3jgfkN4eMUkWm3cZGnahGJD+AUFGU7tXCGbK7PkZCeRa977lt27Sy5v2ADO6gFdTjUcewzlGoLwtlsMy5db/tkCOTmQlQWvvwKvvAqffg7WOsM6jn3I8vvvlttuNYSEVH3iW1GRkYYLesLrc5ykroU/OFXg4uKqV5wiIiIiIlJ+w4cP57vvviMlJYXJkyczZ84cIiIiqjqsEp5++mkmT57MOeecw4knnkijRo2Ijo4mPT2d9evXM3/+fJYuXQpAaGgo48ePJyREl+ZERERERERERGT/dAVJRKpEXp5lyB2Ql+eZd3l/uOVmQ1CQ/xN08vMtc96Cl2ZZrrgcbrqheiQB/fmn5Z15ls8XQG5u8WWREXDeedDzXEOrlmCMf2KOjDSMGQ2DBlvy82HV7/Dtd4b77jX07mWZ9Ijl73+cdd99D/7+x/LQGIiNrR7vWYHGjQ1t2zjDV+blwRdfwqWXVHVUIiIiIiLib3Xr1mXy5MncdtttrF27lsGDBzN16lRq1qxZ1aGVkJyczNtvv83bb79d6jr16tVj4sSJnHrqqZUYmYiIiIiIiIiIBCold4lIpbPW8vBky4YNnnkdT4Yht1TcSLE//wLPveBUeXr1NTi2heX006omWSk31/LtQnj/A8vKVSWX160Ll15s6H1BxSVUHdPCcONAePY55z15aZalcydo28bw4nMwZaplwZfOur8tgSF3WKY9BjVqVK8ErwvON6z63XkNs16xXHpJ9YpPRERERET847TTTmP27Nnceuut/Pzzz/Ts2ZPLL7+c7t2707x5c2rUqFHVITJ79mx+/PFHfvnlFzZt2sTu3btJTk4mLCyM2rVr06pVK04//XR69uxJZGRkVYcrIiIiIiIiIiIBwlhrrT8bTEpK8mdz4oUxhvj4eMD5Raif/4QiFW7G825ee8Mz3fNcuO1WU+Yh9Xw5Bqy13DfK8v0iaNsGxj1oOOKI0reXl+dUtbLW+Rcejl+GJly33nLHnZa0tJLL2rSGfn0Np3Xzz7YOxOWyDLndqXwF0KI5PP+sITTUYK1T6eyZGZ73tuWx8MRUQ0xM5SRQ5eZa1m+AXbvA5YLoaGjRAmrX8mw/Pd3N+X3A7Xam774TLuxdcUmC/paUbJn6uOXYY5xhJmvWrLhjQORQomNARMeBiI4B/0hISKjqEMqkVatWxaYL/t7lqW5sjGH16tXliqsqHCrX3XQMSyDR/iqBRvusd1l5mWTnZ1Z1GAcUERJFZGhUVYdRabS/SiDR/iqBRPurBJpDcZ/193U3Ve4SkUo1731bLLGr76Vw+xDjtyEHAbZtd5KnWh7radMYw13DoUMHuPRiCA72LLPWsnadU91rxUrL5r8hMbFku3Fxlpo1oWYCJCRArZpQr56hf9/isScmWrbvgN27nYStoklkRzUuPhRlaCiccRpceomh9XGVW3UqONhw/71w3Q2W7GzYsBFmv2K5caDz9/jf5VDnCBg3weJ2w9p1zjCN115dcTG5XJYff4L3PrAsW178vSpQ5wjLqZ2hezfDiScYGh3pGUZy9itwYe+Ki688rLUl9vM//4Rvv4Nvv7O8/CpccZnl2qtNpST3iYiIiIgEiqIX9IzxfH88FC70iYiISOXIzs8kNXsPlup7/mAwEMFhldwlIiIiImWj5C4RqTQLv7c8/qTny/Pp3eG2W/yX2JWcbHlxlmX+R9C0Ccx8AYKCPG3XqmXo39ezfn6+Zf7H8NY7lq1bD9x+aqrzb/Nmz7wjj7Qlkrs++gRenOm8znvuMvTu5VkWEWHo1NGycRP06W3oeR4kxFddIs+RRxpuuRkee8KJ97XXocupluNaOTGd1cOQlw8THrb0vgCu+l/FxbJipeWRRz2JWqXZuQve/xDe/9BSp45Tia3gOVmZkJNjCQ+vXslRny2wzP/I8sRUCA31xPbnX551srNh1svO+/DQmOo3BKaIiIiISFUyxqkwXN6EroJ2RERE5PBjseS6sqs6jFKFBUdUdQgiIiIiUk0puUtEKsWq3y1jHrIUXENv2wYeuN8Uq6DlDwu+cIbw27gJvv4GzupRch232/LlV/DiLMv27d7bCQ2F8DAwQWAMZGV5ryJVq2bJeeHhnser11h69yr+Gu+71xAZWb4hRPzp4gvh+x9g8W/gcjuJXDNfoDBBque5hgb1nb9Z0WQ5f8nLszw13TLv/eLzjYEmR0HTphAaAom7Yd16SE/3rLNzJ3z1tWc6PQN+WAQ9zvR7mD57513Lk085O/7Lr1puuN7zHnbrAjExhnfnOdXjAJYug1tuszz9JCQkVI99RERERESkKp188slVHYKIiIiIiIiIiEiVUXKXiFS4f/6x3HOfJTfXmQ4Kgt174IP5cPGFtlglo/KIjzdc3h9mzracfBI0bux9vZ07YeJkS36+Z15sLJx+GnQ8ydCqlTMcYdFEJmstaemQtAf2JO39twf2Dv1bTP16cHx7iIqCY44p+dqioqpXwo4xhntHwLUDLOkZThWs516wDB3iibN9u4qJec8ey/2jLat+98yLiYF+l0KfXqbYkJbgJOatXuNUgft8gbMf7Wv2q5aGDaBly+rxPv/3n6cqwI8/w3XX2MJhF+vVM/SsB+edA3PeghnPO0Ng/v0PDL/bMu1xiI2tHq9DRERERKSqvPrqq1UdgoiIiIiIiIiISJUx1s+16JOSkvzZnHhhjCF+b0ZJcnKyhhOQam33bsvNt1p2/OtMx8R4Ki81bABzXjMHXQ3KGEPi7hi2bXPTvl1msWMgI8Oybj2c0GH/bT72hJt57zvJWddcZbiwN9VuKL/K9unnlgkPe97LaY+bUt9Hl8sy7WnL0UcbLuzt2/u2Y4dl6HDLjh2eeWecDnfcZqhV68Bt5udbflgEb7zpJHzt64QO8L/LDad0rNoqadZapj7uDDc5eaLZb3Lfwu8tD4yxuFzO9MknwaOTS1a40+eAHO50DIjoOBDRMeAfCQkJVR2CHKRD5bqbjmEJJNpfD11ZeZlk52dWdRgHFBESRWRoVJnX1z7rXVJWIinZu6v9sIw1ImqREFm7qkOpNBW1vx6qx7dULfWvEki0v0qgORT3WX9fd1PlLhGpMJmZlrtHehK7oqKcilgFyV0XX3TwiV3WWt7/wPLEUylERxveeMVQo4ZneXS04YQOB27n2qsNtWo5FaKqWyWtqnLeObDwe2eIRoDxD1tmvwhxccXfn6wsZ4jNRT9CcJClbh3odMrBvYfbtjmJXf/950wHB8HQIYZLLi57IlZIiOH00+C07rByFbw+x/LjT57lS5fB0mWW+vWge3fL6d0NrY+rmKEl98cYw/A7nGE9D5RA2L2bYdR9MG68M4Tp4t/ghZcsNw/SPioiIiIiIiIi4k/Z+ZmkZu/BUn1vHBkMRKDkD5GDFAjHd2hQOMEmWMe3iIiIlImSu0SkQuTnW0Y9aFm/3pkODoZBN8AT05zp8HA4v+fBt5uaCi/OcoZUTEmxPPcCjLir9MSX1FTL089ahgw2xZKUatUyXHv1wW//UGaMYcSdsOp3S3KyZ/jKh8cXT7gyBgp+LO5yw8If7EEld23Zahl6h2VXojMdHg4Pjzd0PNm3BCZjDO3bOUNHfrvQzfiJkF3kB3g7/oW33oa33rbUrg2dOlo6djScdCLEVcCQhy6XLVFpKyjIEB5etuef3cOwfbuT1AXw2hvQvr2l80Em0ImIiIiIiMjhIxAqlKg6yeGluu+TwSaY3PwcLLbaV3ISEd9U9+M7NDicnPxskrISqzqU/dLnt4iISPWg5C4R8TtrLY9Mtfy62DNv5D2G35Z4fiVzztm+JdbUqGGYMM5w+3A3x7UK4fL+7lLX3bbNcte9li1bYPt2y2NTICxMCTL7k5BgGDUS7rrH+Vv9sAjemQv9+3nWiYgwTH4Ybr7Fct65huuuKXv7f//tVOzavduZjoyAyQ+XPvzjwerU0RAdbQuTuyIjIKvI9/fERPjoE/joE0tQELQ81nJKRzj5JMNxrZxqYOX16GOWoCDL0CHG56E+r74S1q7zVFGb8qjl1dlOZToRERERERGRfVX3CiWqPnT4qe77ZFhwOC536dcVRUQqQ3Z+Fu68tGrbV+rzW0REpPpQcpeI+N3M2ZZPPvVM33Sj4ZSO8MgUz7xLLvI9SeX49obnnonjhA4hZGamlDrm7ua/YetW5/HKVbB8BXQ82efNHjY6nWK48grL63Oc6enPWpo3p1gCVkK8YdaLBzek5Z9/WW4fbgurfkVGwqOTDe3bHfy+kJlp+eFHWLbMsnYdZGSCARo1ggb1IS0NjmsFjz4Cf/xh+HahZeH3FCaVAbjdsHqN82/Wy5boaDj5RMt55xk6dfQt0eurry3zP3Yer1xlmTHdt4SsoCDDyHtg9WrL7j2wcxc8+5zlruFK7hIREREROZwlJvpe2SE6OprIyEivy3bv3l3qd+sDiYyMJDo62uuypKQkXC5XifnGGPLy8gBISfH+vT48PJzY2Fiv7aakpBQ+/2CFhYURFxfndVlqaiq5ubk+tRsaGkqNGjW8LktLSyMnJ8endoODg0lISPC6LCMjg6ysLACSs/eQlr2HXHfZtmMwxNf0Hm92dg5ZmVk+xQuQUDO+xLyw4AhycnJJzPB9H65ZsyZBQUEl5ufm5pKamupzu/Hx8YSElLxMnp+fT3Jycpn2V2/i4uIICwsrMd/tdrNnzx6f442NjcUd5PJaFWv3bt/bjY6KIiLSe5WoPXv2cDBdRLAJIjsvi+z8DILCIDLKe9+TkpyK28cEq7CwMKJjvCcbpKWmk5+fv9/nR4XG4Xa7cdu8YsdNaGgIMbExXp+TnpZOXt7+2y1NSEgIsXHe281Izyy17wkLCic/wuAqpYDXgfqIxMREn/p3Ywy1atXyuiwrK4uMjIyDbrNA7dq1vc7PyckhLS3N53YP1Ec4/WRSmfvJArFxsYSEBJeYn5/vIi3V93hjYqIJDQstMd/tdpfr8z42NpbwUoYQqK7nETExzrGxbxulnUeURZZNL/UOaFn6iNL4s4/ICXUX9kPuIJdPfcSBBAUFUSPe+3lPVmYW2dn7Px6iQmJxhwfh2meXOhT7iLLwdk5woPMIX1XkeUSg9REH+12jLA6H7xplOYct63eNg3W49hHeqI9wlKWP8OV7V3XvI0o7vnxlrK+9aSmSCu7aS4UxxhAfHw9AcnKyzx+IIhXh5Vdt4XByABddCHfeYXjtDXjuBWd+u7bwzFMlPyC9SUtzfrNStMrXwRwDb8+1PP+iZcxoQ9dTlRhTVvn5lqHDLCtXOdPxNeDF5wz16u3/PXS5nIpYRYdxBNi4yXLHcEtyijMdHQ1THzG0ae3b32TBl5Zx4/ff9xkD05+Cdm2cfc3ttqxbD78uhl8XW37/A0r7TK9zBFxxuaFPL8pcfWvbdsv1N1oKzknP7wn33VO2/bw0331vuf8Bz+uc9rhT5UyfA3K40zEgouNARMeAf/j7IpNUvH2/ax2MRx55hBtuuMHrshYtWrC76K9hDsKIESO49957vS7r3Lkz69at86ndgQMHMmXKFK/LevfuzaJFi3xqt0+fPsyePdvrsuuuu44PP/zQp3a7dOnC/PnzvS67++67eemll3xq99hjj+Wnn37yumzSpEk88sgjPrUbn1CDz3553+uyua+9x6PjpvnULsDP678pMS86NI6FC37k1ptu87nd9evXe72Z88MPP9CnTx+f2120aBGtWrUqMX/NmjV06dLF53Y//PBDunbtWmJ+YmIixxxzjM/tzpw5k9PO7eq1KtYJzTr73O49Y+7ksqv7el125sk9Sd6T7FO7A4dcy41Dr/O67Irzr+OvjX/71O6l/7uQu8fc4XXZ4KvuYNmvK3xq98zzTmPitDFel903dAxff/adT+126NieZ197wuuyKWOe4N03PvCp3dL6iNjYWMaNG8dDDz3kU7u1atViw4YNXpe9+OKLjBgxwqd2gVJvOL7//vtcf/31PrdbUX3EGx/P5OgWTUvM/3PDX/zvAt/jnf7q45x4yvHF5oUFR5CfYejYrpPP7c6cOZOLLrrI67KaNWv63G7R84h9h109ue0p7Nnj273BocNvY9SYkQCkp2UU69fOO+N8Nqzf6FO7V1x9GXePucPrsIyHUx/RtPlRzPlkttdlL0ybzUtPv+xTuzVrJrB41S9el706+zXG3D/Op3YBNm1b73X+J/M/5babb/e5XZ1HOCqjj9iXvms4DqfvGjqP8FAf4Thc+wh/X69U5S4R8QtrLbNfgZdmeTqpbl1g2FCDywXvf+iZf+nFZbsYnZFhGT7C4nLBE49CXNzBX8Tudyl072aoV1eJXQcjJMQwfiwMHGTZlQjJKTDsbsv0J6FmTe/vZU6OZdwEy1GNYdANnnVWrrKMGGlJT3emY2Lg8UcNrVr6/jfpeipERFA4/KI31sKtt8Fl/dzcdKMhNNTQqiW0agnXXm3IyLAsXQa/LLYsXgzbtnueu3MXPPmU5bU34OZBcN45+7+JkpdnGfOQJ7GrcSNn3y+v07oZzjzD8vXe6+KTplhefungKqaJiIiIiFRnI0eOLDZtjGHixIn7XccfvG1HRCqQMeS5fKuAUCA5ew/BXooHpOWklKvd1JxkkrISCTLBhAdHEBHq/Rfl1Y3Fek1a8JXLnVd6e0qirrbc1kVSVvEqCgZDfkg2WXm+V8Ww1l2i3QKZeek+tyv7FxoUhjW+VZioTPsOu+oux5CCOfmZJO/d1zJyMovdBHVZ398Lt9WwqxXJjSUl2/uN+PL0PUCp7Wbm+V6RR0RE5FCg5C4RKTe32/LUdMs773rmde4EY0YbgoMNC7+3/PefM79WTejerWxtjnrQsmaNM33HXZbnn9n/UHk/LLK0Pg4SEopX+apX15dXJTVrGiaOh1tvs+TmwZYtMOwuy5OPQXx88b9DRobl7nuLVPqKt/Tv6/ztx463FFSEjYtzEruOPabsyUlLlzkJY7VqeZ4TFWW44jJLeLjh+PZwxBGQmwvrN8Brb1gKfhBgLbz5tpNgNu5BilUei442dOsK3bo687ZstSz4whlWsaCy6O7dMOFhy/yPYPQoSk0SfOElz74aFgpjHzRERvonAWvYUMOSJZaUVNi+3UmgvO1WvzQtIiIiIlLl3nvvvcIfUhSU4d836aroOv5Q2nZEpGLluX0bhqZAWvYeQrJLJhBk5Po+TApAek4yKdm7CQsOJzcom6x856Z0ak5yudpNy0nxmhyTnO37MCng3DTPzfdtmE859Lisq0QihDGG/JAsr0N3llVFJm7IfhhT7uM7Izet1MS88sjMSycpK5FgE0xufk7xBNNyJIC6bD751kn+zXVlF0vuskrQqr5s6QnGLnf5krlLaze/nO2KyKGhtM+4jNzyJYBW1A9JRPxJyV0iUi45OZaJkyxfFam4f2pnGD/WEBbmXHz/+FPPF7I+vSE09MAX5YOCDKd1hyVLLW63U+1rf4ldH35kmTLV0uxomPZE8WEcxXetWhoeGgv3PeBUUNv0Jwy6xTJpAhzd1PMeR0TA3lFxAJj2tOWHRU5lrAK1a8NjU0yx5+1PZqbl2ect773vJAROGFe8etbAASWHPGx0JHQ+BfpcYotV9Vq9Bq6+zvLgA9C1i/ftNzrSMHCA4ZqrLJ985gwxunOns2zlKrjhJstDY6DD8cWf/+NPljfe9EzfeouhRXP/7X8JCYbbb4NxE5zj6J25cEFPywkn+G0TIiIiIiIiItVerjvH6w3f8iaN5e1tNzQ4nOz8LNx5aVgs6eVM7srITfWaHJOW7dvQZQWy8zPJdSm5SxzWukscF8YYwm1o+SoXVWDihuxfdn75KvJl5qWVmphXHll5GYWJsC63kq5ERKRqVFR1v4r6IYmIPxnr54Eek5LK9+VUDswYQ/zeLIrk5GS/j9UpUlY7d1pGjrKsKzIE+jlnwX33Fk/Eysy0fP4FfPCh5dHJhtq1y5748uNPlq1boX+/4tW4ih4Dr89x88wMz3FwwfkwckTJxB/x3dffWsaMcxLtACIj4bprDH0vgfBw52+Tk2O5c4Rl+YqSz2/UCB57xFC/ftn/9itXWW4dagt/+DX2QUOPM8r2/Kemu3nrnZLzjYFhtxsuuejA7WRnW157w/L6HMjbe80qOBiG3mq45GJnP9yxw3L9IEva3nPGbl1h4kPGr1UFwKkscOcIy6+LITICRt5juPQSZ2xrfQ7I4UjnQiI6DkR0DPhHQkJCVYdAy5Yti00bY1hTUBa3lHX8wdt2AsGGgjLFPoiOjiYy0vtwc7t37/b5OIqMjCQ6OtrrsqSkJFyukkMqGWOIiYnBWkt6uvfhvcLDw4mNjfW6LCUlhbw835ILwsLCiIuL87osNTWV3NziiULZeVlku7z8hHsfoSEhxNXw3m56ejo5Ob4lIAUHBRGfEO91WWZmJllZ2QSbICfO/Axy3WVL+jEY4mvW8LosOzuHrMwDv+bSJNSMLzEvOqwG2VnZpKYllznGfdWIjyMoqOT1nrzcPNLTfa8kFBsXS0hIMNFhNXC73bisMzxhfr6LtNQ0DM7+Cs7f0pZx+LGYmGhCw0JLzHe73aQk+36TqE5CfUJCQwrjLCppT7LP7UZGRRIREe51WfKelDK/boCo0Djcbjdum0dQmNO2NynJqbh9TBIJCwsjOibK67K01HTy8/PLHGPRfTI0NISY2Bivz0lPSycvb//tliYkJITYOO/tZqRnluh7DhRngaCgIGrEF+97jDHExsaSmZFF4q7Eg/rbFbZxEH1EWFA4sRE1iY+oWaa2a9eu7XV+Tk4OaWm+35itWbOm1z4iNzeX1NRUkrP3kJa956D7oII+Yl8FfYSvvPUR0WE1yM/PZ8+eRJ/7yuiYKMLCwrwu80cfsW9fCQffRxRrNzKCOnXrAJCWllbsfMTXPiIqNI7Q0BAiosO8JimWpY8ojT/7iKLHtzvI5VMfcSDe+ogCWZlZZGfvfz8rrQ+q7PMIcI7ljHTvFQmjQuMICwojOLjk525huwnxpfYRaWllG27WANExznlvRnoGFqhRI46QkJK1VPLz80lJKf55HxEcWebhn+Pi4rwey263mz17fK8CGhsbS3i498/7xETfq/5Vp+8aZVFdvmuUVWhoKDVqeD/m0tLSyMnxfiwXPYf1Jjg4uNTrAhkZGWRl+XYsG2OoVauW12VZWVlkZBzcuXvRz3Bf+oiyKM93jf2dC8XHx5faRyQnJ/sc76HYRxhjCvfzlJSUMvUb1b2PaNGihU/bL42SuwKQLmJLdfDdQsvkRy2pRc5NL+8Pt9xsCAqq2KpZBceAtZYpU5N4+VXPMdCmNTwyyahyVwX46WfLmIcsRc+5asTB8cdDnSMgLR2Wr4B//y3+vPga8PST0KTJwSfcPTHNzdx5cMbpMPx2U2zIzf3ZscNy2ZWeZLR93XC94dqrKVMS1h+rLfePthQ9Zzm/J9xxG9w+HNasdebVrwcvvVBx+94/WywvzbLcerOhbt0gfQ7IYU3nQiI6DkR0DPhHdUju2rZtW4l5DRs2POA6/rDvdgLBoXLdrSC5Kysvk8SknT7fEK5owSaYrLxMsvMzqm2MQGEVFW/JPtWFt2SA6qa0GAsSZaBk4kFVCOT3sjoJhBjBtzgre58NC46gRkQtEiK9J21VF0lZiaRk7z7k/t6Vzd8xVsT+GgjvIwRGnIEQI3jidNv8Cj1nM8YQHe0kFmdkZB7U/hoaFE5seA3iIqr+O5hUDud7hO/JRuVlMMTEOkkv6Wnev89EhEQRGeo9Wb46qe6f4YFyLlTdHYrX+vx93U3DMooc4j5bYHn+BUuDBtC0KXTrYjjxBAgO9i0BZfduy/RnLQu+9MwLCYG7hht6nV++pJasLEtERNkSblwuy4RJGbz1tqdjP+lEp2pSVJQSuypC506G556B0WMsf/7lzEtJhe8W7v95ySkw+DYYcK2lTy+IiCj599m2zbJsOfS6oPiym2509tduXQ/ub1q/vqF7V8u3e2OLiYb6DaDgR+4vzrSkpcOQwQfe31ofZ3jpORj1oGXV7868Tz6FZctgx95EttBQeGhsxSYVNm5kGDta+7aIiIiIHFrKkmAViElYUjbZ+Rmk5uwp39BhFaggacpS+vBk1UFosPdfVouIiIgcTir6nK1g2FuAXFf2wSV3BYeTk59NUpbvlW8qQ6Ak+wSC7PxMUrP3VNmPRIwx5Ic4lbcyckomIxoMRKC/t0gAUXKXyCEgL88Z9jAkBM47p3jyR3o67Nzl/Fu+At5733JEbbhxIPQ8r2yJVOAkU73/AbzwkqVo9cn69eHBUYY2rcuXdOJyWe693xJfA+65m/0maOXmWu66J50FX3jKl3bvBmMeMISFKfmlIjU5yjDzBfj8C5j9si1MbioqNhZOPw3iYmHOW+B2Q1oaTHvaMnMWnHSSpVEjCAs17N5j+eMP2LARgoLghBOgQZGhGyMjDd26+hbr5ZcZvl3onKxmZcOD98P0GfDTz87yDz+Ei/vAkUceuK1atQzTHofHp1k+nO/MK/rabx9iaHmsE/e69ZbGjZzYRUREREREZP+qc+KUkqZERERExF+y87Nw56VV24qwoUHhBJvggEj2qeqqWAcSbILJzc+p0u86B0pGDAuOqIqwREplrS0cNvlQqNpVEZTcJRLArLUs/AGmP2vZvh1q1YIzToPwcE9Sibfhm3clwsTJlo8/hQfuh3p1S09CsdaydBlMn2FZv774svN7Okkt0dEln5+RYRk/0XLJxYaTTjxwEtnM2ZYlS53Hm/6yzHwer4laGRmWkaMsS5d5Xtj558GIuwwhIUqmqQwhIYYLejrv+5at8PvvkJkF0VFOolSrlhT+Lbp2sUx42LJ17ygq6Rnw7XcFLRX/YHa7neTDWwf75+/YprXhpBMtvy0BlwvefhceHm8Y/7Dlu4Xw4ANw5JFl31ZoqOHy/p7krgJ16kCvCyxgcLksd99jycmF/10Ol/XzXqnMX/5YnU9urqXJURW2CRERERERERERERER8YPq/sOGQKguFghDpxdUAK7OQoPCCDbBVR2GVKLqnhRpMOSHZBMREl3VoVRbSu4SCVBJyZaHJ1l+/Nkzb/du+GwBXNjbM+/Si6HHmYZ//oHfljgVvhL3npetWAk33GQZ9yCc0KF4Aoq1TrLVrJctK1YW33aTJjD8dlPiOUW9+bbl+0Xw/SLLWT2cqlqlsdaSXeRc9tyzvVfg+meL5f4HLH9t9sy76n+Gm24sewUy8R9jDI0bQeNGpa/Tto3h1dnw2ecw5y3LP1u8rxcaCp1Oga5d/Pt3HHCtYekyy9k94PJ+TgLg6PvhxzMtk6bAVdss/ftCUFDZtrt8Rcl5O3fC40/CXcMtv/8Be5Kc+a+9YenTyxBRAT9+SE2zTJueztvv5NC2DTz9pCnzaxAREREREREREREREdlXda8uBoExdHpAVAA2JmCS+XLzc6o6jP0KlES5qh4q9ECcoUSziY+EEFRZzhsld4kEoBUrLaPHWnbv9syLj3cSnc45q/i64eGGunWgbh04+STD9ddZXnvD8tobkJcHyckw7C7LmAfgjNNNYfvPvWBZuap4WxERcP11hv592W+VrORky5tve6a7HSBhxxjDbbca2rS2fPe95corSq7z/Q+W8Q9bMooMCTnirigu7J2j0ozVXGiooXcv6HUBbN3mJBUmJztV5RIS4MiG0LZNxVS4at/O8Pac4tXpsrPh+RedGJ5+xuJ2G/53Obz/gWVXouWC8+GXXw2/Lrb06W3ofIohNdXy/IuW9z/0tB0ZCVnOcOV8MB9q1rS0a2to0gQ2b4YrrzAkJFRMwlVqKrz3fg7WwspVTvLc+T0rZFMiIiIiIiIiIiIiInKYqM5JUxAgiVMBIpCS+aq1AEiUqw5DhR6IMYZoqv+wsFVJyV0iAeajTyyPPmbZO+QsxkD/vk6FopiYAyeShIcbBg4wnNLRMupBS2KiM2TdCy9ZjmpseWEmfP9D8eeEhULvXk7y2BFHHHgbr75hC5NeWjSHM04v22s743RTmGBWwOWyvDjT8urrnnkRETB+bAw9zwsnObl6Z2uLhzGGRkdCoyMrd7v7Djuamwtxcc7j4GA45yxITLQ885wlMxPefBtycpwTWZfLcvKJcPV1lt17PG20agWTJzhJYh994syb9TIMvwNemWn48mvo1qXiXtORDQ0DB0Ty7HNZdO8KHY6vuG2JiIiIiIiIiIiUJlCqVYiIiEhJ1TnZBwInma+6J8oFRJKcHJCSu0QCyOxXnESnArVqwej7DSeecPDVgdq0Nrz4HAy/y5KWBi1bwoAbwFWkXw8LhT69nQpEZUnqAtiy1TLvPc/0oBt8Hy4uOdky5iHLb0s8845sCBMfCuLEEwPjw1yqn/h4wxNT4ZXXIDXVUru2YdbLTmIXOPvYpj+dxz//4lTJat4cdv/qzOtxJtx3jyE83HDXcEtyiuWHRc6yx5+01KplOOeskvt8RoZl+gzL4EGG2NjyV/S64fpIjm8fQpvWmapeJyIiIiKHrX///ZeUlBTS0tIO+rz45JNPrqCoREREDiMBVK1CREREpKJU50S5QEmSk/1TcpdIALDW8sJLllde88xreSxMmmCoXdv3JJHatQxXXG6Z/gws+MIz3xjoeR7cMMBQp07Z27fW8viTlrw8Z7p9O+h0ivd1v/7W8scflsE3mRJDPFpr+eY7J1EmKckzv1sXuH+kfxJj5PCUlGx54klLl1MN119nAGdfuu4aaHSk4fU5lksugsVLoMPxho4nQc2ahlM7w3//WW4dbOjcybP/hYQYxo52hjZduQqshbEPWZ58DNq28azndlvGTbAs+hFWr7Y8NsVptzwiIgxdu4SRnJxZrnZERERERAJJfn4+H330EfPnz2fFihVkZGT41I4xhtWrV/s5OhERkcOTqlWIiIiIiFQsJXeJBAgnocn5cnxqJxg3xhAR4XtySFaW5YmnLB9/Unx+p1Ng8E2GuFjKXK2rwHcL4dfFzuPgIBh+h8GYkm38tdky6RGnUtLqNZbxY6FWLc96X37tJMgUCAqCGwcarrwCn6uAiaxdZ7lrhCU5BRYvsZx0oifByhjDWT2cqlzWQu9exfezPr3gkou878/h4YZJE+CW2yyb/3aGfbznPsuMp6FxY2f9Vb/Djz8562/cBL/86iRQioiIiIhI2a1YsYJhw4axY8cOAFWwFRERqUZUrUJEREREpOIEVXUAInJgxhiuuMzw4ANOAsqEh8qX2PX335Ybbiqe2FWnDkyZZHh0chD//guXXWl5e64t88XynTstjz7mWbfvpdDsaO8xLvyewiHwUlMhMrL48tO6QZMmzuN6deGxKYarr/R9eEcRgCZHQXS08zg1FaY+UXL/Nsb7fhYa6j2xq0BcnOHRRwy1annav3OEZfdup/327QwPjjIEB8MN1xt6nuf/fTk93fLEU24++VQ3uERERETk0PPjjz9y1VVXsWPHDq/n8QX/Spu/v/N5ERERERERERGR6kyVu0QCyNk9DGedSbkuSv/4k2XseEvRkSvO7wm3DzFERxt+W2K57wGLywXTnnYqEQ2/nRJDJxaVl2d5YIxTEQmgzhHsHfLOu2uvNoSFwcuvWkbeA7t2wVFHeZaHhRlGjoAFX1huutEQFaWL8FJ+ERGGe0fAbXc4N4K+Wwjz3odLL/ZP+/XqGh6dBLfe7lSl2/Ev3D3S8vQTEBVlOKuHoXlzOKqxf7ZX1MZNluF3WfYkQY04S+dOkJBQucdNfr7lr7+cymRbtlp27YKsLHC5ISoSatSAxo2c96DlsfvvU0REREREikpMTGT48OHk5eUVfh+uWbMm3bt3Jzo6mtdeew1wvisPGTKE9PR0du7cyfLly9m+fXvhslq1atG/f3+Cg4MrLNY//viD77//nt9++40NGzawe/duQkNDqVOnDh06dKBv376cdNJJFbZ9ERERERERERE59Ci5S6SaSkmxREU5FYOKKk9i14cfWaZMtRT8yDkyAkbcbTi7h6fNVi2hbRtYvmLvc+bD1q2Wh8ZAjRqlb7ugIlJIiDNkZHT0/uO8oCesWwdDh0GD+paXZ0JwsOc5rY8ztD5OyR/iXx2ON1zWz/LWO870089YWreCli39s6+1aGGYMA7uusdJkFy/Hh4YY5k80UlmanJUye24XJZ/tkDTJr7H0OhIiIqCPUmQkgpTH7c8NLZ8/UVZJCVZvlsI3y+yLF8BOTkHeobT+cTFwamdLb0vMLRrW/FxioiIiEhge/nll0lOTi48b7zkkksYPXo0ERERbNu2rTC5C2DIkCHFnvvTTz/x2GOPsWrVKvbs2cOSJUt49tlniS74EutHV111FYsXLy4xPy8vj82bN7N582bee+89LrzwQsaPH09YWJjfYxARERERERERkUOPhmUUqYZcLsv9oy233WHZtcs/Q6y99oblkUc9iV0NGsBzzxRP7AKIjjY8/qjhgvM985Yug2uut7w0y83adW6277AkJVmysixutyU01DB+rOHYY+C2WwxtWhdvMzvbzZ497mLzoqJg2QrIzYXNf8MXX/nlZYoc0M2DDK1aOY/z8uDeUZb/dvpvKMOTTzKMvMdzDPzyKzwy1fsQp9Zapj7hDJP61Te+xxAebhhxl2eb3y6suGPK7bb89LPl3vvdXNTX8ujjll9+LUtil0dqKnz2Odw61HLdDZYffyr7ELAiIiIicvh55513ChO7TjnlFCZOnEhERESZntu5c2fmzJnDxRdfjLWWxYsXM3To0AqJ87///gOgTp06XHPNNUybNo133nmHt956i5EjR1K3bl0APvjgA0aOHFkhMYiIiIiIiIiIyKFHlbtEqqHX53gqZw0abHnjVYiM9L2yzauvW557wZM40fo4eORhU2olrtBQw713O8MtLvjCmbd7N8x62flXUH2nQHi4JSIcwsJh7nuWD+Y7SWTZ2ZCZCalp0LAhvPGKJSjI2WZIiKH3BZbZr8BxrSAmxueXJ3JQQkMNDz0I1w+ypKZCYiLcNcLyzFMQG+ufClLnnWPYuROef9E5Vj75FOrWsQwcULz9V193quMBPDjW0qA+tPKxitgJHQx9L7HMnedMT33c0vo4aNjAP68pPd3yyWcw7z3L1m3e1zmyIbRsCUc1NtSr61T0Cwp2hmfctQs2/21ZuhT+/c/znE2bYMRIy4knwIg7oWFDVfESEREREY9NmzaRnJwMOBVfhw0bdtBthISEMGHCBLZs2cJvv/3Gjz/+yDvvvEO/fv38GuvRRx/NsGHDOPfcc0sM/Xj88cfTp08frrjiCjZv3sxHH33EFVdcoSEaRURERERERETkgJTcJVKJ0tOdxItvvrWMvMfQ8tjiSQxvvGlZvdqy8AfPvEsvMeVK7Hp7bvHEro4nw4RxJdt0uz2JV+BcNO/WBRZ8ceBqOjk5B67as3Wrk+hy8yDPNi6+0HBaN2coO5HKVK+e4eHxMOxOS24e/LUZ7hxheWwKxMT4Z3+8+krYuRPe/9CZnvUy1KpluaiPp/2ze8CCL2HzZrioj++JXQVuutHwy2LLli2QkeG8vrEPWlo0N4SE+Nb2P/9Y3n3PSezKyiq5/IQOcOYZhq6nQu3aB9qGwVrLxk3w8SeWTz934gRYshSuG2gZciv06aWhGkVERETEsWbNmsLHtWvXpn379j61ExQUxIgRI+jfvz8Ac+bM8Xty13PPPbff5TVr1uTee+/l5ptvBuCzzz5TcpeIiIiIiIiIiByQhmUUqQTWOtWs+l1heXGmZdOfsPi3kut9tsDy7UJw7x3B8IQO8L/Lfd/uN99apj3tSc46pSNMmlA8sevffy1Tn3Bz7fUWl6t4Ilf7ds7/xkBsDISFFW8/Jhr2+THyfgUHU2zotVq1jBK7pMq0b2cYdb+hIIdo9Rr4/Av/tW+M4Y6hhi6neuY9+pjl/Q88x0D9+obnnzFcdw3cflvJY2HjJktmpvcEy5Wr8nhmRiZDh7n45x9nnchIw7jRhrBQZ53tO+DGm2H6swc35KHLZfn+B8uwu9z87xrLu+8VT+yqEeckr70zxzDt8SAu6mPKkNjlMMbQornhjqFBvP2G4bL+ELI31TwrG6ZMdYaQzcvTMI0iIiIiQrGqXcccc0yJ5fv+KCBnP788ateuHQ0bNsRay5o1a9iyZYtfYy2Ljh07Fj6uiu2LiIiIiIiIiEjgUeUukQqWmWmZNMXy9TfF5y9bbrn6Ss9F6MREy59/epZHR8H9I02xaloHY+1ay/iHPckRJ3SACeOgSG4VeXmWG2627L1WzpiHLB1Pgt69nG3WrGmY9QIcUceyZ4/hiNpO0sfWbYa4OGh0pHMhPT/fkpMDGzZaatcGV77z/MhICA21jBwFvS4w9DpfiVxSvZx5uiEzEyZPsfzvcrjkIv+2HxJiGDsa7rjT8vsfzrxHH7dkZsEVlznHT1SU4YbrSx4bqWmWm2+15ObCOWdbRo0sno/9ztwc5r3v3LhatgIaN3bmt2hhGHIrPPaE52APDy9bvNt3WL74Ej78yPLffyWXN28G/foazjoTwsPLfzzXqGG47RZDz3Mt4yc6Fb0A5n8MW7ZaJk3wXyU1EREREQlM6enphY/j4+NLLI+IiCg2nZGRQfh+ToBbtGjBtm3OOONr166lUaNG/gm0jPLy8gofq1qtiIiIiIiIiIiUhZK7RCpQUrLl7nssa9d55h3VGAZca+jWtfi66emW4GBwuZzpWwYb6tbxXOjdstWyfbszrOL+LgC7XJY9e+DeUbZwqMSGDWHbdji/DzQ5yjLzBef5oaGGiy+0zHrZWe+bbyEpyRYmd4GTKLL4Nxh2l5Mo0rkTTJlUfPuvvQHvvmdJSoJnnza0bVN0uWH6NEtwsC5aS/XU63xD86Ph2GMr5uZKRIRh6iNw972Wlaucec/McJKnhg6h1GNj/keQne08zsstubx5c0/ZvBUrLBf2LjrkKXy+AP5Y7UzPeRPatbWc2tmzTsFQrP/+5ySffvOtZc3aktsJDoJu3aDfpYZ2bSvmPWrezPDCDHjsScv8j5x5y1fA7cOdoTJr1FD/ISIiInK42l+iFkBMTEyx6Z07d1KzZs1S14+NjS18vGvXrvIF54PFixcXPj766KMrffsiIiIiIiIiIhJ4lNwlUkGSki1Dhlr+/sczr39fuHmQISyseKKCtZapT3gSu9q2gd4XFG/vueedIRs7HA//uwI6nuRJCklLc4ZN++VXS1o6hIdBYqLzvPgaMHoU3DTYmd69p3i7/fsalq+wLFvuTOfnl3wtibs9j2vUKLnc5XISuwC+XWj3Se4qPXlFpLpo2dJ75axly+C07uXff6OjDY9OhpGjLEuWOvPefQ/+2mwZfT9ehzQMDYFWrWD9Oojzctyd0CGUK6+IoFXLXNq1LT6EoTGGaY/D0GGWP1aDyw0PjLE8MRVaHwdffGmZPgNqJniqZe2rVi3o0wv69DIccUTFH8OhoYYRd0LTo2DadOf1rFvvvIZpjyvBS0RERORwVaPIl9CiVbwKhIWFERsbS1paGgB//vknLVu2LLW9gmEeS2uvIrndbp5//vnC6Z49ex50G4dKta+ir8MYU21flwEMTmzVNUYIjDgDOcbSHleVQH4vq5NAiBF8i7Oy99lAeC8DIUYIjDj9HWNF7K+B8D5CYMQZCDFC5cVZnv01EN7LQIgRAiPO6hDjgfbX6hBjWQRCnIrRP6rb967qSMldIhUgO9ty732exK7gILjnbsP5Pb13RJ98RmFyVUgIjLir+HCMa9Y6iV3grLdsuaVeXejTG845C+Li4JVXLbl5xdsNDnbWec5z7ZicHE/FHoDYWMO4MTD3XUtEhKFunZLxhYbA0U1hVyIcUbvkcifxwxIdDT6OIilSreTlWR540EnEuqiP5bZbTbmHIYyKchK8Jk2xfL7Ambd0GVw30HLHUOhxZvGTlf79DP37GbKzLXl5Jdtr2yaEtm1CSE7OKzbcaoHwcMOkCXDzrZZt251j/9ahltAQyNlbCWzPPsmeYWFOdb6zznSqC4aEVO4BbYyhfz+IjYOHJ1vcbtj0J9x1j5OYFh2tDkZERETkcHPUUUcVPt66davXdZo3b86yZcsA+PXXXzn//PO9rpeXl8fKlSsLp6Ojo/0Y6YHNnj27cPtnn302bdu2Peg2vA1NGajy9/66LCoqiigiqzga74IJxW3d5LtCiAmp3P3lYARCnIdKjPGxCZUcVUmHyntZ1QIhRih/nJWxzwbCexkIMUJgxFmRMfprfw2E9xECI85AiBGqJs6D3V8D4b0MhBghMOKsbjF621+rW4ylCYQ4FaM/OfcBY2JiCAlRKtO+jLXebgn7LqmgfI9UGGNM4cW85ORk/PwnlHKy1jJ6rOWbb53p4CB4aKyhezfvSQlJyZYrr7GkpjrT114NNw4MKrHOK69a3v8Qr0keRzaEzKySiRrenHs2PHB/0IFXLEXRxLACGRnOEJDx8ZRYVhF0DEhFmznbMnO2Z786pgWMe9Bw5JHl37+ttbz2Brz4ksXl9sw/+SS45irD8e0PnJFe2jHgclm2bYO16+H33y2//wEbNuI1+atASAh0OgXOPN3QtYuThFYdfPWNZexDToIXOFULH5tiCA2tHvFJ1dLngIiOAxEdA/6RkFD1SQoHkpKSQqdOnbDWEhISwtKlSwkLCyu2zuTJk5k1axYAcXFxLFiwwGsS1KuvvsqECRMAZx+aOXMmnTt3rvDXAE7S2YABA8jPz6dWrVp8+OGH1K7t5ddTh5H8/Hyy8jLJzs+o6lBKZw3WbXFbN8Ehvl9LqXCBEKdi9J9AiFMx+k8gxKkY/ScQ4lSM/hMIcQZCjBAYcSpG/wmEOBWj/wRCnIrRryJCookMjVJylxdK7gpAuohdvb07z/L4NM/fZMRdhj69Sk9GyMy0zH7V8s5cqFsXXn6p9ApB//5nmf6M5belsHfEiTILCYGze8DllxmaHR3YyRE6BqSiZWZapj7hqbAFEB0Ndww1nHeOf8qBrvrdSV7697/i85s2gTNON3TuBM2OpsQwrgC5uZCbF8eOHW5WrExj40bLpj/hz7+cCl1lERoK110Dl1xkiI2tnn3Cp59ZJkzyHN+9zneqIKocq+hzQETHgYiOAf8IhOQugD59+rB+/XqMMbz00kuceuqpxZavXLmS/v37F54ntm/fnqlTp9KwYcPCdd555x3Gjh2Ly+XCWktkZCQ//fQTERERFR7/hg0buPLKK0lJSSEsLIyXXnqJjh07+tRW0WElA5kxhpiYGKy1pKen6xiWaq1gfwW0v0pA0D4rgUT7qwQS7a8SSLS/SqDZd589FPi7+rrS3UT8aP0Gy9PPej4cL+vHfhO7wKmSc8tNhgt7WdLS2e/QbwsXwjffQf36cPsQ5/HSZZCV5X39sFA47jjo3tVw5hlQu7YSIkTKIirKMGokHN8OHp9myc2FjAyY8LDl2+/g7juhdq3yHU9t2xhemQWzX7G89TaFVbz+2gx/zbbMnO0MrXpEbUtUFJggcOVDUhKkpAIkl2k7wUHQogU0bQqLf4PERGd+Xh6sWQvh4eV6GRWq53mG1DR4arrTr370iTNEbP9+VRyYiIiIiFSqLl26sH79egC++eabEsld7dq146STTmLJkiUALF++nLPPPptmzZoRExPD33//TVJSUuHFbGMM/fr1q5TEri1btnD99deTkpJCcHAwjz32mM+JXcAhdUE+ODi4qkMQKTP9alwCjfZZCSTaXyWQaH+VQKL9VQJN0X32ULr+4S86okX8JD/fqTBTMGxiq1Zw86CyJ380bLj/df/91zLjBacT27HDqdAzeWIQW7a6GTTYU8mrzhEw5BZo1MjQ5Cg0hJmIj4wx9O7lHMujx1j+2eLMX/QjrFxlGTYUzj6rfFW8oqIMt9xs6N3L8u57lk8+hcxMz3KXixKVvQ6kXl1o3hxaH2do0xpaHguRkU6MqWmWUaMtS5c56wYFORW8CuTnW4KD/VOZzF/694XNf8P8j5zp6c9aWrVykuNERERE5PDQs2dPZs2ahbWWDz/8kLvuuovwfX6lMHr0aK644goyMzMxxuB2u9mwYQPGmGJJXdZaGjduzO23317hcf/3338MGDCAnTt3Yoxh4sSJnH322RW+XRERERERERERObRoWMYApOEnqqdXXrM8/6Lzt4iMgJdnGRrU92/ywQ+LLPc9YGnfDiY+ZAgOhsG3WTZtcpbXTIDnZxjq1T20kx50DEhly8mxvPCS5a13oOju1uNMGPOA/4YJzM62/LrYOdZXr4F/toDbXXK9sDCoWyeIOnWCaNjARbNm0LyZM4xjTMz+Y8nPt7w40/LhR/DKLFNYgezf/yxjxlnO6mHoe0n16kPy8ix33GlZsdKZrlsXZr1giIurXnFK5dHngIiOAxEdA/4RKMMyAnzxxRe4954cd+zY0Wvsv/32G3fccQeJe8vVFj1PL9hHjj32WGbMmEH9+vUrNN49e/Zw9dVXs3HjRsBJPrvyyivL3e6hct1Nx7AEEu2vEmi0z0og0f4qgUT7qwQS7a8SaA7Ffdbf191UuUvED/75xzL7ZU8Hc9Og/Sd25eZannjKcsVlhkZHlj05oWsXw9RHoH07Z7i2+0d7ErvCQmHi+EM/sUukKoSHG4bcYujezTJxkmXrNmd+i+b+S+wCiIgwdO8G3bs5bebkWFJTnWpeFqfSVo04qFHDFJ4QHOwJTkiI4eZBhsv6WxLine1s+tMy5HZLWhr8sdqSEG/pcWaQ315XeYWGGsY8AANusCSnwH//wcOTLRPHV68qYyIiIiJSccpS8eqkk07is88+Y86cOXz99df8/fffpKamUqNGDVq2bEnPnj25+OKLK3w4wLS0NG644YbCxK4777zTL4ldIiIiIiIiIiJyeFJyl0g5ud2WSVMsuXuHY2zTGi6+cP/Peedd+HA+fPKpZcC1cO3VZU9OOPkkZ92nn3HzwyLP/JH3Gtq0VpKDSEVq19Yw+yV4/kWnstbl/Ysvz8mx/LEajm8PQUHlPx7Dww1HHFFyvj8SmgoSuwCOagyNjoTVa5zKZA+Og23bLddcVX36lCOOMNx/H9x9j5PI9v0imDsP+l1axYGJiIiISLUSExPDjTfeyI033lgl28/KymLQoEH88ccfANx8880MGjSoSmIREREREREREZFDQ/UpyyESoD6YDytXOY9DQ+Geuw3BwaUnROzZY3n5VSc5IT8f9lYXLCEjwzL7FUteXsmKPO+8a3nzbc/0gGvh7B7VJwlD5FAWEWEYOiSIp54whIQUP+4W/gBDh1ku+5/lpVlutm0PjJKhISGGO24rPu+EDlUTy/50PsXwvys809OftaxdFxjvsYiIiIgc+nJzcxkyZAhLly4F4JprrmHYsGFVHJWIiIiIiIiIiAQ6Ve4SKaemTeCYY2D9erjmKkPTJvtPsnrhJUtmpvO4WTPodX7Jday1THnM8uVX8MMiGDsaGjZ02v1uoWXa055khh5nwIBrldglUtlCQ0sed59+5hybO/6FWS/DrJctx7e3nH+e4fTTICqq+h6rxx0XxMwX3Mx5C3btokQlwORky8zZlosuNBzdtOpex6CBhhUrnApp+fkwdrxl9otOlTMRERERkap055138sMPPwDQqVMn+vbty/r160tdPzQ0lKZNm1ZWeCIiIiIiIiIiEqCU3CVSTse3N7w4AxZ+D11O3f+66zdYPvrEM337EO9Vvn5bAl9+5Txeuw42boKGDWHlKsvY8RZrC7YN9480fhn+TUTKx1pLs6Nhw0ZISvLMX74Clq+wPP4knH6a5bxzDR2O98+wjf52TIsgHhwF+fklq2F99AnMex/mvW856UTLgGsN7dtV/msICTGMHQ3X3WBJT4ctW+ClWZZbbq5+76eIiIiIHF4WLFhQ+Pjnn3+mT58++12/YcOGfP311xUdloiIiIiIiIiIBDgNyyjiB0FBhtNPM14r+RRwuy1PPuVJzOreDU7o4H39E0+AYUMN4eFw0YVwWnfD339b7r3fkpvrrNOkCUwcbwgLU0KDSHVgjOHWwUG8945h0gRD924QHOxZnpUNn34Otw+39LvCsnVr9R1OsGC4ydQ0y2NPuElJcfP+B554f1sCtw613D7czcpVlf866tUz3D7E0/e9+Tb8sbr6vp8iIiIiIiIiIiIiIiIiIr5S5S6RSvLp57BipfM4NBRu3U+VmaAgw6WXwCkdoVYt+Ocfy9DhltRUZ3mtWvDoZENcrBK7RKqbkBBD1y7QtYshKdkZXvXTzyzrN3jWyc+DevWqLsayWLPWMnqMZce/sHsPPPgAvPc+fP2tMxwiwJKlsGSp5dyzLUNuNSTEV16fdN658NU38PMv4HbDw5MtLz2v4RlFREREpOqsW7euqkMQEREREREREZFDkJK7RHywdq1l9Vro08tT4WZ/kpMtzzzrqSpz1f+gYcMDP+/IIw1/bbbcMdyye48zLyoKHp1kqFdXCQwi1V1CvKHfpdDvUsPGTZbPPrcs+ALOObtk37FzpyU6GqKjq8exnZgIO/51Hn+3EC7vbxg9yjDoBsurr1s+/tST5PX5F/DTL5bbbnGSroyp+NdgjGHEnXD1AEtGBmz+G2a/Yrnpxurx/omIiIhIxcjOzubjjz/m559/Zs2aNezevZu0tDRcLtdBtWOMYfXq1RUUpYiIiIiIiIiIiP9oWEaRg2St5alnLI89Ybl6gGX1mgMPBfbMDEvK3qpbRzaEq/5XMvnA5SrZzoqVlsFDiid2PTbF0KKFkhdEAk3zZoYhtwQx7x3DddeUPIanPGa57ErLR59YrK36IQa7dTVc1g/i4mDyREPbNk7M9eoZ7r4ziDdfM5x3rmf91FSYMMlyx52VN+RknTqGIYM97+Ubc2Dtuqp/70RERESkYrz55pt069aNUaNG8dFHH7Fx40aSkpLIz8/HWnvQ/0RERERERERERAKBKneJHKSff/EMr/jvv5AQv//1d+2yfPm1Z/rOYcbrsGFTn7BkpFuGDjHUqmX4fIFl8hRLbp6zPDoapj5iaNNaiV0igSwkxBCyz6fvb0ssP/3sPJ70iOWLL2HEnWWr8Oer3FzL6jWwfj2sW2/ZvgNSUiAnF9wuZ6hDtxushfEPW+a/V7zaWOJu+Ozzku0uWQpXXmvpd4nl5ptMmaoblkevC5yhIhf/Bq69wzO++ByEhqqvFBERETmUjB8/ntdff70wKcsYU1gx9mAStYwxSuwSEREREREREZGAouQukYN04gkw9FbD7FctF/SE+vX3n0BwxBGGV2Y6yVvx8XDySSXXX7nK8uF85/HPv1rOON3y0cdF2qgNUyYbmjdTsoLIochaaNAAtm93ppcshWuutwwcAP37lm3414OVlgZDbi/7TS23u/h00H5qf7pc8OY78OHHlrvvtJzdo+IKhRpjuOcuZ3jGrCzY9Ce88ppl4AD1lyIiIiKHivnz5/Paa68BnuQsay2hoaE0btyYuLg4Qvb9BYWIiIiISHWXl+X8q85CI51/IiIiUqV05UvkIIWFGfr3g57n7T+5oagjjzQ8NgVyc70vX7bc8zgoiGKJXc2awSMPG+rWUaKCyKHq5JMMr86Cl1+1vD7HSY7KyXGGdP36G7jnbmjR3Lc+wFrLH6uhcSOIi/O0UauWoXZtS2JiWdtx/s/MtMx7HzocbwkOgqBgMAZc+U7lrKIyM2HsQ/D5F24emWgICqqYfqxePcMtN8PUx50gX3kNune1GsJWRERE5BAxbdo0wJPY1bp1a4YOHUqXLl2U1CUiIlIdKEFFfGStJT8/v/DxYScvC5OVBFTX126cyHTsiIiIVDldARPxUWzswSUNGGMID/e+7OorISUV5r7rVNMp0OMMuHeEITJSCQoih7rwcMOgGwxnnO4Mybp2nTN/7ToYOMhywfmW6681HHFE2fqDxN2WzxfAp59ZNv8Nt99m6Hdp8XXOOhMys+DYYwxNm0DNBIiIhOAgJ2ErKBiCjJN0GhYGiYmWESMt6zdAjzPhqwWeYRfz852hHVeutMx9DzZu9Gzn55/h7blwWT9bOHSOv13YG77+xkmWdblg4mTLCzMqpuqZiIiIiFSe9evXs2XLlsLzyNNPP53p06cTHBxcxZGJiIhIISWoHF78mMxnDNgg51fxJisdv+V3BVQyn8Xk51R1EF7ZkFJuaomIiEilU3KXSAVISrb8/Tcc3/7ASQV//ml5ZKrl9z8888JC4ZbBhksvpsISIUSkemrR3DBjOrzzLrw405KT4wyJOP8j+GGR5b13IDTUe7+QkmL56Rf4+mvLL78Wr6T1yaeWfpcWf96QWw5uuMQFXzqJXQDffAsXXwjHt3emQ0IMjRtB40aGXhfAjz+5GT0Gsvdel3j6GcsRRxh6nHFQmyyzoCDDvSPg2ust2dmwYSO89gZcd03FbE9EREREKscffzhflq21hISEMG7cOCV2iYiIVEtKUDls+DGZzwAGZ78xmRnlbq+gVSXziYiIyKFGyV0iZZCYaHloouX66wzt2+0/2So/3zJ6jGX5CrjqSsvA64zXyjFZWZZXX7e88SbsrToMwNFN4YH7jc9DsIlI4AsJMVxxGXTvBtOetiz60Znf87ySlaheec3Nho2Wv/6CzX/j9ddtMdHQ+jjIzbWEhfnet1xxGezeA+/MhVEjzX4TWE/tHMQ7b1rue8Cy6nfo1hXOOM3nTZdJwwaGm26EJ59y3oTZr1i6d4Wjj1Z/KiIiIhKo9uzZAzg/fGrbti116tSp4ohERERExF/JfMZAsA1zHrty/FL8Tcl8IiIicihScpdIGbw407JkKSxZarn6KstNN5Re7ebpZyzLljuPX38DunSGNq09y91uyxdfwlPPWJKTPfPDQuG6aw3/u1zDiImIo2EDw+SJhmXLLa+8Zul7ccm+4cP5lh3/lnyuMXDSiXB+T0P3rs6wj+VljGHIYDi7B7Q89sDtJSQYnnoC5rwFfS9xqmsBvDvP0qmT8/r87dKLnapiK1c5ibPjJ1mef0b9qoiIiEigKlqlq0GDBlUYiYiIiIiISDn4cUjTChNQQ5qKiBxelNwlcgB//mn55DPP9Cknl54g8NY7lrnzPNODbzK0ae1Zf81ayxPTLH+sLv68EzrA3XcaGh2p5AMRKanD8YYOx5fsHzIyiid2hYQ4yaRdTjWccTrUq+v/PsUYQ8tjS87/Z4vljTmWa642NKjv2W5IiOHqK53H1lqemWGZ8xY0+wjuGm5p2+bghoY8kKAgw8h74LqBzpCW69fDq6/DgGv9uhkRERERqST16tUrfJyXl1eFkVQPiYmJPj83OjqayEjvN2p2796N9VYGuAwiIyOJjo72uiwpKQmXy1VivjGm8O+ZkpLiddvh4eHExsZ6bTclJcXn/SEsLIy4uDivy1JTU8nNzfWp3dDQUGrUqOF1WVpaGjk5vlU3CQ4OJiEhweuyjIwMsrJ8u0FojKFWrVpel2VlZZGR4fvQWLVr1/Y6Pycnh7S0NJ/brVmzJkFBJb9D5ubmkpqa6nO78fHxhISUvEyen59PcnJymfZXb+Li4ggLCysx3+12F1Yl9EVsbCzh4d6r0hwqfURZqI9weOsjrLXk5+eTkZHBrl27fGr3oPuIrCRMVrJTeekAatf03qfl5OaSlu5731MzvkYpfUQeKSmZ2EgLme6DbvdAfYSvSu0jcjLYs3O7z+3GxsSU3kfs3u1zu9FR0URGRoAJhn0qdu1OSva5j4iKjCA2xvuxnJScist98H2EDQ4nLD6M2KiaXpdXqz5i77ETalzEx3l/H9IyMn3vI4KCSYj3Hm9GZhZZ2dn7fb4NDvd67Byu5xHezgkOqo/ISsJkpVCWEnVxsTGEhYWWmO92u9mTlFKmeL2JjYkmPLxk3wOQuDsZG1kDIr330/tT6ecReVkk7dzhUx8Be88jYmK8LktJSSUv38c+IjSMuIJjeZ9Euco+jyjLOay+a3hU1XcNXx2K3zV8+d5V3b9rlHZ8+UrJXSIH8MxzFvfe89auXSh1GLKvvrY8Nd3TyZxzFlze33mclmZ57kXLBx+WHDLtiNrw2BRVlRER3zw0Jgiw1K4Nx7TwT4Wug+V2Wx551BmO9tPPLZMmQOdOJePYug3mve883vQn3HIbPHCf5Zyz/RtzoyMNNw8qPjxjl1PhmBbqZ0VEREQCTcuWLQsfb9mypQojqR6OOeYYn5/7yCOPcMMNN3hd1qlTJ3b7eMN3xIgR3HvvvV6XnX/++axbt86ndgcOHMiUKVO8LrvqqqtYtGiRT+326dOH2bNne102dOhQPvzwQ5/a7dKlC/Pnz/e6bNy4cbz00ks+tXvsscfy008/eV321FNP8cgjj/jUbq1atdiwYYPXZa+//jojRozwqV2g1JsJn376Kddff73P7a5fv97rzZxff/2VPn36+NzuokWLaNWqVYn5GzZsoEuXLj63++GHH9K1a9cS8/fs2VOuY3nmzJlcdNFFXpepj3AcVn3EMc356evPis0zBmxQLo8+PIXxk6f61G6tmglsWLnY67LXZ7/KiFFjfWoXIHnN917nf/r1Iq4bNtrndjcu+tBr4tgvy3+n97VDfW630vuInds5pv0pPrc7a9pELup5ltdl5Wn3kQfv5sar+mGDw8EWv1Ha8YKr2O1jssm9tw5g4sjbvS7redWtrN202ad2B157JVMef8rrsmrZR5x8PB+/4j3esVNn8OKc93xqt2WzJvz80atel02bOYfJ02f51K7OIzwqqo+Y//I0unXsUGJ+0p4kWnTxPd7Zj4/jovPO8LqsRadzfG630s8j8rK44OJ+rN34l0/tDryyL4+O8b6fXjXgZhb9utSndi8870xmPzUJME4KX5Hkrmp5HqHvGoUCrY/Qdw1Hdf+u4Wtia2mU3CWyH78tsfz8i/M4OAgGD/KeGPD9D5ZxEzwH5wkd4N4RzroLvrA89YwlKcmzfnCw015uHox90CixS0R8Eh1tOPMMUyJptLItWQrLVziPjYEi998AyM62rF0HzY6GO+8wTJzsBGwtjJtgqV8f2rbxbz946cWw8HtYthxcLpjwsOWFGRAWpv5WREREJJA0adKE448/nuXLl7Nu3Tr+++8/6tatW9VhSWXIz4bMUn5x7CpHFTdX7n7a9e2X9AHJukt/H3J9/yU9oPdXpBIZtwuTVfyYM4AhB1Oeob+sLdFuobxM39uVCmdc+Zh836o8laVdG+y94k/1o2uAFaoqziNy08vXrkgRxu0qva+0B1/lsehzTX4ONsR75aPqx5Z+zJXrPKIC+wiRw5iSu0RK4XY7w4cV6N0Ljjqq5BeCn362PDDGUlDVr1kzmPiQITUVJk62/LrPD5y6d4OhtxpCQuDnX6BdW33JEJHAdvJJhhnTYeZsS1QkJMQX79c2bIQhtzv9aadT4LTu8N1CZ1l4ONSvb8nP928Fw4LhGa+93pKV5VQKm/WK5aYb1OeKiIiIBJqbbrqJwYMHY61l+vTpjBs3rqpDksqQn1N6YoE73+dmjSu31HbN4ZR8VIGJG97atcFh4PL97yYipbC2xM1pYyDYhmGsb8PQ7G241JveRseyBAK3S0niFamSzyMAjJK7RPzPujFZSXgbKtTkV9Mk8YpKAM1KgsySwzKS7fuQjM7zU7zHnO378KrO81O9t5uVVHKeHDKU3CVSigVfwvq9FSMjI+H660omBPy62HL/A05SAkCTo+CJRw1LlsEjUywpRfr7+vXgjqGGLqd62ul1QUW+AhGRytOmteGxKYacnJJfAjZu8jyumeD0hX/8YUncDTk5MGYcrF5tadLEcvGFht69/JOA1aC+YcgtMGWqE9Prb0CXzpY2rZXgJSIiIhJIzjjjDK688kpef/113nnnHVq3bs1ll11W1WFJBavoX9P7vd2AU3GJG97atcFh4C7nTe+KvuFigiAkAkIjytdeZcjLKl81BW9yM0q/WVaeYyMvaz/tliP5qKKq+4nIocHml5qwoCRxf6jc8wh/tCsipSnleHZXzyTxikoANVnJmKyS945Mblr52s1J8RqzySlfcpfJTfPeblZyudolN730c+xytVtB3zUOM8b6eaDHpCRlA1Y0Ywzx8fEAJCcn+32sTnGGEPvfNZadO53pG643XHdN8Q49N9dy+ZWWnbuc6SOPhCmT4I05MP9jz3pBQXDFZXDt1RAV5eUClBw0HQNyuAu0Y+DzBZa58yx//gU33WDo38/ww4+We+8rGfegG+C8cwx16nj63KQkS0wMhIYefFKWtZY7R3iqKNatC7NeMMTFKcErkAXaMSBSEXQcyOFOx4B/JCQkVHUIZeZ2u5kwYQKvv/46xhh69+7N4MGDadq0aVWHVqk2bNjg83Ojo6OJjIz0umz37t0+H0eRkZFER0d7XZaUlITLVfKmgDGG6OhobOYeshK3gavkhf/w8HBio6O8tpucmkZ+vm83BUJDQ6kRG+N1WUpaOnl5nqQQGxyOjYyHyAMfK6GhodSoUcPrsrS0NHJyfBsiKzg4uNRjNSMjg6ysvQk+WUnODQkv76U3xhhqJcR7XZaVnUNGpu+/qK9ds2S87vBYcrKzSU9NxeuN9jKomVCDoKCS19Zyc/NITfP9Zk58jVhCQkKwweEQHAp7hxzLz88nOSUFYyAqytnHMzMzKOuhEhcbS1hYyeHL3G43e8pxDT02tgbhQS5MXib7vpeJu31vNzo6ksgI74ltu/cc3GetDQ5zEindLiIjw4mO8t73JCWn4HL5djMnPDyM2BjvfU9Kahp5efvvI2xwKITHQURcsflhYWHExcV5fU5qaiq5ub4lb5Srj9jP8R0cFExCfPF4jYHYmFgyMrPYmbirzPts8TbK3ke4w2KcCh3u/DL1Qd76CICc3FzS0n0fqqlmfOl9REpWXpn7833Fx8cTElKyTkJ+fj7Jyck+ROqIi4vz3kekJ5K0/a8y9+f7io2JJtxLuwCJe8rRR0RFERkRjjs8du/x7Rn+cXeS7+fjUZER1KtTB4C09LRi+2tSciouH5IL3GExhIeFEhcV7jW5oLLOI8oSZ8GxE2pcxMfFel0vLSPT9/MIL31EgYzMLLKys8scY9F9srLPI2D/fYQ7LBrCa5To04uqWbNmKX1ELqmpZU8Uj4lx/v7p6c65x0H1EQdxvhYXE0NYWGiJ+W63mz3JvieF7K+P2Jmee8D3sTSV/l0jcw/JO/7CnetbsntFf9dwh8dAeDxEej77q+I8Yt/9dV/BOanUjPD+45ey9BGl8WcfsW8/VBXnEamlvH+lxVhUfFxs6X1Equ+JYwfbR3hidLG/72OxMdGEh5dyHlHB3zUMEBkVBVEJZLjLNgy0L9cjyiI8PJzYWO+fyykpKWX+vG/RooVP2y+NkrsCkC5iV7wXXnLz8qvO41q14M3XDJGRJRMBNv1puX24JSoKRt0LUx6DvzZ7ltevD6PvN7hcMO1py/hxhgb1lVBQXjoG5HAXqMeAy+VUOgwPd/rBUQ+6+fa74uu0Pg62bYdxDxpO6OCsN+YhN4sXw5lnwhWXHXw/umuXZcANloLz2S6nwqQJBmOqtj9e/Jvlj9Ww419LRjq43BBfA+rXN7RqCce1guhofWZ4E6jHgIg/6TiQw52OAf+oDsldI0eOPKj1v/32W5KSkgrP5Ro1akSzZs2oUaPGQZ3fGWOYOHHiQW27OjhUrrsZY4iJicFm7CZz1z9QWiWtKubtpky1lbkHk7Wn9KpkVcxbMkB144mx+A0PA0TvTe7KyMzwMTXNf2xwOFhXgLyX1TzG4LDCZL5qywRDXiYmL6PM72VBcheUTJapCIHw97Yh4djImhBVs6pDObDDrD+viP01EPZJCIw4AyFGqLw+3RiIjnaSZTIy0g9uf/WhP69sh/JnY2WrDu/lAffXAHgfITD6IcXoH8ZAVGxNbHQt0suY3FXd+fu6m4ZlFNnHtm2WN970TN96s/fELoBmRxuefhLWr7fcOwqKJvefdy4MG2pISoJBt1hSU2HQzZYpk6FVS92sF5HDT3CwITjYMz1ksGHRj5aCBPf27WDFSufxsDstg2+G3hdYvv/BGb7xvfeh78UHv90jjjCMug/uusf59rLoR3jrHbi8f/leT3m9+rpl6TJvS5w4Q0Ph1M6W3hcYTulIlSejiYiIiFSE995776DPc4wxhQl9//zzD1u2bDmo51trAza5SyqbgfwsyCzPkCSVwARX2wS5wFR8GBljINg6NxeMK8fXwmN+Y6v7DddAkp+Nyc2gyv+o+1GQzCciIgdQCX26AQzOOYLJPLgKQQHTn+uz0X+q+L080P4aMO+jiBRScpfIPqZN9yQatGsLZ5/lWVZwAbjo9OLf4OnpTsUVgPBwuOduwzlnOeutXGUpqIYZGgpH1K6MVyEiUv3Vq2e45GLLW28706mpULs2JCY6ferTz1h+/gVqJsCOf6HlsXDUUSVv/O3bN3vT6RTD1VdaXn3dmX72OUub1tCmdcUmTOXmWr5dCKEhcMbpxbd1QgfD0mWlf7HLy4PvFsJ3Cy3HtYJbbobj2yvBS0RERASU+C6VSDe4RA5xttpWLwAl84mIHJyK7dPLk/AdWP25Phv9p+reywPtr4H1PooIKLlLpJiffrEs+tF5HBTkVN4quGCcmGi55z7LsNudZACXy/L4NMv7H3ieX6eOM9TXMS08F5k7dzJMfxLGPGQZ+6Chdm1dgBYRKXDNlYbPP7eccQYMuMbpH0ePtSxf4Sz/bYmTFHvjQGjTuuTzl6+wzJxtueduaNhg//3rwAGGFSstK1eBywUPjrO8+BwkxFdMv7x2reWe+y27d0PjRnD6acVvQnbpDJlZ0LiRIb4GYGD3bvj7byfGtes8ba1eA0Nut5x9luWO2ww1auizRERERA4dGlZTqj/d4BIRERERERGRqqPkLpG9cnMtTz7luaB8YR9osTdJKy3Ncuc9lk2b4I47LWMesCz4Er7+xvP8dm1hwjhDQkLJG+4tWxpeexlCQnQzXkSkqBo1DG/PgagoT//4xFSnstZb7zjTuxLhhZfg+PYQG2sLE2ittTz7nOWP1XDt9ZYH7ofTupXez4aEGMY8AANusKSkwn//wX2jLE9MhfBw//fPjRtTWLnxny2wcpUz9GSBFi1M4edMcc68bdst739gmfe+p50vvoRlyy2j73cqf4mIiIgEuq+++qqqQxAREZFDnA0OdYawFREREREJUEruEtlr1suWrVudxzXi4MbrnZvm+fmW+0c7iV3ONMx6Gdat9zz3/PPg7jud9d9409LpFDi6afGb7krsEhHxrmhiFzj95W23GjqebJk42al8BbB8BQwcZDnzdEu/voaoKFtY3cpaaNb0wNuqU8cwehTcfa/F7YZVv8PESZYHH4CgIN/6aZfL8tPPEB9ffJjHqCjDhb0tX34Nl1xkOKrxwbXbsIHh1sGGy/pbZjxv+exzZ35iIgy70zLsDriojz5bREREJLA1bNiwqkMQERGRQ56B/CzIrOZD2JpgqMaVIkVERESk6ii5SwT4/Q/L63M80zcPMsTFOTfMn37GsnSZM98YqFu3eGLX/y6HwTcZdvwLw+92EsTmfwwvzoDoaN10FxHx1SkdDW+8Aq+8Znl7LuTlOUlcX30DX31jadUSrrkavvsOep1vOPLIsvW5p3Q0DLsdpj7uVGv86hto0MBy041l77OttWzcCN8utHz6OezcCZ1OgUcnF2/j2qsNNw4sX4Jv7VqGUSMN555tGT/RsnsPuNzw6GOW7dstNw8yPiemiYiIiIiIiIgcFvKzMbkZQPUdDtoGh4Ot5gloIiIiIlIllNwlh73sbMuESU4FF4BTOkKvC5zHn35mmTvPs258Ddi2zTN9y82G/13u3FCvXcuSne3M37LFqeB140DdbBcRORg7dlheftXSsKHh6isN0dGGwTcZ+vSyTJ9hWfi9Z901a51/xjjJXplZcEwL6Hiyk0z177+WI46A4OCSffHFFxq2bbO8+bYz/err0KC+pXev0vvtXbucISBX/W75fhFs3158+S+/wvYdlgb1i1fv8peTTzLMfglGjrL8/ocz7403naSyEzr4bTMiIiIiIiIiIocoi6nGlbFscFhVhyAiIiIi1ZSSu+Swt+NfyNmblBUTA/febTDG8Ndmy6OPe37FExEBScme5519FoWJXQBhYYb+feG1N5ykrt4XVNILEBE5RKxZa7n5VovLBTExlov6QGys0882bGiY+JDTN8991/LZAsjZey3OWvhjNfyx2hIeDgs+MSQlWQYPsTRtCtdeZVm3wRBfA44+Gpo3c9q85WbD9h2ehLEpUy1JyZaWxxrS0mH3bti61bJlK/z9N+zcVXrstWpB7wsgMrIi3yFISDA8+RiMf9jyzbcwcIDhhA5KJBYRERERERERERERERE5VCm5Sw57TZsYXp4JT023nHiC4YgjDDk5lgfG2MLEgaAgCqtyFSio9FXURX2g1wWGuFjdaBcROVjHtIBGR8LmvyE9HebOgwHXFl+naRPD3XcabrrR8vkX8MMiy/IV4Npbsb7JUU6y14PjLLsSYVeik5j1304nWffqKz3JXUFBhtH3w4WXWjIywG3h+RehrOX5Y2Oh66lw2mmGTh3LN/TiwQgPN4wdDaefBmeeXimbFBEREalwSUlJXHnlleTs/SIeERHBjBkzaNSoUbna3bJlCzfddFNhu1FRUcyZM4eYmJhyxywiIiIiIiIiIlIZlNwlglMZ5r57DalpljfetLz2hiU11bO8IJErIsKT5LVuXcl2/Dn8lojI4SY42DDgWicxC+Ctty19L/FU7yoqLs7Q71Lod6khPd3yy69O5a7atQ1BQdDheMOy5RZjoH17WPCF87yQfc58IiIMzY62rFx14Piio+G4VtD6OGjfztDh+MpL6NpXUJChxxkl52dlOa85IkKfRyIiIhJYZsyYwZ9//gmAMYYJEyaUO7ELoFGjRgwcOJD777+/sO0XXniBYcOGlbttERERERERERGRyqDkLjksWWsxpuSN7+QkeGaG94ot8fEweSIsXWZoeSwce0wFBykichg643SY/Qr8tRnSM+DtuZaBA/afqBQTY+hxJvQ407PegGuh5bHO0LsNG0B8DUtKKjRvXrKtFs2dIR7/2gy5uc48Y+CUjtDxZEOjRtCoITRo4CRVVVdZWZa777WEhjqfV2Fh1TdWERERkaKSk5OZM2dO4ff0nj17cskll/it/UsvvZTvv/+ezz77DGstr7zyCjfeeGOFVO/avXs3K1euZOXKlaxatYpVq1aRnJwMwMUXX8ykSZP8vk0RERERERERETm0KblLDjtut2XseEvrVtC/X/Eb340bG07oYFm6rPhz6taFxx81NG5kaH1cJQYrInKYCQoyDLgORo9xEm3fngv9+lqfhrvt3MnznFM6eh7/tdkSGwu1aznzht0eBEBSkuW2YZbNm52hHRcvhtO7Q+dTyrbt/HzLsuWwdLll40bYtQuyc5zhG5s0hvbtDd27OlXH/C0/3zJipDNEJcC4CZZxD1bvZDQRERGRAp988gm5e7PsQ0JCuOOOO/y+jeHDh/Pll1/icrnIzs7m008/pV+/fn7fzqmnnur3NkVERERERERE5PAWVNUBiFQmay3Tplu++hqmTbeMfciNtcUrdbVoUfw5jRrBM085iV0iIlLxTu8OzY52HmdkwNvveK+o6IusLMt9D1iuHWD56mtb7DMgIcEw7TFDk6OcaZcbJk2xvDSr5GfFvma/Yrmor2XYXZZXX4OffoaNm2DrVlizBj79HCY9Yul9seXxJ91+ez0FQkIMnYokobVqaZTYJSIiIgHj448/BpwhE3v37k3jxo39vo3GjRvTq1evwvO6jz76yO/b2Ff9+vXp2rVrhW9HREREREREREQObUruksOKywVbtnimlyxzqrMUmPOW5a23PdMtmsMz0wx16+gGuYhIZQkKMgy41tPvvvMupKb6J8Hr6WcsW7ZASipMe9qSlVV8ec2ahqeeNBzXyjNv1ssweYolP7/0GDKzLHtH29kvlwuSUyA93X8JawWuvMJw9VUw4i7DlVfoc0tEREQCQ15eHitXriycPu+88ypsWz179gScH34tX74cl8vl923ceuutzJgxg0WLFvHtt98yduxYv29DREREREREREQOL0ruksNKSIihf5FRF/bsgc8XQG6um2efczP9Wc/N9jatYdrjhoQE3SAXEals3btBs2bO44wMeMtP1bvOPcdQr67z+JabDVFRxft4l8uSEG+Y9rihS5ERdT76BIYOs3ww3830Z9389EvxePpebDBFmurTC16eaXjrDcMzTxluv81QI85Z9tXX8GEFFYq46YYg+vTS55aIiIgEjvXr15OXlwdAREQEnTt3rrBtderUiYiICAByc3NZv36937cxdOhQzjjjDGrXru33tkVERERERERE5PCk5C457JxychC33eo87t0LunaxDLkdXp/jWeekE+GxKYbYWN0gFxGpCkFBhuv3qd6VmVn+BK92bQ2vzDIMu91wztkll9842HLlNW6mz7BMGGe4sLdn2cpVMGUqzHkLvvyqeCx16hiuucozfcwxhmZHGxo2MLRra+h3qeHIIz3LO3X0PE5NtXzxlSUlxf/VvMB53374sWLaFhERESmvv/76C3CGZDzqqKMICwursG2Fh4fTpEmTEtsWERERERERERGpzkKqOgCRirR8heX9Dy2jRhpCQjxJApf1C+KEDpamTWDUg5bVazzPadsGJk80hIcrsUtEpCp16+oMj1urFlx/XckqW76KijJcenHJ+Vu3WgqKN1jrVHu8azjUrw8zni+eHLVwIXBf8ef372s471yocwReP0NuutGwchWsW2dp2tSZl59vGT3W8tsSiIyENq0tt9xsaNHcP681JcVy172WtWthzAPQ40x9tomIiEj1kpqaWvi4MqpdFd1GclnG1RYREREREREREaliSu6SQ9LOnZYXXrJ8+rkzfURty62Di9/QbtgA7rnP8suvnnkJCfDkYxAWppvfIiJVLSjIMH0afkvqOpA/VkNwELjcnnnGGC7oafn+B2d5gaxsGDXazX33epLOatQw1KhRevsndDCc0AGgeEWy35bsbTMLFv8Gtw+zvDfXe4LYwZo+w7JmbwLzQxMt0dHQ6RR9xomIiEj1kZaWVvg4ISGhwrcXHx/vdduBwphD41yu+OsoPsR5dVIsymoaIwRGnIEd4777a9VWRg7s97L6CIQYwdc4K3efDYT3MhBihMCI0/8x+n9/DYT3EQIjzkCIESozTt/310B4LwMhRgiMOKtHjPvfX6tHjAcWCHEqRn/xBHaoXPvwNyV3ySFl4ybLB/MtH38MuXme+XPnwdVXuomLc0Yi3b3bcvdIT4UWgOBgmD4NwsI0WqmISHVRWYldAOeeYzjjdPhnC6SkOPMW/WiZNMWSlFRy/W8Xwqa/LGNHwzEtfIvzkotg/Qb44kvPvLAwZ/t16vjUZDFDbjGsW2fZ9Cfk58P9oy2PP+oMTykiIiJSHRS9YFcZyVbp6eletx0oiianBbr8/HwAoqKiMERVcTTe5ZsQsG5w5xMSFF3V4ZQqEOIM9Bhde/+Piq34JNQDCfT3sroIhBjB9zgrc58NhPcyEGKEwIizImL09/4aCO8jBEacgRAjVG6cvu6vgfBeBkKMEBhxVpcY97e/VpcYDyQQ4lSM/lOQghgTE0NIiFKZ9qV3RAKWy2XZuhU2bIQ16yy//AKb//a+bl4eLF5i6HEG/POP5c4Rlh3/Fl9n8E3QuJESu0REqjuXyxIcXDE34sLCDM2bQVaWZcpUNx/M9ywzBvr1hfR0+ORTZ96WLXDTLZbBg6DvpU61sYMRHm4YfT80O9oz9GPibqfNKZOhebPyvc64WMPUKXDrbZZt2yEnB0bca3nqSfw29KOIiIhIeURHey4qJnnLqPezotsoum2pImFOUlfV1kHaD2ucC+C4sUHBVR1N6QIhTsXoP4EQp2L0n0CIUzH6TyDEqRj9JxDiDIQYITDiVIz+EwhxKkb/CYQ4FaN/hVXPH39VB0rukoCQne1UHdmwETZutKzfAJv+dG5Sl6Z9O6hbD774Am660XDm6fDLr5YHx1mK/FAXgNbHQb9LdZNbRKQ6y8mxvPKaZclSp9JiRSV4rVlrGTveSSAuUKcOjBppOKGDs81TOlqmPGpJz3ASiKdNt3z3Pdx9JzQ56uDiMsZw1f+gfn0YP9GSlwe7EuHWoZbxY+HYY+DhyZYhtxgaNjz411y7luHxqTB4iGX3bkjPgDvvtjzzFBx5ZNV/9uXnW7Zugx07nPe52dFVH5OIiIhUnvr16wNgrWXTpk24XC6CgyvmQmN+fj4bN24snK5Xr16FbKciJScnV3UIfmGMISYmBkIjSc9xYW21Te/ycB94lWohEOIMsBgL91ec6n/Van8NsPey2gqEGKHMcVbpPhsI72UgxAiBEacfYqzw/TUQ3kcIjDgDIUao0Dj9tr8GwnsZCDFCYMRZRTEe1P4aCO8jBEacitFn++6zhwJ/V19XcpdUW9Y6Q2H9/jts2QruMnQ0kRFw2mnQ+wJDu7ZgLVxyoZO8NectpyrKvu2EhsK9I0yFJQmIiEj5uVyWQYOdRF+A9z+ESy/2/3Z27LAMHmLZO0IMAGefBcNvN8TGej4nepxhOK4ljHnI8sdqZ96KlXDdQMvVV1qu+p8hPPzgPld6nGGoXQvuvd+SlgYZGXDXPZamTWHjRli63PLAfdC1y8F/XjWob3j8URhyuyU1FfYkwbC7nASvI46o/M+/PXssX34NP/1sWbnKk6zdvy8MHVI8nhUrLVu2wundISZGn9UiIiKHmhYtWhQ+zsjIYOnSpZx88skVsq3ly5eTkZHhdduBolollZRTRSXxiVQEDQkigUb7rAQS7a8SSLS/SiDR/iqBpug+eyhd//AXjUEn1YbbXfwANcbw77/w9z+lJ3bVqwvdusB118Cll8AH82DUyCDatzMYYwgKMrRoDg9NsDwzw5PYVfTW8IBrDU2b6GaxiEh1FhxsOOdsT18943nLtm3+P7GrX9/Qp5fzOCYaHnzA8OCooGKJXUXXnT7NcP11hoLzzfx8mPUyXHeD5cuvLC7XwcXYvp3h2acN9eo60y6Xk9gFTrJXeb6LHd3UMGWSITLCmd7xLwy725KcXHknyOvWW0Y96ObivpZpT1sW/1a8Cqe3H2PM/9gy6RHLhZda3p6rk3kREZFDTaNGjahVqxbGOOdb8+bNq7Btvfvuu4WPa9asSePGjStsWyIiIiIiIiIiIv6i5C6pcn9tdm70vjiz5A3bjic7F3eDg6FZM+h5Lgy91TDtccMn8w1z3wpi1H2Gdevh3Xkw/dniWZx/bbbcdItlwZeeNqOjoWCNY1rA/y6vyFcnIiL+0r8vNG3iPM7Kcqpm5eX5P9nnlpsNvc6Hl2cZzu6x/+TfkBAnuWv2S4b27Tzzt2xx4rtmgGXBF5b8/LLH2eQow3PPGI45xplu1RIaNoRrroJOp5QvGbn1cYaJ4w2hoc705s1w2x2WxN0VmzT1zxbLyFFuBg6yfPsduPZJ2q5fHzp3gubNi78+t9vy66/O45wcaNG8QsMUERGRKnLGGWdgrcVay4cffsiGDRv8vo0NGzbwwQcfYIzzY7AzzzzT79sQERERERERERGpCKrFJ1Xq18WWO0dYrIXatWHgAFtseMTzzoGTTjQ0bQJhYd5vaC/8AX762Xn8wXzo2gU6nWL5YD48Nd0Wqwhy6cVw4onwyBRIz4CRIwwhIaraJSISCEJDDaNHwU2DLbl5sGYtPDPDcvttvvXj27ZZnnrGMvx2Q506njYiIgz3jji4NpscZXjqCfj4E3jmOWdYRXCqT46bYHnhJTj3HMuZpxuaNqWwMkVpatUyPP0EPP+SZeB1huBgCAsruZ619oBt7evkkwxjHoAHxjgVLf/aDLfcZnnkYed1+FNSsmXWbOcz2eUqvuzEE+Dcsw2ndHRerzcuF1xzteHzLywR4dDh+JLJX9nZlvBwv4YtIiIilax///7MnTsXYwwul4thw4bx+uuvU6NGDb+0n5qayvDhw3HvLedtjKFv375+aVtEREEOKOoAAQAASURBVERERERERKSiKblLqtTx7eGII2DnTkhMhA0boGVLz/JatQy1au2/jfPOgaVL4dPPYeAAQ8tjLfc9AN//4FknIgKG3W64oKdzU7h1K8vvf0CLFkrsEhEJJC2aG24ZDE9McypNvfMu1KljueKysvfnLpfl3Xnw3ItOArDL5SQ2HWyS1L6Cggy9e8EZp8O778Fb71hSU51lO/6F2a/A7FcsR9SG9u0trVoaGjaAhASomQA1akBenlOVLDMTMjLhlJMNP/0MaWmQlg5p6W4yMyArG6Kj4Mef4JhjLCed6Hxe1q4FDRpArZr7fz2ndTeMe9CpLpafD9u3w6DBltH3Q9cu5f9szMmxvD0XXn3dkpnpmW8MnHMWXH2VKVMiWWiooe8l0PcSQ3Z2yepiH3yYw1PPuBk6xNC9a/n/hiIiIlI12rVrR+fOnfnpp58wxrBp0yYGDRrEU089RZ06dcrV9q5du7jtttvYsGFD4bnCKaecQvv27f0RuoiIiIiIiIiISIUztugYdn6QlJTkz+bEC2MM8fHxACQnJ+PnP2GF8lZhZP5Hlh9/tgwcYGjezLebsjk5lmXLLUlJhqefsaSkepYd0wIeHGU4ys/VSKTqBPIxIOIPh/sxYK1l7HjLl1955g25xXBZvwMn96zfYHn8Scuq3z3zQkLgpecNzY727+dEZqYtTPJKTvZr0weUkOAMYdiiORx3nOH4dlCjRsnX9+tiy6gHiydg9b0UBg8yhIcf/PuRn2/5bAG8NNOyK7H4so4nO0Ne+vpZX5QxBkwcvS5MJinJ2f+7dYURdxoSEvR5L4eHw/2zQETHgH8kJCRUdQiFNm7cyKWXXkpubi7gnPPVqFGDkSNH0rt3b4KDgw+qPZfLxfz583n44YdJ3Ztxb60lPDycd999l+bNK2e8561bt9KjRw8ALr74YiZNmlSu9g6V6246hiWQaH+VQKN9VgKJ9lcJJNpfJZBof5VAcyjus/6+7qbKXVJpPv3M8vMvljGji99873UB9O4VVKY2Endb3p5ruekGU2z4xv92whtvwtJlxQ/yy/vDtVdT4gaziIgELmMM990DSUmWJUudeU8/Y9mxw6nS6M2GDZbX3rB89U3x+cceA/fd6//ELoCoKMPVV8IVl8Evv8JXX1t+/Y1KSfRKSoJfFzv/wPlsbHa05fj2cOIJhhM6QEyMoePJhueegXvvs2zb7jx37rvw40+WO++AUzqW7X1xuSw/LILnXrD8s6X4smbN4NabDc2blRyasTz++dtF0Xu83/8Aq1ZZ7r7TqUwmIiIigaV58+aMGjWKBx54oPCaQUpKCiNHjuTRRx/l0ksvpVOnTrRp04bY2FivbaSnp7Nq1Sp+/vln5s2bR2JiYrEfmRljuO+++yotsUtERERERERERMQflNwlFS4/3/L0s5a57zrTXbvC2T08y8s6hNKiHy0PT7Ykp0BUJFx3DaSkODfr350HuXmedRs2gLvvNHQ4Hh4YY1n8m2XiQ3DySbrZKyJyKAgLMzw8HkaMtCxf4czbt2JTYqJl3vuWpcvg9z+KPz80FK6/znDFZRASUrGfDSEhhi6nQpdTDW63ZdOfsGatU0VsdyLsSXL+paZCWJjzGRcZCVFREBsLMTHO/7ExkJ8HH38Ge/YUfS/gtO5O4tSuXbD5b2cYx31t+tP59+57luAgOO44y8knGU4+CWY8A489Ad9866y7fTss/s2WOblrw0a4f3TxBOs6R8AN1xvOPQeCgw1vvm15+hnL0U0tPc8zBzWUpjft2oXy0fvxPPpYMnPnOdtOTnHiOPdsy+1DDXGx+twXEREJJP369SMpKYnHH3+88FqBtZbExESef/55nn/+eYwx1KpVi7i4uMIkr/T0dFJTUwuTuQqeBxRr5/bbb+eyyy6r0Nfw22+/8c8//xROF6209ffffzNv3rxi619yySUVGo+IiIiIiIiIiAQ+JXdJhUpOtowe69xYL/DxJ5azexz8zdbNfzs3bQFefsWSmWn5YD5kZHjWCQ6GK6+Aa682hITAo49bFn7vLLv7Xsurs6HRkbrRKyJyKIiKMjz+KDz5lOWLr+DSi4sv//c/eOW1ks/rcQbcMNBUyedBUJApHC4RfNv+VVdaHnvC8vkXznRuLnz3HQy83jD6fuezcO1ay/Yd8OdfsGIlrF5dPAna5YZVv8Oq3y0zZ0N0NJzQAc47FxYtgpxcSiRfpadbJkyyhIbCSSdCnyJVN1sea2jQwLJ9e8E0TJ9WfGjHf7Y4N1j//Ms5P/D19RcVGxvEsNuD6N7NzcRJln//c+Z//gUsWWYZOaLs1cdERESkehg0aBDNmjVj5MiRpKamFkvOKvh/165d7Nq1q8Syoooui4mJ4eGHH+bss8+u8Pjnzp3Le++953XZ0qVLWbp0abF5Su4SEREREREREZEDKdtYeCI+2LHDcvOQ4oldZ/WASRN8u8l6xWXQrq1TwSQi0hmGsWhiV/t2MOtFw6AbnN36wXGW+R8Vf74Su0REDi2hoYa7hgcx60VD7D5VmsLCPI+Dg53EpdkvGcY+GBTQnwfR0YYH7g9i1H2GyEhnXm4ePPucZdAtlvUbLNOmw8zZ0LmT4ekng/j0I8NTTxgGXAtt20DwPmeAGRnOsIaffQ5p6U6y18zZlu8WWtLSnJulq9dYvv8Bvv4GXn61ZFzXXQNBQdCqJZx3bvHELnAqkoWHO9u+5OKS7395xk8/oYPhlVmG3r088xIT4c4RlseecJOdHfhjs4uIiBxOevTowbvvvss555yDMaZwaMV9/xXwtqzgOeeccw7z5s2rlMQuERERERERERGRimBsee6keVG03LxUDGMM8fHxACQnJ5frZmhF2fSnZfjdlt27nemgILh5kDP8VVmGYdy503lNdeo4F2RXroIPPrR88y3k5Rdft9nRcNONhs6dnLb/2WIZ85Bl/XrPOr0vgBF3mTIPASnVWyAcAyIVScdA2ezebZn7nqV1K0P7dpRI/joUbNtmGTvesnqNZ15QELjdzuP4GjDvHUNYWMkqXEuXwa+/WRYvhm3bS99GUBAc1wos8EeR4S3ffdtQt07xdvPyLKGhpb/POTnOsJTHtSr5vOF3W3qdbzjn7AOfK+zvGPjpF8vkKZbERM/6jRrBA/eZEtsVCWT6LJDDnY4B/0hISKjqEA7o77//Zvbs2fzwww9s2bKlTM858sgj6datG9deey1NmjSp2AAr2aFy3U3HsAQS7a8SaLTPSiDR/iqBRPurBJKy7K9ZWZbs7EoOzAcRERAZqWv7h7pDsY/193U3JXcFoOq+Y69cZRkx0pKe7kyHhcG4MYaupx64001Pt7z1juXNt6H1cdDpFMNHn1g2by65boMGcMMAw1k9nGGusrMtb8+FV1+zZBX5ILrqf07ylxK7Dh3V/RgQqWg6BqQol8sydx48/6IlJ8eZFxriJEPfPMhw1f+Kf/4VVLEoatt2y+LfYPFvliVLID2DAzrnbBh4naFhw/J/vs6cbZk529mPe5wJY0fvv7jsgY6B1FTL1MctX33jmRccBNdcXTB0s84JJPDps0AOdzoG/CMQkruK+u+//1iyZAk7d+4kOTmZ5ORkAGrUqEFCQgJ16tThhBNOoF69elUbaAU6VK676RiWQKL9VQKN9lkJJNpfJZBof5VAUpb9NSnJkpxSyYH5IL4GJCTomv6h7lDsY/193S3Er63JYW/Rj5YHxlhyc53pmBh45GFDu7YH7nCttWzYaHn5VafiyG9L4LclJQ/atm2gf19D924QHOy0+9IsNx98CHuKXOMMC4PbbzNc2FudvYiIHLqCgw2X9YOuXeCRRy3r1sH0afD2u3DpxZ713G5LUJBh+N0Wt9vS7Gi44XpDVJShYQNDwz5QuxZs3mxJz4CTToScHFi9Glzukttd8AUs+MLSrJnltG6G07tD06Zlq9BZVH6+5etvPZ/3HY4v/+d2XJxh7IOGrl0tUx9zXo/LDbNehp9/sTxwHzRurPMDERGRQFO3bl3OP//8qg5DRERERERE5JBR8KPx6ig8vKojEKk+lNwlfvPp55ZJk23hDeDateGxRwxHH+395mlurpuNG2H1WsOKlZaVK2H3Hu9th4ZC0ybQ6Eho0BDOOL14m//8Uzyx65gWMOo+w9FNdeNWREQODw0bGJ6YClu2QuNGhpEjPMs2bLA8MNZyYW/Lb0vAWlj1O9w6uHgbwcHw9z/O46wseO6ZINLTLcuW7x3C8TfYurX4czZtgk2bLDNnO8MfntbNcnp3w7HHli3RKyTE8OIMp3rXuvXQp1e53oZizu5haNcWJk6yLFnqzFuzFgbcaLnheujf15MoLiIiIiIiIiIiIiIiIlIdKblL/GLOW5bpz3qqbhx5JDw+xVC/vueGaW6uZc1a+PY7y3ffw86dBUsOXFIvLw/Wb3D+1a8HN91QfHmvCwxffWOpVxcGDjCcc7Zu1oqIyOHHGEPjRiXnv/m2ZetWmP6sZ17tWuByOQldBZo3c/4PD4eaNZ2qWjExhm5doVtX53N1+w4nyevXxZZffoXsIkMhb9kCr70Br71hqVvXSfQ6rbuhTev9fy5HRBhuudngcjnVxYpKSbFs2QptWvv2uV63juHxR2HuPJjxvFNdNCcHpj9r2bgJHrivZLt79li2bYeQEIiNgSOP1DmFiIiIiIiIiIiIiIiIVA0ld0m5WGt59nnLG3M88449Bh6dbAgPh0U/uvljNaxc5QzrlJtX/m1meykNeeIJ8MRUQ4fjldQlIiJSVE6O5belJedv3wG9L7Yc397SprWhbRs49hjLS88bmhwF4eHeP08b1Ddc2Bsu7G3IyXESvL773rJoEaRneNb77z94ey68PddSMwG6dXUSvTocD6Gh3tve9zPcWsukKZYff4QB18HVV/r2OR8UZOjfF04+CSY8bFm7DoyBiy80WGtLVBj7/AsKk9ZPPAGefEznFiIiIiIiIiKlycqyxX78VR1FREBkpL7fi4iIiEhgUnKX+Cw/3/LIVMsnn3rmNTsaWh4L11xvSUoq/bkFgoKgU0fo0gWemu7Ma3IU1KoFMdEQEwNRUU5Fj8gICI9w5pdsx3DSif55XSIiIoeS8HDD22/Ap585iVb/bPEsy8iART/Coh+dRKbgYHj95dITu7y13b0bdO9myMuzLF0G3y60fP8DJCd71tuTBB/Mhw/mW2KioXNnS7euhhOOt2zdZli7zqmQde45xbf76utOWwAvzrSceIKThOarpk0MM6Y7lczWrIHZr1gaN4KhQ5zt5udbgoMhIaHIc5qWbGfNWstXX1v6XmqoV1cXhkVEREREROTwlp0NySlVHcX+xQORkVUdhYiISOWw1pKfn1/4WEQCn5K7xCcZGW5GjIQVK4vP3/Sn8+9AWrWE666BUzubwmoZp3ay1KpFieGYREREpHzCww0XXQgX9nE+p7/9zvLNt/D3P8XXi4iABg2Kz9v8t+XFlyyt91b3OqYFhIWV/KwODTWc0hFO6Wi4a5hl5Sr4bqHlu4WwK9GzXnoGfPElfPFlwRdK5/9WLUsmd4UWOVMNDoa571ry8uCEDj6+EUBIiFOZbMbzznb/2gy33epU73rzbSfmHmdC2zZgLbT1Mhzk23MtX3wJc+dZ7rgNLrqw6s9d3G5LejpkZkJevvN+RUVCjRqUqEwmIiIiIiJlpxtjImWX42XUjeogPLyqIxARUZXDw02V/72N84Ns2Dvixj7nscHBkJNrAf29RQKFkrukTNxuy+bNsGIVLFtu+fY7cLt9aysmGk7pCF1ODSo2/4gj9OEhIiJSkYwxNG8GzZsZbrgetm23/PEHrPrD8vvvULt2ySTr5Svg24VORS6A0FBoeaylbVto19bQojnUrlV8uMTgYGf4xfbt4JKLLQu+gIXfO8lkLpf32Nashf7/c9PxJDj5ZMOJHWD7/9m77/go6vyP4+9J75XepAZQRIoUy1lQFFE5FBQL4FlOEcHef6cn9n4qeGJBELtYEAsiYj2liIIgSJEa6aQnm2x2s/P7Y8iSJZtks9kku+H1fDx4MPW7n8x+p+zMZ77f3Qfnl5VJi76RFn1jqnMnU5Mn2eUoNdW6talOHav+m/dnmUpO8uwKcvAgq5XQrCxp3z4p8y8pLs7Ua6+bKi62YvnPk4YGHFv52iQ720qMkySnU+rZs7otHlhlZaa2bZM2/Clt225q+3YpM9P6OwoKvV+bxcRIbduaat/O+t7PPotrLgAAAKAqXh/C1fBgrKGFhVmJKjExXNcDABBKaOXw8NLY37chyeGwbhjbispfsT4oMlIy/XzWD6BxkNwFr4qKTG38U1r7h/TbKlOrf5fy86tfJyrKeiicn3fgRschMjKkC0YZGnKK7909AQCA+tO2jaG2baQzhlrnZZer8kOKNWs8pzkc0urfrX9vvX2gO8cwqXlzU+PHGRpxzsFzfEmJdMk43+PZuVOaO0+aO89UWJjViliP7taP4N0VEr02b5FuuqVQhmE9V+nWTXr1JcOjhaqvFpma+Zqpbdulp58wNHDAwfUjIgxderHVLeXZZ0ktWhj6/gfTnRzVravUv5/3GFNTpSceNfTGW6ZiY6XuGfV7TVNcbOqVmabWrZM2bJCKa/m2V0mJtGmT9e/b70ydfJKh5s3rJ1YAAFD/9u/fX/NCVYiPj1dsFU9qsrKy/G6RKDY2VvHx8V7n5eTkqMxLdr9hGHI4HJKkvLw8r58dHR2txMREr+Xm5eW516+tqKgoJSUleZ2Xn5+v0tJSv8qNjIxUcnKy13kFBQWy+9mcTXh4uFIr9hteQVFRkYqLi/0q1zAMpaene51XXFysoiIvN/d81KxZM6/T7Xa7CgoK/C43LS1NYWFhlaaXlpYqv6Ybl9VISUlRRIR1m7ziQzin06mCglwZMhQbZ22PYluxzEqPxrxLSEhSZGRUpekul0t5edl1iDdRCQlR8vbVZ2XV7RgRE+P9GJGdXbtjRHkCWnS04dcxwhccIyzejhHlrc0VFRVp3759fpVb22NEbq6p/ALfWu5KTfV+jCgttauoyP9jRHKy92OEw1Eqmy1fZU6prKz2v+ErHiMqcjqdys3N9SdUSVJSUpKiorwfI7Kz/T9GJCYmKrqKpsqC8ToiLi5OKSkpXudxjLBwHWEJhusIb9ewtTlG1OZYWV/XEfHxiYqK8n6MsNn2+32sDKbfGr5oyGNE+fddWJgvh8O/Y0RERKQSE70fI4qKClRaWrlSGYahhISEA59dWOk7iI+XwowwxSekeS23uLhIJSX+HyNSUrwfI+wlxbIV+36MiI6WR70M5mOEN1xHWHw5Rvhyn+BQwX6MqOoc7C+Suw5jDoeprGxp1y5px05p505T2zOljRutcV8YhnTUkdKkiYbi40yNu9xzfni4dMpJ0uhRhnodRbdAAAAEM29dI/9jvKE+faTffze1eo20dWvl9cpc0u49lafHxRlq0cLU3r0Vp1mJU8cNNtSls6k/Nxn6+WdTy3/xTA53uaS//vIsLzFRKi62WsySDr4wv3OHtGu31Kb1wWX37T/Y7eRPi00NHOD5t1042nP8pL8Zeu8t6a13TPXvZ1TaFp98amrdelMnnmi1Kjbg2DDZ7ZV/XCz/xdR7c0zddIOh1q19u+4xTVN79kjrN0g9ekgtWxxcLzpa+vQzKxGtOmFhUlKi9aM8MlJylkmFhVLF34cpKVLHIzzXs9tNzf9CGnYmb/4DABAKMjIy/F738ccf11VXXeV13uDBg5WVleVXubfffrvuvPNOr/OGDx+u9evX+1XulVdeqSeeeMLrvLFjx+rHH3/0q9wRI0Zo1qxZXuddf/31mjdvnl/lnnDCCfrkk0+8zrv//vs1Y8YMv8rt3r27Fi9e7HXe1KlT9fjjj/tVbnp6ujZu3Oh13ptvvqnbb7/dr3IlVfkw4eOP52vChCv8LnfZsvVKT6/8MGfJkqW69NK/+13u/Pk/KiOjh0fXNHa7tHnznxp76Ql+lzvt+Y/Vr9+Jlabn5GTr7OHd/S73ySdf1dChI1Tk5TnFwIH+l3vHHY/pwjHejxFDhx6n3Fz/jhHXX3+7brjhDq/zhg0bro0b/TtGjB17haZM8X6MuOSSsVq69PA4RnTr1l1ffPGT58QDrc098cSTevLJB/0qNy0tXT//vMHrvNdff0P33ef9O/XFT4u916X//fCF/vUv/48Rn32+3mvi2OrVyzTpOv+PET/++KN6emm2e+PGjTrhBP+PEfPmzdOJJ1Y+RmRnZ9fpfP/qq69q5MiRXucF43XEHXfcoUcffdTrPK4jLFxHWObPn68rrvD/GLFhwwavSSHLli3TiBEj/C63vo4RVV1H5OXV7TriwQdf1ZDTvB8TTz/N/3L5rWGp7hjxyMM36Jtv/DtG9O17gp7/r/d1X/jv/frww1f9Krdz5+6a8/5PXue9+eY0vTrDv2NESkq6Pp/v/Tri00/f1FNP+X8dwTHCwnWEJdiPEf4mtlaF5K4gt/YPU18sMOWR7G8Yio4qlCTZS13VVgrTtFrYKCm2Wnoof/ssN8d761rVad5M6t1b6nOMoYyuportUt9jjArdMBkaOMClZT9LaanSuedII0cYdP0DAEAIa9vWUNu20tlnWefz/AKrK8dVq62WPXfulPZnWclYLVtUXr9fX6mgwLp+6HuM1LWr1XKWxdBRR0p/P9eQ02lq3Xpp2c/Ssp9N/bGucheOVb14U1Ii/fSTqWN6S506WeWXvxARFeV7a1fp6YYmX1f5uqWszNTsN03t2iV9/InVYlffPqaO7GnoqCNNdesqJSdb8T7znKmt26RfVpi6/9/SCccfLK+01FRhoZSW5vkZTzxtat6B+3e33WLo7+cenBcWZqh7hqlfV1jjrVtZCWCdOxnq0EE6ooPUooXV7bW35LyiIlN/7ZC2Z1rXg4cm2n/xpfTkf0y9PEO66krpvL9z3QYAAID64WcDCG75BVK4l7vZtb3HeaiCQut+aSh2TeNnQy5eOZ2BLa9cdV0S+fkivSQr1qrKLX8h6HBQVlZ5O5R3w1Rc4v/DJJer6u3rZ0M/8FFJHb43yXo5LCcn8N3H2mymu9yYGCk2lvsHCC25uabCwyvvGwUFddtf8vO973N1aOgHPiguPtgLgz/sdrPKY2VdriMcDqs+VHxpAAACheSuIOZ0mrr9LlOVW+QzJdXDL+0KoiKtFiBKDnxMUpI04yVp02ZDX3xp6vkXpHPOlo7t53lSumycoeHDpJNPkiIjOWEBANDUJCUaOm6w1fJWOafT1L59VstQh/rXXZWbMvYmIsJq5bPXUdIV/zBUXGxqzVqre+jfVklr1lb9oKHMJT0zVZJMRUVKXbuaat9euvQS6W/HS9261e2aZNlyq6XTcsXF0k+LrRbBDsYvJSZIObnWuMMhzX7D1KuzrISuwkLrYVSvo6QXpnnG07GDIR3o2mXdelN/P9dz/rhLDV18kdVFZWpK7f6W+HhD3TOk7l5eqikrM/X2O9bn5uWrTjdEAAAAAq2+H7hUNQ/By273/pugrt9baalVbmRk3cqBd86yqn/L1eVF9rJqyj2cftuYZuXtYBhSVHS4XC7ffo9XpartezglzzWGEh9fUKtKka3qxLy6KC4+WG6KpCp6VsJhwjSrvp6y2eqWLFVVuXXo6VFS/SeJe5uO+lNSEpxJ4qWO0H1pAEDwI7kriIWHSynJ8pLcFRiREVJsnOQqkzK6Sf36GWrTRuraWerQQZq/wNS0/1oXTPn50qgxVleO5b76SrpugumRxHVMbxK6AAA43EREGGrduublaiM21tCx/aVj+1vXFg6HqfUbpD/WSevXSxv+DNOWLWWVHgaUOqS1f1j/JOnNt6TwcFMdjzDVrZuU0dVQt25St65SQoJv1y2DBkgv/tfQD/8z9b8fpa3bKi/jdB5M7JKshwlr1lZebqeXrq+7d7eu+bp3l7p7SUQbcGz9XF+ZpnTpxYbefMdUYYF09lmVl3E4TBL2AQBAo6jvBy5VzfOX01n1w0hv3Xn7yuWquty6JgAAAJoep6N+WuErb90vOjrwZSP01GfrflWVW2SrW7n1nSTubTqCV30libvKeGkAnuqrdb+CAu8vQ+XmBr71TgQPwwxwR485OTmBLO6wV1RkaslSz5tLhqS4+HhJkq2oSKast3GqEhkpxURbb1LExEjJSVbLGh99bGr6S9YygwdJTz528E2e/HxTi76R5nxgavt27+VmdJMevN9Qm9Y88EPDMgxDKQeah8nNzQ14f7VAsGMfwOGufB8oKjL18/JcrVtvHvgnZWb6Xk6bNlJGV6tlr4xuUrduUrP0mq9rdu6yWhVbu9bU2j+kHTt8eys2LExKTZHef1eKjDx43eVymTKMyl0mNpSyMlM7dkgdOnh+/qrVpv49xdRl4wydPZxWWYMN5wIc7tgHAiO1vB9jhIyNGzf6vW58fLxiq2hmIysry+/9KDY2VvEH7lMdKicnR2VeXqk3DEPx8fHKyTG1e3eRSrwkP0VFRSs+PtFruQUFeXI6/XsSFxkZpYSEJK/zCgvz5XAcfBIXHy+ZLlNlrpqvgyIiIpWYmOx1XlFRgUpL/XvSHhYWruRk7/tqcXGRSkqsJ6hJiVJKLVp5NQxD6enpVZRbrKI6NI/RrFkzr9N37y7Rzl0FficdJCenKSyscktEDkepCgv9fzqSmJiiiIgIJSRY37ezzJDdLjmdThUU5MowDCUkJEiSCgsLfd5XEhKSFBkZVWm6y+VSXl623/G2bJmoyIgod5wV5eTs97vcuNh4Rcd4P0bk5tbuGFFx3zGMWMXGej9G5OflqMzlX7MbdT1GREd732+ioqKUlOT9GJGfn69SP5/WR0ZGKjnZ+zGioKBA9mp2jNxcU/kF3h9Ch4eFK+mQY4RhGEpMTJTNVqT9+/f6dXy3rrW8HyPsJcWyFR88RlT8vn3Zv1NTvR8jSkvtKioqqHWs5ao7RphmvhITpMTE2v+uTUmxjhGHcjqdyq3Dm/lJSUmKiqp8jMjKKtO27dl+Hyvj4xMVFeU9AysQx4joaOsFtdTUg9uyLtcRcXFxatu2raTK1/VVXUf4Ijo6WomJ3o8ReXl5cviZ0ROMx4jqhIeHV3nNX1RUpGIfMrG8HYNqc4yoLX+OEb4chwJxHeHtmqD8OuJQ5dcRtYmxovq6jqjuGGGz7a/1NeXBchv2t0ZOjqlt23NUXNw41xFVKf+tceh1pVT5t0Zt+PNbo6Zr2Ph4KcwIU3xCmtc6WfG3Rm0F8hhx6DVbVb817Ha7Cgr8v45IS/N+jCgtLVW+D5lY5cfKQ/l6jKit2h4jIiKkqChTEeHV798JCYmKriKTOyvL/+uI+Ph4xVTxWyM7+8AxwjAUHxev2FjJ6fStjvhzP8IXgbqO6Natm1+fXxWSu0JQbW9im6apzMzKD+z27jU1aowp07S6YZzzjtX94iOPSd985z1bPT1NOmOoNOxMQ10684APjYMHOTjcsQ/gcFfdPlBYaGrSjab+/NO/stNSpS5dpNatpdatDLVuJTVvLiUnWwnyiYlWS2WHcjhMZedIeXnWm18ul/UvJlpKSJBKSkz981qrdYV+faUHpxhKSgreaynTNDX5RlMrf7PGW7e2uss843QpvIYfgGgYnAtwuGMfCAySu0JPU7nvVv6gITvb1I4dhV6Tu4KBt4cywcjbg/ZglJNjKjevflqUCYSqvu/yRBnJesDe2OecUKiXoRJjUqKC+ndZudruOw1dZ0Pl+46KMhXp5fd8MAkPl2zFpoqLg3dbBvqcc7hf1xcXm0HdEmco1Emp4Y5DdTm+hsqxsqmeGxtaMHzfNdXXYIjRF6FSL0OpTgYrQ4bi4+OUkhKmyMim0bdtoO+70S1jE/fyDJe+XCjt2St9/KGUWiHbukULQ38/11TLllJqqnTDLdLo8wwVFpoeiV1RkdLfTpSGDTM0oL/3B5oAAADBICHB0NT/SLNeN/XhR5WT1WNjpbg4q9ljb4ns2TlS9vLyMe83aKKjTUVFyfoXqYPDB/7FxBxsMTUuTkpPM7Ts54Pd5hQVWUliwSwnR9q56+D4rl3SQ4+YeuNN6corpFNOksLCuCYEAAAAELpK7KbKgjxnNjxcspeasvrzQF3YS6Qi/xpvaDCRkZJZh+7AEHpKSnxrDb6xUCcPP5wbEYyCvV6GWp0M1gQ0w5DivDfChQNI7qrGmrWmpv3XVGys9YAuPl5q2UJq2dJQq5ZWCwYtWzR+spPLZWrHTuthYssWnrFs/FPatdsa/uF/0ohzrOHCQlPffGuq1CEt+lr6c5M1/aUZpiZPlH5aIh3dy2qha8gp/jVXDAAA0BgSEw1NnmhozGhTb71rat4nUnmr+MXF1j9J6tBBGn2+1a3iho3Sxo1SoQ+t/drttf0B5Jkktn6DNOQMU0f2NNXrKOnIIw1ldDPVulWY5nxgKjraai21bVupXdvGudZMSzP09uvSvE+l2W+YKm8kZNt26d77THXrKl15uXTcYFryAgAAaGyRkdYDBQC1Q7LP4SlYH2hK1vcd7AJ9zjFNU06n0z18uArWehkKdRKBxbkRwSjY6yV1Eg2F5K5qZGdLq3/3NufgBWZ4uNS6lalBA6WbbvDsh9XpNBUebjV7GAhlZWalh2cLv3LpyadNFRZJ4y6Vrvmn5/x+fQ39tNhUcpLVvOvipdLH80wtXmJ1GXQoV5mUni69Nduo1I0jAABAKGnRwtCNkw2Nv9TUO3NMfT5fys09OL+gQDrv74b7Ws00TX3+ham5H1vXeMUlViKY3W79gLSXem/tyx8Oh/TbKutf+bVlVJRLTofkqnAvMzxcatvGVKdOUs8ehnodJfXoLsXE1P91WnS0oQtGSecMl97/UHrrHVMFBda8jX9Kd/6fqWbNpGFnmIqOkYpt1tumNpsVd0yM1LyZ1Lq1oYyuUqdOjf9SBAAAQFPF2+yA/4I1qUIisQLBKaDnHMOQw2HdCCkskhSgBC+rVXXOOYC/ODciGAVrvaROoqGQ3FWN8lYdqlNWJv21Q+qaVXneCy+a+vgTqXlzU82bSc2bWw+4mjczrOED/1JTpLAw60FYfLznxea2baYefMTU7j1S+3bSf6d6zo+NNVRYZF3srltfOYZTTzYVEy1t3CS9OlMqsnm/MI6Lky4YJY25wAj6PmsBAABqIy3N0MRrDF19pallP0tffGnqf/+TjjnaMwnfMAxlZ0t/rPPtRuIlF0mjzzfkcFiJX6Wl0pNPm16vyXxR3rpYRWVl0vZM699331txhYdLGRmmHn/YUGpq/V+3xcYaGnepNHKE9M57pt57/+B18v790htv1VSCeaAcacCxpsZdaqhnD643ATQsp9PU+g3SX39ZrVvv3m0qO0c6frChkX/nmAQg9PE2OwCgoQTynGNIcjisE4St6NC2z/1T3rpYbGwACgMAAAgSJHdVY/Ag6aUXDHf3Pbl50p49pvbskXbvkXbulPbstV4kaNu28vr79lv9ZWdmWv8Oqnx5ahhWgtWCzw7eVC4oMBUVbeqPddZ4pJdvq0MH6//mzaRm6Qenr/7dpTkfSMuWVd+9UGys9PdzpfFjSeoCAABNW0SEoeOPk44/zlBxsanCwsrL7Nnj+23E0lKrdbCKhp8lHdPbVGKioeRkKSlJSk6SoqOtZH7DsLrU3r9PKnVK27ZJXy2Sduz0/e8oK5M2/Sl9/oWpVq2sa0DrOtBKVOjZw6ixhSyXy1RZmbRjh6nVa6Q9e6QjOkiDBxkKD7dugkZFSZ9/Ib35tqmSYiklxboGvu5aae9ea97+/b7HXVwsff+DNOIcUy+9Ym3nlGRDF17gGetPi0198JEph8PaxqXl/5dKjlLrSjoqSoqOsrZrdLQUHyelpVkt0KalGWqWbr1E0a6dlFRF9+Kbt5j6fY20d6+pvn0M9e/nudys2aa+WmQqMVEacY6hs4Z5zjdNM2At9AIIPKfTSrZdsVJasdLU6tVWi4yH+mmxqcGDpVYt2Z8BNA28zQ4AaCiBOOcYhhQVbfXzaC8NTMNdkZHB36KlRKuWAACgdkjuqkZSkqEjkw6d6nmRVVpqavduKTpGWrfeVOZf1sOmqCgr+ctXpikVFVkJXYkHHkBdeY2pvLyDy2TnSF8scCkhIUzNmzsUFSXt32/qgfukQQMNrf7degi1fr2pn5dLJdVcWB/dS7pgtKETj5eiorhwBAAAh5fYWMPrG5wXX2Ro8GCpsNDqrtrlkspcVhJ+UqKVrJWUKCUmWQlFhzp/pKGab8p5zv/nldKWrS7NeNVKRsrJldaulbZuq/qmZqlDeuFFyfs7raYiIkx3QpnDYf0tpmndNHUe+Lu8O1heed5SeQx791n/v/WOdPoQ6eIx0tffSGvWVv/XtmktFdmkvDxr+7VrJ916hzWvQ3tTZ54hPfSoqdOHGDrxBGl/lrR0WfVlVu/g39CyhTRwgKmuXQ2NOs/6g7ZnmrIVSf9bbGrWa9ZyTqdZKbnLVmxq6zZr+G8nHijZtJIC8/OlV2aa+uUXU61aS4MGSO3bGTJN63dAZJQUFWnVm9QUKzEuLi5w3bU3RS/PcGnVaim/QCrIl6Y9Z6hNa7YXfFfeMtevK6pP5jpUu7aeL0oBAAAACH3B3qKlRKuWAACgdkjuqqOoKMPdeta777n03vvVLx8dbbUyYIRZD9lKHQffboiOluYvMHVEB6lNa1O7dnk+0HM6pQcfkSSXpHz39NatpORk6Zbbq3+loUtn6ezh0iknGZVamQAAAIDUto2htm0a/nM7dQzTg/d7TisqMrX2D1P33CevrYxVx+m0/tVFVYllO3dKs9+oer1w64VblR24ibpzl/X/6UOk1q3lbpVWslosG3G+1YrYT4uthLQunesWd0V79kqffCYdP9jU+SOtRLe33zH1yWeey/2xTvrmW1MFhdKfm0w5HZ5Ja+/OMfXWO6YKCg7+XeWyc6xkvJo6j4iMkJq3MNW2jZXw1rq19XugY0epWzer1aCmnPy1Zq2pTz41tT1TGjjA0D/Ge/6tu3ZZLSyVy8uztpO/TNNUcbH1Ak1hkfV/xeHCQslmM1VYJJUUH0jkLLOSOQ3jQJJe5MEkvaQkQ8lJUlKylJ5mJQ4mJTWNhD3TNJWVLe3ebXVXmJtrbZ+CAmv7lDnLl7P+j4uT4uOlhARDiYlWK9ItW1rbJCGh4baJ3W5qxUqHfl3h1E8/lem31Qe7jK1K+/ZSz+7W/te6laGWLaVjeqvG1g4BAAAAhKZgbdFSolVLAABQOyR3BVBpac3L2O1VX0za7dJz0yTJ1LhLrVYh8vK9L1vRvv1S2zaVHybFxki9e0unDZEGDTCUns4NawAAgFARH2+o99HSSSeaWv6rZLNJb82WMv8ytHWbtH27qX37pK+/rX3Z4eFW0opxoGUvw/DtWtYXhyY/lfvq65qXtdultX94Xz8i4kCbZxUuaR2Og8NRUVbySfk/l+tgMsriJdLfTq06+eqXX6Vffq16flZWlbN85nBaiXFVt+5rKjzcVEyMFBNttbAWE2MlEg0aKF15eZh7yV27TH3/g0vxCcXq2SNcXbv4FoPTaaqkxEqAKS7RweFia7i0VJJh1Ycww6ofYYbVAlx5a2QREVJurqmcPCk/10qWKS2VCgqsVtf27ZN+WyUNONYq645brbj3Z0mffm7FYbNZL7QkJUn9+xkyTVNtDkmqXLjI1JKlpkxT6p5hyHYgUctmkzZsNLVhg7WNTJeVVudyWUlIzjIrnpKSwHTncVDlwqKjpZYtTLVoUZ7cZKhVS6lVK6lFC/NAa39hHuusW2/q43lWIuON14dVKrM+mKaVmLhzl5XAtXOXtGu39TLRrl1WQpd/+3/lbRIXZ22Tli2lFi2kFs0NtWxxYLiF1KK5FB1d+9+leXmmtm2XtmdKmzdbXapu/FNyOKr/wdyundSvr9S3j6G+x0jNmvn3m3jxElM7d1nHqKGnSc2b89saAAAAAAAAQMMhuSuAjuxpqLjEVGmp9aCptNR6UJKfb739nF/g+wOGtDRDn80zlJNrats2aetWacZMUzm51vyje4UrOtpQeLhTcXHWG9IDjpU6dZR69DDUs4fVvURTeJMcAADgcBUdbejuO63kl+xs6xoxLc1qaUYyZLebWv6rKUeplXzz2ceGduw0tXSZ1TXZ6tVWy1KHenm6oYxuB68TnU5TQ84w3d01tm0jHXmk1PcYqXsPKTzMONCSj3Vdm5sn5eSYys21upHMySmfVnVyV13V1BJZdckpAc3xqUdlZQdbmJKs1qv27LES3mbNdinyQHKVaZa3UGRzr2sYB/+ZLsllHkjKOrBO+W+UhlLeOtoPP1hxV0zK+3OTdM991rcSHmaqzEs3FO/NqTgWnN+g3W4lG23PLJ9SOc7mzVxq1cpK+GrV0vpN+Mln1u+3s4ebSkm2ktz8SXhyOk3ZbFJBoVVn8vOt5Lo9e6W9+0zt3XtgfI/VYllDsNmkLVutf5bK2yQlxVR6mrUNEhKkhHgpIvLgb2XTZbUclpdv/U3ZOdb/vmjXVurbR+rb10rmKk/CcjpN5edLW7aaSkyUmh3y4tM775lavMRUTo40aaKhgQM8589+w9Tq363hI3saat7ct3gAAAAAAAAAIBBI7gqg4WcZGn5W1Tfly8pM5RdYD2lyc63/c3KtG9dFRab7pnxhodXVoiSlphhKTZH6HGPdoN+zR0pLNzTu0kQd0SFcubm5Mg/cBf/Pk/X+JwIAAKARGIah9PTK06OjDX0+z/P6s11bQ+3Ok0adZ7XYs2271W3g3n3S/v1Wwkd8nGc5ERGGbpgktW0r9ewhJSf7kmhSeRnTNFVYWDnhKzf3QGtPudawzWZ1T+4otZKO7KVW8pbdbk2rj1QeQ1J0zIGu9qKsbhILi2rf5WVtDBwo5eVKV15uqG8fUz/8KN3/oH9lmaa1rapKYitvsawil6v6loMbQm5e9fO9JXYFUlyc9dsqPt5KIsrOsRKPvG2T8HArIa78/ZiICKtb+5RkQ/n5pvLypTVrpMy/fP/8ffutf+WJQeUKC6XLrzr4hUVGmoqIsL6z8HCrjqalWrGUlVktktnt1u/F8i4kA5msl5oqxcVarbXFxkhH9pQ6dTKUkGDtK5K0ZJmprCxrX+3Zw4ozL+9gQtn2TN9iso4HdY/ZMKQuncN1zDERSoi36/c11j7QsqWhM073PD699rqpma9Zw1ddYegf4z3L2p5p6pdfreE9eyp/VmrqweGSkrrHDgAAAAAAAAC1QXJXAwoPtxK1UlMkHXHo3JofoF19ldVth2EYSkkJD3B0AAAAaGoMw1DHI6SO7mvPqq85R51f9xZfDcNQYqKUmCh1aF9prs/lmKapTZulX3+VfllhauVvVtLIF59a19TlSUzrN5i6ZqJvZXbrJr36smc3eHPnmXryac+MqLg4a3t17Gi1YJaaJqWlWF3wFRcbVstatoMtYTkc5oH/DySsHUhaK3NJU+6t+HmG2rYx1bmTKbvd6p7unLMNRUZJp54sZWWbem6a9PU3Pm+mWjOMQHdVGHiGDib3RURY26lLZyku3kpK3LFTWrrMmt+xo9XlnutA8lOpXVq7TvrrQPKVYViJdWMuOFj3HnvCpXXrvX92WZlny3OlpdLxgw0NONZQef29dHz9ZKOV16FyNltgEqDKJcRbrfvlHGjJ78QTpBHnGGrVykp+i4019OAjLn2xwJp/ycWGhp7muc9+/ImpX1dYw1debuiY3p7zL7rUpb92WMN33yGVOgzt3Wtq7z5p71651/VHTMzBpKrmzaW77zB0ZE9D7dqlSJLmznPotdet7yYlxdShxxsrYdWqWfn5leenphwcLm8tu6LjBxtq0dzqNrX8RSzAFzt37tTrr7+ub7/9Vrt27VJUVJQ6dOigs846S5dccoliY2MbO0QAAAAAAACEAJK7AAAAAAQVwzDUtYvUtYt04QWGnE6rBduoKM+EjJISKSLCrLHLRsl7oszRvaTLxklt2xhq08ZK5mrWrLZdm/u+7FFHGpo90/vyzdIN/ftf5oGkGCtBzOGQHE5ruLDI6pozL9/qkrGkxJBhRCvMMGQvLZbDYbWo5HBa26XMeWDcIZ1wgnTmUEO2YsnpkL7/n6nXZlstSvnivnuk00/zTIz7+yiXsrJ8W3/aM1LrNoYcpVYSlmGYevtdqWWLg90VtmhuqFkzq+Ws7ByrC9CoSKlDB8/ttfwXUynJpgoKpOOPNzRyhOf8F19x6fU3rOEJV0sjR3jGUrGlsNatJZlScYm1Tb215uU6JJerYtXo2cNKNGqWbnX/16K59NiTprt1tYXzpfwCQ7t3W61Bbd1mavaB2CIipM6drJbN8vP9aw0qIsKza8PiYmnbdmte3z7SJRcZatHCijEp0dBLr7jcn390L0PHH1f3hM6q9OtrqFWrg0lxkjTkDJd728yeKdlshgoKdaDLV1NPP2PNS0yQ/u9uQ8lJsv4lS7v3mLryamt+s2bSgGMNj/00OurgZ3vblmlpUnq6lJIspaRU/ruHnWmofz+rha4WXrpcPOdsz78F8MW3336rW2+9VQUFBe5pxcXFWr16tVavXq05c+bo5ZdfVvv2lbKhAQAAAAAAAA8kdwEAAAAIahERhtq2rTy9fz9D3yy0kkNKSqwknZISq/WliHApPMJKgImMsFotOlSXzoa6dA6ehI3wcEPh4VYrRZV5xmm15hsvScrNLXV31V6dpETr/5EjDJ14vNVNprvVsQPdY5Z3/eio0P1jz56Vy7pugiG73dquUVFWIlZU1MFuL6MiraSjxESrS0TPhDlDd95WdZwtW1j/vDm2v6Fj+1f9nV1zVZiu/IeVYBUebnVdWtFFFxg69RSrta9uXaUWLQ7OLysz9cP/TO3cZSV1DR4kHdHBs/yxlxrKz7eGzzpTSkz0LL+w0Epgk6xt0bKF4f5b7HZrm0hWS3Cjzju4rstlat8+U59/YdXfhHjpuMHW/PBwKSxc2p9lavlyK8Gs4xHSKSd7Jjht2nywZa0una0Eq4qOP85Qepo13KtX5W037AxDRx1pDffoXnn+mAsMnTbEGva2P/7zKkO2Ims4Kany/NtuMdzJcp06etYJu10qb8AoOlo68fhD67t0z90Hyk6uXHbPHtJTjxuKjra6szzUkFMMDTml6nrTvp2h9u2qnA3U2rp163TjjTequLhYcXFxuuaaazRo0CCVlJTo888/13vvvactW7bo6quv1vvvv6/4+PjGDhkAAAAAAABBzDB9eQpQCznl/Tyg3lgPclIkSbm5uT49yAGaEvYBHO7YB3C4Yx8A2A8A9oHASE31kg2HOhs3bpyWLVumiIgIvfHGG+rbt6/H/FdeeUVPPPGEJGny5MmaNGmSz2U3lftuhmEoISFB2dmmduwoVIk9OPfhhATJdJlylhleW3gMFqEQZyjHaHU9bmXJFxQUNPo5J5S3ZTAJhRgl/+Js6DobCtsyFGKUQiPOQMdYH/U1FLajFBpxhkKMUsPFWZf6GgrbMhRilEIjzmCIsab6Ggwx+iIU4iTGwDAMQ6mpcUpNCVNkZGFjhxMQgb7vFlbzIgAAAAAAAABqsmrVKi1btkySNGrUqEqJXZJ0xRVXqEuXLpKk2bNny+FwNGiMAAAAAAAACC0kdwEAAAAAAAABsGjRIvfwqFGjvC4TFhamkSNHSpLy8vLcyWAAAAAAAACANyR3AQAAAAAAAAGwfPlySVJcXJyOOuqoKpcbMGCAe/iXX36p97gAAAAAAAAQukjuAgAAAAAAAAJg06ZNkqQOHTooIiKiyuU6d+5caR0AAAAAAADAm6rvMgEAAAAAAADwid1uV05OjiSpVatW1S6bnJysuLg42Ww27d692+fPMAyjTjEGC4+/wwjev8uQZB4ILVhjlEIjzlCOsarhxhLK2zKYhEKMkn9xNnSdDYVtGQoxSqERZ6BjrI/6GgrbUQqNOEMhRqnh4qxLfQ2FbRkKMUqhEWcwxFhTfQ2GGH0RCnESY2AE2++uYERyFwAAAAAAAFBHRUVF7uG4uLgal4+NjZXNZpPNZvP5M1JSUvwJLSg5nU5JUnxcnHzYXI0iItylsjKpLFKKjw/eDhBCIc7Qj7FMkpSSEtvwgR0i9LdlcAiFGKW6xNlwdTYUtmUoxCiFRpz1E2Ng62sobEcpNOIMhRilho7Tv/oaCtsyFGKUQiPO4Imx6voaPDFWLxTiJMbAKU/pSkhIqLY19MNVwLdIampqoItENZrSTT3AH+wDONyxD+Bwxz4AsB8A7AMIFna73T0cGRlZ4/JRUVGSpJKSknqLKZhFRESoRQupRYvGjgQAAAAAACC4BW9aHgAAAAAAABAioqOj3cMOh6PG5UtLSyVJMTEx9RYTAAAAAAAAQh/JXQAAAAAAAEAdxcfHu4d96WqxuLhYkm9dOAIAAAAAAODwRXIXAAAAAAAAUEfR0dFKTU2VJO3evbvaZfPy8twJYK1atar32AAAAAAAABC6SO4CAAAAAAAAAqBLly6SpO3bt8vpdFa53ObNmyutAwAAAAAAAHhDchcAAAAAAAAQAP3795dkdcu4Zs2aKpf7+eef3cP9+vWr97gAAAAAAAAQukjuAgAAAAAAAALg9NNPdw9/8MEHXpdxuVyaO3euJCkpKUmDBg1qiNAAAAAAAAAQokjuAgAAAAAAAAKgd+/eOvbYYyVZyV0rVqyotMyrr76qTZs2SZLGjx+vyMjIBo0RAAAAAAAAocUwTdNs7CAAAAAAAACApmDt2rW6+OKLVVJSori4OE2YMEGDBg1SSUmJPv/8c7377ruSpI4dO+qDDz5QQkJCI0cMAAAAAACAYEZyFwAAAAAAABBAX3/9tW677TYVFhZ6nd+xY0e99NJLOuKIIxo4MgAAAAAAAIQakrsAAAAAAACAANuxY4dmz56tb7/9Vnv27FFkZKQ6dOigYcOGaezYsYqNjW3sEAEAAAAAABACSO4KAd27d/dpuYEDB+r111+v52iAwMrKytKqVau0atUqrV69WqtXr1Zubq4k6bzzztOjjz5aq/K+//57vffee1q1apWys7OVlpam3r1768ILL9RJJ51UD38BUHeB2A8+/PBD3XXXXT593iOPPKLzzz+/LiEDAbVmzRr98MMPWr58uTZu3KisrCxFRkaqRYsW6tu3r0aPHq1jjz3W5/I4FyDUBGIf4DyAUFVYWKjvvvtOq1ev1u+//649e/YoOztbdrtdiYmJ6tq1q0466SSNHj1aqampNZbHOQAIfjt37tTrr7+ub7/9Vrt27VJUVJQ6dOigs846S5dccglJb6hSMP5uKC4u1ptvvqkvvvhC27dvl8PhUKtWrXTKKado3LhxatOmjU/lbNy4Ua+//roWL16sPXv2KC4uTl26dNG5556r0aNHKyIiwue/C8Hv8ccf14wZM9zjs2fP1qBBg6pdh/qKhpSdna0PPvhAixYtUmZmpvLy8pSSkqLWrVvr2GOP1RlnnKG+fftWWwZ1Fg2htLRUH3/8sb744gutX79eubm57muDfv36acyYMerTp0+N5VBf4a9gfMYZbHXxs88+04cffqj169crLy9PzZs3V//+/XXppZf6tH8isAJRZ+12u3744QctXrxYq1at0rZt21RUVKT4+Hh16tRJJ554osaMGaMWLVr4FBN11nckd4UAkrvQlFVXv2tz4WOapv7973/r3XffrXKZMWPGaMqUKTIMo9ZxAvUpEPsBD/URqsaOHauff/65xuX+/ve/68EHH1RUVFSVy3AuQCgK1D7AeQCh6qefftLll19e43Kpqal64okn9Le//c3rfM4BQGj49ttvdeutt6qgoMDr/E6dOunll19W+/btGzgyBLtg/N2wfft2XX311dqyZYvX+YmJiXrqqad08sknVxvznDlzdP/996u0tNTr/D59+mj69Ok+JTkj+K1bt06jRo2S0+l0T6suuYv6ioY2f/583Xfffe4Hvd6cdtpp+u9//+t1HnUWDWXXrl26+uqrtWHDhmqX+8c//qE777zTa32jvqKugu0ZZzDVRbvdrhtuuEHffPON1/lhYWGaNGmSrrvuumpjQWDVtc6uW7dOl1xyiYqKiqpdLj4+Xg8++KCGDx9e7XLU2dohvTeEXHzxxbrkkkuqnM+bjQh1rVu3VpcuXfS///2v1us+88wz7oueI488UldddZXat2+vzMxMvfLKK1q7dq3effddpaam6qabbgp06EDA1GU/KDdjxoxqM+JbtWrld9lAoO3Zs0eS1KJFCw0bNkzHHnusWrduLZfLpZUrV+rVV1/Vnj179PHHH6usrExPPfVUlWVxLkAoCuQ+UI7zAEJN69atNWjQIB111FFq3bq1mjdvLpfLpd27d2vBggVauHChcnJydO211+r9999Xjx49KpXBOQAIfuvWrdONN96o4uJixcXF6ZprrtGgQYNUUlKizz//XO+99562bNmiq6++Wu+//77i4+MbO2QEkWD73VBUVKRrrrnG/RDiwgsv1PDhwxUTE6OlS5fqxRdfVEFBgW644Qa98847Xs9dkvTDDz/o3nvvlcvlUrNmzTRhwgQdc8wxys3N1Zw5c/Tll19q5cqVmjx5smbPnq2wsLC6bEY0MpfLpX/9619yOp1KT09XVlZWjetQX9GQ5s6dq7vuuksul0vp6em6+OKL1b9/fyUnJ2v//v3avn27vvnmm2pbvqDOoiE4nU6PxK7u3bvr8ssvV6dOnVRUVKRffvlFM2fOlM1m06xZs9S8eXNdddVVlcqhviKQGvsZZ7DVxbvvvtudJDNo0CCNHz9eLVq00IYNG/Tiiy9q+/bteu6559SiRQtdcMEFtd5mqDt/6mxhYaE7satfv3469dRT1atXL6WkpCg7O1tffvml3n//fRUVFenWW29VfHx8lYlZ1Fk/mAh6GRkZZkZGhvncc881dihAwD377LPm119/be7bt880TdPMzMx01/k77rjDpzK2bt1qHnnkkWZGRoZ5/vnnm8XFxR7zbTabef7555sZGRnmkUceaW7bti3gfwdQF4HYDz744AP3OpmZmfUZLhBQV199tfnZZ5+ZTqfT6/ysrCzzjDPOcNfvn3/+2etynAsQqgK1D3AeQKiqqu5XtHDhQnf9njRpUqX5nAOA0DB27Fj3fvjrr79Wmv/yyy+79/WpU6c2QoQIZsH2u+G5555zf9bLL79caf6vv/7q/pxx48Z5LcPhcJhDhw41MzIyzH79+nn9rPvuu8/9OR999JHXchA6Zs6caWZkZJjDhg0zn3rqKfd3u2TJEq/LU1/RkP7880+zV69eZkZGhnnJJZeY+fn5VS5rt9u9TqfOoqF88cUX7u9uzJgxXq8PVq9ebR511FFmRkaGOWDAANPhcHjMp74iEILpGWcw1cWlS5e6l7nmmmsq7aNZWVnmKaec4t4/8/LyvJaDwKtrnf3ll1/MG264wdy4cWOVyyxcuNDs3r27mZGRYZ5++ummy+Xyuhx1tvZI6wXQqK6//nqdeuqpatasmd9lzJo1y92U+T333KOYmBiP+bGxsbrnnnskWW90vPbaa/4HDNSDQOwHQKh68cUXNXz4cIWHh3udn5aWpjvvvNM9/sUXX3hdjnMBQlWg9gEgVFVV9ys6/fTT1blzZ0ny2iUX5wAg+K1atUrLli2TJI0aNUp9+/attMwVV1yhLl26SLK6KHM4HA0aI4JbMP1ucDgcmj17tiSpS5cuuuKKKyot07dvX40aNUqStHTpUv3++++Vllm4cKG2bdsmSbrmmmvUoUOHSsvcfvvtSk5OlmS1zorQtWvXLj377LOSpPvuu0+RkZE1rkN9RUN64IEHVFpaqtTUVE2dOlWJiYlVLltV17fUWTSUX3/91T189dVXe70+6NWrl0455RRJUl5enjZv3uwxn/qKQAiWZ5zBVhdfeeUVSdY9n/vuu6/SPpqWlqZbb71VkrV/vv/++17LQeDVtc7269dPzzzzjLp27VrlMqeffrrOOOMMSVa3i3/88UelZaiz/iG5C0BIM01TixYtkiR17txZffr08bpcnz591KlTJ0nSV199JdM0GypEAEAdDRw40D2cmZlZaT7nAjR1Ne0DwOEgNjZWkmS32z2mcw4AQkP5firJfXP2UGFhYRo5cqQk62ZpeTIY4KuG+t2wbNky5efnS5JGjhxZZbce559/vnt44cKFleZ/9dVX7uHzzjvPaxmxsbEaNmyYJGnDhg3aunWr1+UQ/KZMmSKbzabzzjtPgwYNqnF56isa0qZNm7R48WJJ0tixY5WWllbrMqizaEgVXwJo3759lctVnFdaWuoepr4iWDTFulhUVOQ+pxx//PFq1aqV13KGDh2qhIQESdKXX37pdRmErorXu9u3b680nzrrH5K7AIS0v/76S3v27JEkDRgwoNply2/y7d69W3/99Ve9xwYACIyKN2wMw6g0n3MBmrqa9gGgqdu0aZPWrVsnSe4WvMpxDgBCw/LlyyVJcXFxOuqoo6pcruJ+/Msvv9R7XGhaGup3Q3l9rricN7169VJcXJwk7/W5fFqnTp3UvHnzGmOpqhwEv88//1zffPONUlJSdPvtt/u0DvUVDalia4flDz8lK9l669atysnJqbEM6iwaUseOHd3D1b0EVz7PMAyPdaivCBZNsS6uWrXKnUxZXSxRUVHuZLbVq1fTcnMTUzGh1lviFnXWPyR3hZAvvvhCZ555pnr37q2+ffvqjDPO0B133KElS5Y0dmhAo9m0aZN7+NAHPYeqOP/QJniBpuSuu+7S8ccfr169emnQoEG68MIL9Z///Mf9IwEINRW74PJ2rOdcgKaupn3gUJwH0BQUFxdr69atmjlzpsaPH6+ysjJJ0vjx4z2W4xwAhIbyfbVDhw6KiIiocrmK+2nF/RvwRUP9bvC1nIiICHeLIYfW56KiIu3evbvWsbBfhJ78/Hw9/PDDkqRbb73V5xaRqK9oSL/99pskKTExUV26dNG8efM0YsQIDRw4UGeeeaYGDx6s0047TdOmTVNRUZHXMqizaEjnnHOOu/WUl19+2f17saK1a9fq22+/lSSdffbZ7uUl6iuCR1OsixVjq6mc8tbInE6nu2s9NA0VW+Kuy28z6qwnkrtCyJ9//qmtW7fKbrfLZrNp27Ztmjt3ri677DJdd911KigoaOwQgQa3a9cu93BVzSR6m19xPaCpWbZsmbKysuRwOJSbm6vffvtN06dP19ChQ/XOO+80dnhArbhcLr300kvu8bPOOqvSMpwL0JT5sg8civMAQtWHH36o7t27q3v37urTp4/OPPNMPfroo9q/f78k6YorrtCIESM81uEcAAQ/u93ubvGjpv00OTnZ/VZu+U1awBcN+buhvG7GxcUpKSmp2nJat24tScrOzvZ4e3337t3u7nRqEwv7Reh54okntG/fPvXt21ejR4/2eT3qKxrSn3/+KUlq27atHnjgAd12221av369xzJ//fWXpk6dqosuusjri0PUWTSktLQ0Pfroo4qJidGvv/6q0aNHa+7cuVq5cqV++uknTZs2TWPHjpXD4VDPnj115513eqxPfUWwaIp1sWJsLVu29CmWQ9dDaFu3bp2+++47SVK3bt3UtWvXSstQZ/1T9atyCBqxsbEaMmSIjjvuOHXq1Enx8fHKzs7WsmXL9M477yg3N1dfffWVJk6cqFdffVWRkZGNHTLQYCq+KVR+A7gqsbGx7mGbzVZvMQGNpX379ho6dKj69u3rvlD566+/tGDBAi1YsEB2u13//ve/ZRiGxowZ08jRAr6ZNWuWVq1aJcnq0/zoo4+utAznAjRlvuwD5TgPoKnq2bOnpkyZomOOOabSPM4BQPCrzX4qWfuqzWZjP0WtNOTvhvJyfK3PFdeLioqqdSwV57NfhJbly5drzpw5ioiI0JQpU2rVxTr1FQ0pLy9PktVyxbp165SUlKRbbrlFZ5xxhhISErR+/Xo999xz+v7777VhwwbdcMMNeuuttzy6WaLOoqENHTpUH3zwgWbOnKkPPvhAd9xxh8f8Zs2a6frrr9eFF15YqR5QXxEsmmJd5D7N4a20tFT/93//525R8aabbvK6HHXWPyR3hYDvv//ea8biCSecoHHjxumf//yn1q5dq2XLluntt9+u1E0F0JTZ7Xb3cE2JjeUHe0kqKSmpt5iAxjB06FCdd955lW4U9u7dW8OHD9c333yjyZMny+Fw6JFHHtGQIUOq7X8aCAbLli3TU089JUlKT0/Xfffd53U5zgVoqnzdByTOA2gaTj/9dPXq1UuSdYzOzMzU/PnztXDhQt166626++67deqpp3qswzkACH612U+lg/sq+yl81dC/G8rLqU19PvTzK75xzvmraSotLdW9994r0zR12WWXqXv37rVan/qKhlRcXCzJ+q7Dw8P18ssvq0+fPu75Rx99tF588UVdc801+v7777VixQp9+eWXGjZsmHsZ6iwamsPh0CeffKJvvvnG3XJLRfv379enn36qjh076pRTTvGYR31FsGiKdbFimRWXq205CE3333+/fv/9d0nSeeedp9NOO83rctRZ/9AtYwiorim6Zs2a6bnnnnNX2DfeeKOhwgKCQnR0tHvY4XBUu2zFg3xMTEy9xQQ0hsTExGrfAD311FN13XXXSbJu2Lz//vsNFRrgl40bN2rSpElyOp2KiorSM888o2bNmnldlnMBmqLa7AMS5wE0DUlJScrIyFBGRoZ69+6ts88+W9OmTdNjjz2mzMxMTZw4UR9++KHHOpwDgOBXm/1UOrivsp/CF43xu6G8nNrU50M/v+JDAc5fTdOLL76oTZs2qU2bNpo0aVKt16e+oiFV/L6HDRvmkdhVLiwsTLfffrt7/LPPPquyDOos6pvNZtPll1+u6dOnKzc3V1dddZU+//xzrV69Wr/88oteffVV9e/fX6tXr9aECRP02muveaxPfUWwaIp1sWKZFZerbTkIPS+++KLmzJkjSTrqqKN07733VrksddY/JHc1Ae3bt9cJJ5wgSdq2bZvX/s6Bpio+Pt49XFPzh+VvIEm+NfMINDUXXnih+8H/zz//3MjRAFXLzMzUFVdcoby8PIWHh+vpp5/WwIEDq1yecwGamtruA77iPIBQNXLkSA0bNkwul0sPPPCAu9sYiXMAEApqs59KB/dV9lPUpLF+N5SXU5v6fOjn1yaWivPZL0LDpk2b9OKLL0qS/vWvf/n1vVFf0ZAqfscnnXRSlct169ZNLVu2lCStXr26yjKos6hvU6dOdd/XeOihh3TbbbepS5cuioqKUkJCgk444QTNnj1bgwYNkmmaevTRR7Vu3Tr3+tRXBIumWBe5T3N4euedd/T0009Lkjp16qRXXnml2u+UOusfkruaiC5duriHSe7C4aRVq1bu4d27d1e7bMX5rVu3rreYgGCVnp6u1NRUSZwrELz27Nmjyy+/XHv37pVhGHr44Yc1dOjQatfhXICmxJ99wFecBxDKyptxt9ls+v77793TOQcAwS86Otp9/qlpP83Ly3PfTK24fwOHaszfDeXl2Gw25efnV1vOrl27JElpaWkeb5b7Gwv7RWh47bXX5HA41L59e5WUlOizzz6r9G/jxo3u5ZcsWeKe7u0YSH1Ffav4XZUnb1WlvI5lZWVVWQZ1FvXJNE13i84dO3bUeeed53W5iIgI3XDDDZIkl8vl0Qo09RXBoinWxYrjNd1/LI9F4j5NKPv00081ZcoUSVLbtm01a9YspaWlVbsOddY/EQ3+iagX3vqTBg4HXbt2dQ9v3ry52mUrzu/cuXO9xQQEM84XCGbZ2dm64oorlJmZKUm65557NHLkyBrX41yApsLffaA2OA8gVFW8KbRz5073MOcAIDR06dJFy5cv1/bt2+V0OhUR4f2WZMX9tOKLjEBFjf27oWLd3Lx5s9fuyyTJ6XS6Yzy0PsfHx6t169batWtXrWJhvwgN5d21ZGZm6uabb65x+f/+97/u4UWLFikuLo76igbVrVs3d0tcLper2mXLysokqdK5nDqLhrJ//37l5uZKko488shql+3Vq5d7uOJ3TX1FsGiKdfHQWKqzZcsWSdY5pUOHDtUui+C0aNEi3XHHHXK5XGrevLlmzZrlU/IpddY/tNzVRGzatMk9XNObFUBT0q5dO7Vo0UJSzd0Llc9v2bKl2rVrV++xAcEmKyvL/cO3fL8BgkVBQYGuuuoq/fnnn5KkW265RZdeeqlP63IuQFNQl33AV5wHEMoqvjlXsdlzzgFAaOjfv78k663cNWvWVLlcxf24X79+9R4XQk8w/G4or8+StGzZsirL+P33392tMHmrz+XlbNmyRfv27auynIqfwX5x+KC+oiEde+yx7uHt27dXu2z5A9ZDf1NSZ9FQwsPD3cPlyYZVcTgc7uGKCYnUVwSLplgXjz76aEVGRtYYS2lpqVauXOlep2KLTAgNixcv1o033iin06mUlBTNnDnT54Qn6qx/SO5qAjIzM/XTTz9Jktq3b09yFw4rhmG4u2jZvHmz+6B6qJUrV7qzbU877TQZhtFQIQJB491333W32DJgwIBGjgY4qLi4WFdffbX7Qd+ECRN09dVX+7w+5wKEurruA77iPIBQ9sUXX7iHMzIy3MOcA4DQcPrpp7uHP/jgA6/LuFwuzZ07V5KUlJSkQYMGNURoCCHB8rth4MCBSkxMlCTNnTu3ypZRK3b/VHEfKFceiyR99NFHXssoLi52nwO7du2qTp06eV0OweXRRx/V+vXrq/03adIk9/KzZ892Ty9/WEt9RUMaMmSI+6HmwoULq1xu2bJl7heGKiaESdRZNJyUlBQlJCRIklasWCGn01nlshWTZSomw1BfESyaYl1MSEjQcccdJ8lK/qmqu7yFCxeqsLCwylgQ3H799VdNnDhRpaWlSkhI0IwZM9StWzef16fO+ofkriD39ddfV3thsn//fl1//fXu7PNAv90PhILLLrvM/dbFAw88oJKSEo/5JSUleuCBByRZb2dcdtllDR4jUJ/++usvrV27ttplvvnmG3cz/9HR0Ro1alRDhAbUqLS0VJMmTdKvv/4qSRo/frxuuummWpfDuQChKhD7AOcBhLIPP/xQdru92mVmzZql7777TpLUtm1bj7f7JM4BQCjo3bu3+yHwBx98oBUrVlRa5tVXX3W3TD9+/Hj3Q2ZACq7fDVFRURo3bpwkqzeFGTNmVFpmxYoV7kTGgQMHqnfv3pWWGTp0qPvN9hdffNFrazmPP/648vLyJElXXnmlz38nmgbqKxpKamqqRo8eLUn68ccf9dlnn1VaprCwUA8//LB7fMyYMZWWoc6iIYSFhemUU06RJO3du1fTp0/3ulxeXp6efPJJ93j5OuWorwgWTbEuXnHFFZKsLvWmTJlSqZW97Oxs9/6ZlJSkCy64wGs5CE5//PGHrrnmGtlsNsXFxemll17y6AbXF9RZ/xhmVWlwCApDhgyRw+HQmWeeqT59+qht27aKiYlRTk6Oli5dqnfeecf9pkT//v01a9Ysmi1ESFm+fLnHgTYnJ0ePP/64JKtZxEMPjueff77Xcp566im99NJLkqx+1v/5z3+qffv2yszM1Msvv+x+4HnNNdfo5ptvro8/BfBbXfeDpUuXavz48erbt69OPfVU9ejRQ+np6TJNU5mZmVqwYIEWLFjgzny/9957SQZG0Jg8ebK+/PJLSdLgwYN19913V9uaSmRkZJVvpnEuQCgKxD7AeQChbMiQISoqKtIZZ5yh/v37q3379oqPj1dhYaE2bNigTz75xP0gPzIyUi+99JKOP/74SuVwDgCC39q1a3XxxRerpKREcXFxmjBhggYNGqSSkhJ9/vnnevfddyVJHTt21AcffOBukQGQgu93Q2FhoUaNGqWtW7dKspIchg8frpiYGC1dulTTp0+XzWZTTEyM3nnnHfXs2dNrOd99950mTJggl8ulZs2a6dprr1Xv3r2Vl5enOXPmaMGCBZKs+76vv/66R1dUCG1Tp07VtGnTJFktd1XVWiH1FQ0lOztbo0aN0s6dOxUREaGLLrpIQ4cOVUJCgjZs2KCXX37Z3WrMxRdfrPvuu89rOdRZNIRNmzZp1KhRKi4uliSdeuqpOu+889S+fXvZ7Xb99ttveu2117Rz505J0nHHHadZs2ZVKof6iroKpmecwVYXb775Zney8KBBg3TZZZepRYsW2rBhg6ZPn+7eblOmTNFFF13ktQwEXl3r7Pbt23XRRRcpKytLknTXXXd5vU9XUXp6utLT0ytNp87WHsldQW7IkCHasWNHjcudeeaZevDBB5WUlNQAUQGBc+edd1bZTKI369ev9zrd5XLpX//6V5XdO0jS6NGj9cADDygsjEYLEVzquh+UP9SvSWxsrO666y6vb9YBjaV79+61Wr5t27b6+uuvvc7jXIBQFIh9gPMAQpmvv3lbtWqlhx9+WCeccILX+ZwDgNDw9ddf67bbbnN3ZXCojh076qWXXtIRRxzRwJEh2AXj74Zt27bp6quvdj+MOFRCQoKefPJJnXrqqdXG+t577+n+++9398xwqN69e+vFF19UWlpateUgtPia3EV9RUPatGmTrr32Wm3btq3KZUaNGqUpU6ZU2cImdRYN5aefftLNN9+snJycapcbPHiwnnvuOSUnJ1eaR31FXQXbM85gqoslJSW6/vrr3S2xHyosLEwTJ07U5MmTq40FgVXXOvvhhx/qrrvuqtVnTpo0qcrvmTpbOyR3Bblly5Zp2bJlWrlypTIzM5Wbm6vCwkLFxcWpVatW6tu3r8477zz17du3sUMF/BKoC59y3333nd59912tXr1aOTk5Sk1N1dFHH60xY8bo5JNPrmu4QL2o635QWFior7/+WitXrtTvv/+uffv2KScnR06nU8nJyeratauOO+44XXDBBV6z44HGFMiHNOU4FyCUBGIf4DyAULZ9+3b99NNPWrp0qTZt2qSsrCzl5uYqKipKzZo1U8+ePXXKKaforLPOUmxsbI3lcQ4Agt+OHTs0e/Zsffvtt9qzZ48iIyPVoUMHDRs2TGPHjvVpX8fhJ1h/N9hsNr355pv64osvtH37djkcDrVq1Uonn3yyxo8fr7Zt2/pUzoYNG/T6669r8eLF2rt3r2JjY9WlSxede+65uuCCC9xd9aDp8DW5qxz1FQ3FZrPp7bff1oIFC7Rt2zYVFRUpPT1d/fr105gxYzR48GCfyqHOoiHk5OTo/fff1/fff68///xTBQUFCg8PV7NmzXT00UfrnHPO0WmnnVZta58S9RX+C8ZnnMFWFz/55BN99NFHWrdunfLz89WsWTP1799fY8eOJb+hEQRbcpdEna0NkrsAAAAAAAAAAAAAAAAAIAjRFwEAAAAAAAAAAAAAAAAABCGSuwAAAAAAAAAAAAAAAAAgCJHcBQAAAAAAAAAAAAAAAABBiOQuAAAAAAAAAAAAAAAAAAhCJHcBAAAAAAAAAAAAAAAAQBAiuQsAAAAAAAAAAAAAAAAAghDJXQAAAAAAAAAAAAAAAAAQhEjuAgAAAAAAAAAAAAAAAIAgRHIXAAAAAAAAAAAAAAAAAAQhkrsAAAAAAAAAAAAAAAAAIAiR3AUAAAAAAAAAAAAAAAAAQYjkLgAAAAAAAAAAAAAAAAAIQiR3AQAAAAAAAAAAAAAAAEAQIrkLAAAAAAAAAAAAAAAAAIIQyV0AAAAAAAAAAAAAAAAAEIRI7gIAAAAAAAAAAAAAAACAIERyFwAAAAAAAAAAAHCIpUuXqnv37u5/U6dObeyQqrRs2TJ3nP369VNWVlZjh+Sx7caNG1ftslOnTvVYfunSpQ0UZWDU5m8NBU3t76nOPffc4/5bJ06c2NjhAADgVURjBwAAAAAAAAAAAID6MWTIEO3YsaPaZcLCwhQfH6/ExEQdccQR6tmzp04++WQNGjRIhmE0UKTwl8Ph0JQpU9zjV199tdLT0xsxIiB0XH/99fr0009ls9m0aNEiffvttzrllFMaOywAADzQchcAAAAAAAAAAMBhzOVyqaCgQDt37tTixYv16quv6rLLLtMZZ5yh7777rrHDQw3eeOMN/fnnn5Kk5s2b6x//+EfjBgSEkEP3mYceekgOh6PxAgIAwAuSuwAAAAAAAAAAAFDJ9u3bdfXVV2vatGmNHQqqUFBQoOnTp7vHL7/8csXExDRiREDoueyyyxQXFyfJOu699957jRwRAACe6JYRAAAAAAAAAADgMPH000/rmGOO8ZhW3nLXxo0btXDhQn399ddyuVzu+VOnTlXHjh11zjnnNHS4qMGMGTOUm5srSUpKStJFF13UuAEBISglJUUXXXSRXn31VUnSCy+8oPPPP1+xsbGNHBkAABaSuwAAAAAAAAAAAA4TzZo1U7t27bzOO+qoozRy5EgtWbJE1157rWw2m3vek08+qTPOOENRUVENFSpqUFRUpDfffNM9PnLkSMXHxzdiRGgq1q9f39ghNLhLLrlEM2fOlGma2rdvnz788ENdeumljR0WAACS6JYRAAAAAAAAAAAAFQwePFj33nuvx7Rdu3Zp8eLFjRQRvJkzZ47y8/Pd47TaBfivffv2OuGEE9zjr732mkcLhgAANCaSuwAAAAAAAAAAAODh73//u1JTUz2mLVmypJGigTfvvPOOe/ioo45Sly5dGjEaIPSde+657uFt27bpxx9/bMRoAAA4iG4ZAQAAAAAAAAAA4CEsLExHH320vv/+e/e03bt317qc7du3a/PmzdqxY4eKiookScnJyWrRooWOOeYYpaWlBSzmcna7Xb/88ot27Nih7OxsJSQkqE2bNhowYIASEhIC/nmNYcWKFdqyZYt7fNiwYX6XVVhYqE2bNmnLli3Kzc2VzWZTfHy8kpOTlZGRoe7duys8PDwQYQelwsJCrVy5Unv37lVOTo6cTqcSEhLUrl07ZWRkqHXr1nX+jF27dmn16tXavXu3SkpKlJqaqu7du6tXr14KC/O/LY5Q+O7qa3/My8vTH3/8oW3btqmgoEClpaWKiYlRYmKi2rZtqy5duqhly5a1KvO0005TZGSkHA6HJOmjjz7S3/72N79jBAAgUEjuAgAAAAAAAAAAQCVJSUke43l5eTWuY7PZ9O233+rLL7/UsmXLlJWVVe3yRx11lP7xj3/o7LPP9jkJ5c4779RHH33kHl+0aJHatWun/Px8Pfvss5o3b55Hd4XlIiIidM455+jmm2+uddJHbezZs0cTJkzQ2rVr3dP69Omj//73v0pPTw/IZ3z22Wce40OGDKnV+hs2bNDnn3+u//3vf1q7dq3KysqqXDY+Pl4jRozQlVdeqfbt2/sVb7BxuVxasGCBXnvtNa1evVpOp7PKZTt27KihQ4dqzJgxtf77f/31V02dOlVLlizx2sVfs2bNNGHCBF166aU+J3k1xHfXvXt39/DAgQP1+uuvV7lsQ++PS5Ys0csvv6zFixdX+7dLUsuWLXXSSSdp7Nix6tGjR41lJyYmauDAge4Wu7766isVFxcrNjbW5/gAAKgPdMsIAAAAAAAAAACASspb2ioXFRVV4zo333yzbrrpJs2fP7/GxC5JWrNmjW677TZdccUVys7O9jvWVatWaeTIkXrjjTe8JpJIktPp1Ny5czVq1CitW7fO78+qzpo1azR69GiPxK7hw4dr9uzZAUvskqTvvvvOPdysWTN17dq1VjGee+65euGFF7R69eoaE2SKior09ttv65xzztHHH3/sd8zBYsuWLTrvvPN04403asWKFdUmdknS1q1b9fLLL+v555+v1edMnz5dY8eO1U8//eQ1sUuS9u/frwcffFDXX3+9SktLaywzVL67+tgfTdPUgw8+qMsuu0z/+9//avzbJSvRcs6cOZo/f77PsQ8aNMg9bLfbtXjxYp/XBQCgvtByFwAAAAAAAAAAACpZs2aNx7gvLf+YpukxnpCQoK5duyotLU3x8fEqLS3V7t27tX79epWUlLiXW7Jkia666iq98847PiWRVbR161bdcsstys3NlWR1+9irVy+lpqbKZrPp999/1969e93L79u3T5MmTdK8efMUFxdXq8+qzldffaVbb71VxcXF7mkTJkzQjTfeKMMwAvY5W7du1fbt293j/fv3r9X6hyYaGYahdu3a6YgjjlBCQoIiIiKUn5+vP//8Uzt37nQvV1JSottvv13R0dF16gayMS1dulTXXXedCgoKPKZHRESoZ8+eatmypWJiYlRQUKAtW7YoMzOzUp32xYwZM/Sf//zHPd6pUyd16tRJcXFx2rt3r3777TfZ7Xb3/IULF+rZZ5/VbbfdVm25ofDd1df+OH369EotiEVERKh79+5q06aNYmNjZbfblZeXp82bN3t8Rm0ce+yxHuM//PBDrVvGAwAg0EjuAgAAAAAAAAAAgIdFixZVSo6o2KJNdXr06KERI0bo5JNPrrJFqeLiYn366af6z3/+427ha82aNXruued066231irWW2+9Vbm5uWrbtq1uv/12DR061KOLR9M09cknn+jee+91J15lZmZq5syZuu6662r1WVWZMWOGnnzySXfyTWRkpB588EGNHDkyIOVXtHLlSo9xX7qbO1RMTIyGDx+u0047Tccdd5zi4+O9LrdhwwY9//zz+uKLL9zT7r77bg0YMCCgLZE1hMzMTE2ePNkjsSslJUXXXnutRo8erYSEhErrZGdn66uvvtIHH3zg8+ds2LBBy5cvlySdfvrpuvnmm9WlSxePZfLy8vToo4/qww8/dE+bOXOmLr74YrVr167a8oP9u6uP/bGgoEAvvPCCezw8PFwTJ07U+PHjK3UfW27v3r364YcfNHfu3FolV/bo0UOGYbiT+g7d3wAAaAwkdwEAAAAAAAAAAMBt06ZNuvfeez2mtWnTRieddFKN695zzz01JqdIUmxsrC644AKdcMIJuuSSS7Rr1y5J0ttvv60JEyZ4TbSpSk5Ojrp166bZs2crLS2t0nzDMDRixAjFxcV5JI+8//77mjhxYp1a1XI4HJoyZYrmzJnjnpaSkqJp06ZpwIABfpdbnd9//91jPCMjo1brd+rUSd9//72Sk5NrXDYjI0PPPvuspk6dqmnTpkmyuvp76623NHny5Fp9bmO77bbblJeX5x7v3LmzXnnlFbVt27bKddLS0nThhRfqwgsv1L59+3z6nPIWq6666qoqW+JKTk7WI488ory8PC1atEiSVFZWpvfff1833nhjlWWHwndXH/vjDz/84NHS2bXXXqtJkyZVG0eLFi00atQojRo1yqOVwJrEx8erXbt2yszMlGQlydntdkVHR/tcBgAAgRbW2AEAAAAAAAAAAACg8bhcLuXm5mr58uV65JFHNGrUKO3fv989PywsTPfdd59P3SX6kthVUZs2bXTXXXe5xwsLC/X111/XqoyIiAg9++yzXhNJKjr99NPVq1cv9/jOnTu1bdu2Wn1WRfn5+brqqqs8Ers6duyo9957r94SuyRpy5YtHuPVJSd5k5CQ4FNyUEXXXXedunfv7h7/5JNParV+Y/vxxx+1YsUK93hcXJymT59eq23XvHlzn5ft37+/brnllhqXu+mmmzzGlyxZUu3yofDd1cf+WLGLSUk688wzaxVTTExMrZZv06aNe9jpdLoTvQAAaCy03AUAAAAAAAAAAHCYGD9+fK2Wj4mJ0YMPPqiTTz65niKSTj31VEVGRsrhcEiSVqxYoREjRvi8/hlnnFGp27vqPqtiy1dr165Vx44daxWvJG3fvl1XX321R6LVwIEDNW3atFon39TWjh07PMZbtmxZr58nWQl+Q4cO1fr16yVJ27ZtU3Z2do0JPMHi7bff9hi/4oordMQRR9Tb502YMEFhYTW3sdGtWze1bdvW/Z2uW7cu4LE09HfXEPtjeVeu9aVVq1Ye4zt27Kiyi1kAABoCyV0AAAAAAAAAAADwkJiYqHPOOUf//Oc/a90ylDcul0s2m01FRUXuJK6KUlJS3N3ebdq0qVZl1ybxrHPnzh7j2dnZtfosSVq+fLmuu+46d/d7knT++efr/vvvV2RkZK3Lq61DYw5kMllpaakKCwtVXFws0zQ95h3aLd2mTZtCIrnL5XJp2bJlHtPGjBlTb58XExOjwYMH+7x8ly5d3MldxcXFKioqUnx8fK0/N1i+u/rYHw9d7plnnlHv3r392k6+SEpK8hiv72QyAABqQnIXAAAAAAAAAAAAPJSUlCgsLEzNmjXza32bzaZvv/1WixYt0h9//KFt27bJ6XT6tG5+fn6tPqs2LeocmghVUFBQq8+aO3eu/vWvf7kT1AzD0I033qgJEybUqpy6KC4udg9HRkYqPDzc77I2bNigzz//XL/88os2btyonJwcn9fNy8vz+3Mb0qZNmzxi7dSpk1q0aFFvn9ehQwefujAtd2giUWFhoU9JS8H63dXH/njccccpPT3dnWS1cuVKnXnmmRo1apSGDh2qI4880qeW0nwVGxvrMV5xnwMAoDGQ3AUAAAAAAAAAAHCYePrpp3XMMcd4TCsuLlZmZqZ++OEHffjhhyopKZHD4dCbb76pDRs26JVXXlFMTIzPnzFnzhw9/fTTfrWKJdU+4ao2LVdFRHg+GvM14UySPv74Y2VmZrrHY2Ji9Nhjj2nYsGE+lxEIZWVl7mF/E7t27Nihhx9+WF999ZXfcRQWFvq9bkMqbxGuXLdu3er18w5N1qrJoa29eWvZrqJg/+7qY3+MjY3VlClTdP3118vlckmyvtfp06dr+vTpSkpKUp8+fdSnTx8de+yx6tOnT6XWymrj0P2qpu8EAID6RnIXAAAAAAAAAADAYaJZs2Zq165dpendunXTkCFDdNlll+nKK6/UX3/9JUn6+eef9e9//1uPPfaYT+U//PDDeu211+oU46FdytXEMIw6fZ6vKiZ2SVb3c2eeeWaDfHZF0dHRstlskiS73V7r9Tdt2qTLLrusUtJTbZUn2QS7it1nSrVPvqqtQLYgdahQ+O7qa38cOnSoXnnlFU2ZMkXbtm3zmJefn6/vv/9e33//vSQpLi7OfTzr3bt3rT/r0P0qLi7O/8ABAAgAkrsAAAAAAAAAAAAgSerYsaNefPFFXXDBBe4Eorlz52rIkCE1JjLNnz+/UmJXt27dNHz4cPXu3Vtt27ZVs2bNFB0dXanbuiFDhmjHjh2B/WMCbPDgwVq1apV7uyxYsEB33HGHHn744UotENWnhIQEdwymaaq4uLhSN3JVcTqduummmzySg6KjozVs2DAdd9xx6tatm1q2bKn4+HhFR0d7tGD04Ycf6q677grsH9MIGioZMND47qQTTjhBn3/+ub755hvNnz9fS5cu1f79+ystZ7PZ9Omnn+rTTz/V+eefr3//+9+1an2wfP8ql5CQUOfYAQCoC5K7AAAAAAAAAAAA4Na1a1ddf/31evTRR93THnnkEZ188snVJkhMnTrVY/yGG27Qtdde61MyTSh08Xfsscfqxhtv1DXXXKO8vDxJVleNBQUFeuaZZ+rUDVxttG7dWnv37nWP79u3Tx06dPBp3S+//FLr1693jx9xxBGaMWOG2rdvX+O6ofAdeZOamuoxXv7dhZrD8bvzJiIiQkOHDtXQoUMlSdu2bdOKFSv066+/6qeffqrUwt6HH36ogoICTZs2zefPqLh/SVKrVq3qHjgAAHVQf+2CAgAAAAAAAAAAICSNHTtWRxxxhHt8165deuONN6pcfuvWrdq0aZN7fMCAAZo4caJPiV0lJSXKz8+vW8ANpG/fvnr99dfVvHlz97Svv/5aV111VYMl0ByazLN7926f1120aJHH+P333+9TcpBUOeElVFT8riTpzz//bKRI6uZw/O58ccQRR2jkyJG6//779dVXX2nu3Lk655xzPJZZuHChfvrpJ5/L3LNnj8e4t65sAQBoSCR3AQAAAAAAAAAAwENkZKQmT57sMe3ll1+uMoFp27ZtHuOnnHKKz5+1YsUKmaZZ6xgbS/fu3fX22297JNYsW7ZM48ePV3Z2doN8fkWbN2/2ed2K31NcXJwGDRrk87orVqzwedlg0qVLF6WkpLjHt2zZ4tG1Yag4HL87f/Ts2VNPPfWULrnkEo/pCxcu9Gl90zS1ZcsW93h6erpatGgR0BgBAKgtkrsAAAAAAAAAAABQydlnn61OnTq5x3Nzc/X66697XfbQlrcSExN9/pyPPvrIvwAbUfv27fXWW28pIyPDPW3NmjW69NJLtWvXrnr97KOPPtpjfN26dT6vW1BQ4B6Oj4/3qWU1yUos+vXXX33+nGBiGIZHIpRpmnr33XcbMSL/HI7fXV2MHj3aY/yvv/7yab3MzEzZbDb3eO/evQMaFwAA/iC5CwAAAAAAAAAAAJWEhYXp2muv9Zg2c+ZMjySTcklJSR7jvrYmtXr1an3++ef+B9mIWrRooTfeeEN9+vRxT9u8ebMuueQSj5Z/Aq1Pnz6Kiopyj69atcrndSt+T9nZ2crLy/NpvSeeeEIul8v3IIPMpZde6jE+c+ZMZWZmNlI0/jlcvzt/hYeHe4xX3Geqc+j+NHDgwIDFBACAv0juAgAAAAAAAAAAgFfnnHOOOnbs6B7Py8vTrFmzKi3Xo0cPj/G5c+fW2PVdZmambrjhBjkcjkCE2iiSk5M1c+ZMnXjiie5pO3fu1CWXXKK1a9fWy2fGxsZ6JJz88ccflVpOq0rF76msrEwzZsyocZ3nnnvO5y7tgtWgQYM0YMAA93hhYaGuvfbaWrWy1thdOR6u350kzZs3T5s2barVOh9//LHHeJcuXXxab+nSpR7jJ598cq0+FwCA+kByFwAAAAAAAAAAALwKDw+v1HrXrFmzKrUa1LJlS/Xv3989npubq/Hjx2vlypWVyiwtLdWcOXN04YUXaseOHYqOjlZcXFy9xN8Q4uLi9MILL+jMM890T8vOzta4ceP0888/18tnnn766e5hl8ulJUuW+LTe8OHDPcZffPFF/ec//1FRUVGlZTdv3qxJkybp+eeflySlpaXVIeLG99hjjyklJcU9vnHjRp1//vmaPXu2CgsLva6TnZ2tOXPmaMyYMXrqqacaKFLvDufv7osvvtDZZ5+tcePG6c0336y2i8Xs7Gw99thjmjlzpntaWFiYRowY4dNn/fTTT+7hTp06+ZwUBgBAfYpo7AAAAAAAAAAAAAAQvM4991y98MIL2rp1qySr1aNXX31VN910k8dyt956q8aNGyen0ynJSjAZM2aMOnXqpIyMDEVGRmr//v1atWqVbDabe7177rlHL7zwgse0UBMVFaVnnnlG9957r+bMmSPJ2k5XXXWVnnnmGZ166qkB/bzhw4fr4YcfVmlpqSRpwYIFOuOMM2pc77jjjtNJJ52k77//3j1t+vTpmj17tnr37q3mzZvLZrNp69atHi0ldenSRRdddJEeeuihgP4dDalt27aaNm2aJk6c6G7pLDs7Ww899JAee+wxHXnkkWrZsqWio6NVUFCgrVu3avv27TJNU5KV6NOYDufvTpJM09SyZcu0bNkySVJKSoq6deumlJQUxcbGqqSkRJmZmdqwYYPKyso81r3mmmvUtWvXGj9jzZo1Holj5513XmD/CAAA/ETLXQAAAAAAAAAAAKhSeHi4JkyY4DFt9uzZys7O9pjWr18/PfDAA4qMjPSYvmXLFi1YsECffvqplixZ4k7iCg8P1//93//pggsuqN8/oIGEhYXpwQcf1FVXXeWeVlJSokmTJmnevHkB/azk5GSP1ru+/fZb2e12n9Z96qmn1KtXL49pNptNS5Ys0SeffKJFixZ5JAf17NlTM2fOVEJCQmCCb0QDBgzQu+++q27dunlMdzqdWrVqlRYuXKhPP/1U3333nbZt2+ZO7AoWh/N3d6jc3Fz9/PPPWrhwoebNm6cvv/xSf/zxh0diV0REhCZPnqwbb7zRpzLnz5/vse7IkSMDHDUAAP4huQsAAAAAAAAAAADVGjFihI444gj3uM1m0yuvvFJpufPPP19vvvmmBg4cWGVZ0dHROvPMMzVnzhyNHz++XuJtTLfddptuueUW97jT6dTtt9+uN998M6Cf849//MM9XFhY6JGYUp2kpCS9/fbbuu666zy6KTxUp06ddOutt+q9995Ty5Yt6xht8OjcubM+/vhjPfbYY+rVq5cMw6h2+S5dumjixIm6/vrrGyjCqh2u393//d//6V//+pdOPvlkJScn17h8QkKCzjvvPM2bN0+TJk3y6TOcTqfmzp3rHh82bFiT2HYAgKbBMIMt5RwAAAAAAAAAAAAhb+fOnfr111+1d+9eOZ1OpaWlqUWLFurXr1+TbEmoMVx66aVavny5JKlv37565513arV+aWmpfvvtN23cuFH5+fmKi4tTs2bN1KVLF3Xv3r0+Qg462dnZWrlypfbt26fc3FwZhqGEhAS1a9dOPXr0UIsWLRo7RK8O1+/ONE1t27ZN27Zt086dO1VQUCCn06m4uDh3V43dunVTVFRUrcpdsGCBRwLfBx98UKmVNAAAGgvJXQAAAAAAAAAAAEAIWrJkiS677DL3+HvvvadjjjmmESMCQtNFF12kFStWSJJOPfVUTZ8+vZEjAgDgILplBAAAAAAAAAAAAELQ4MGDdeKJJ7rHX3jhhUaMBghNixcvdid2hYWF6eabb27kiAAA8ERyFwAAAAAAAAAAABCibr/9dkVEREiSvvnmG61evbqRIwJCy7Rp09zDo0ePVkZGRiNGAwBAZSR3AQAAAAAAAAAAACGqe/fuGjdunHv88ccfb8RogNCycOFCLV++XJKUkpJCq10AgKAU0dgBAAAAAAAAAAAAAPDf5MmTlZCQINM0JUlZWVlKT09v5KiA4FdUVKRJkyZJkvr166fU1NRGjggAgMoMs/wqDwAAAAAAAAAAAAAAAAAQNOiWEQAAAAAAAAAAAAAAAACCEMldAAAAAAAAAAAAAAAAABCESO4CAAAAAAAAAAAAAAAAgCBEchcAAAAAAAAAAAAAAAAABCGSuwAAAAAAAAAAAAAAAAAgCJHcBQAAAAAAAAAAAAAAAABBiOQuAAAAAAAAAAAAAAAAAAhCJHcBAAAAAAAAAAAAAAAAQBAiuQsAAAAAAAAAAAAAAAAAghDJXQAAAAAAAAAAAAAAAAAQhEjuAgAAAAAAAAAAAAAAAIAgRHIXAAAAAAAAAAAAAAAAAAQhkrsAAAAAAAAAAAAAAAAAIAiR3AUAAAAAAAAAAAAAAAAAQYjkLgAAAAAAAAAAAAAAAAAIQiR3AQAAAAAAAAAAAAAAAEAQIrkLAAAAAAAAAAAAAAAAAIIQyV0AAAAAAAAAAAAAAAAAEIRI7gIAAAAAAAAAAAAAAACAIERyFwAAAAAAAAAAAAAAAAAEIZK7AAAAAAAAAAAAAAAAACAIkdwFAAAAAAAAAAAAAAAAAEGI5C4AAAAAAAAAAAAAAAAACEIkdwEAAAAAAAAAAAAAAABAEIpo7AAAAACC0V9//aXTTjtNkjRw4EC9/vrrKi0t1dy5c/X5559r8+bNysrKktPp1Pr16xs5WgAAAAAAACA0cN8NAACgdkjuAgAA8MGOHTs0efJkrVmzprFDAQAAAAAAAJoM7rsBAABUj+QuAACAGtjtdk2aNElr165V8+bNNWTIELVu3VoFBQVavHhxY4cHAAAAAAAAhCTuuwEAANSM5C4AAIAa/Pbbb5Kk0aNH65577lFMTEwjRwQAAAAAAACEPu67AQAA1IzkLgAAAB8MHDhQDz74oAzDaOxQAAAAAAAAgCaD+24AAADVC2vsAAAAAELBxIkTucEEAAAAAAAABBj33QAAAKpHchcAAEANYmJiNHDgwMYOAwAAAAAAAGhSuO8GAABQM5K7AAAAanDEEUcoPDy8scMAAAAAAAAAmhTuuwEAANSM5C4AAIAaJCQkNHYIAAAAAAAAQJPDfTcAAICakdwFAABQA94eBAAAAAAAAAKP+24AAAA1I7kLAAAAAAAAAAAAAAAAAIIQyV0AAAAAAAAAAAAAAAAAEIRI7gIAAAAAAAAAAAAAAACAIERyFwAAAAAAAAAAAAAAAAAEIZK7AAAAAAAAAAAAAAAAACAIkdwFAAAAAAAAAAAAAAAAAEGI5C4AAAAAAAAAAAAAAAAACEIkdwEAAAAAAAAAAAAAAABAEDJM0zQbOwgAAAAAAAAAAAAAAAAAgCda7gIAAAAAAAAAAAAAAACAIERyFwAAAAAAAAAAAAAAAAAEIZK7AAAAAAAAAAAAAAAAACAIkdwFAAAAAAAAAAAAAAAAAEGI5C4AAAAAAAAAAAAAAAAACEIkdwEAAAAAAAAAAAAAAABAECK5CwAAAAAAAAAAAAAAAACCEMldAAAAAAAAAAAAAAAAABCESO4CAAAAAAAAAAAAAAAAgCBEchcAAAAAAAAAAAAAAAAABCGSuwAAAAAAAAAAAAAAAAAgCJHcBQAAAAAAAAAAAAAAAABBiOQuAAAAAAAAAAAAAAAAAAhCJHcBAAAAAAAAAAAAAAAAQBAiuQsAAAAAAAAAAAAAAAAAghDJXQAAAAAAAAAAAAAAAAAQhCICXWBOTk6gi4SfDMNQSkqKJCk3N1emaTZuQAg51CHUBfUHdUUdQl1Qf1BX1CHUBfUHddVQdSg1NbVeykX9aSr33ThOIpRQXxFqqLMIJdRXhBLqK0IJ9RWhpinW2UDfd6PlLgAAAAAAAAAAAAAAAAAIQiR3AQAAAAAAAAAAAAAAAEAQIrkLAAAAAAAAAAAAAAAAAIIQyV0AAAAAAAAAAAAAAAAAEIRI7gIAAAAAAAAAAAAAAACAIERyFwAAAAAAAAAAAAAAAAAEIZK7AABNQlGRqedfcOmz+WaleaZpymarPB0AAAAAAAAAAAAAgGBGchcAIOT9vNzUuMtNvf2u9NWiyklcv/wqXXSpqRUrSfACAAAAgGBQVlYmp9Mp0+R3GgAAAAAAQHUiGjsAAADqas9ead8+a3jlb1JxsanYWMM9f9ZsU9k50o03m7p+sjTqPKOKkgAAAAAADcE0TZXZHHJmlQR1gldYXITC4yIbOwwAAAAAAHAYI7kLABDyzhluyDCkl2eYumGSoejog/Py801l/mUNh0dIzZs1TowAAAAAAE8um1PObLsUpMldRlSYFG6Q3AUAAAAAABoVyV0AgCbh7LMMnTlUiojwbJUrKcnQqy9Jjz9l6tKLDfU+mla7AAAAACCYmCVljR2CV0ZUmFwlTjn2Fzd2KDUKhRbGymwOuWzOxg6jWqGwHQEAAAAAhx+SuwAAIae01FRUVOUkrUMTu8qlpxt67GGSugAAAAAAteMqKZNZ6JSCs3Exy4Gfu8GelOSyOVWWYw/ebRki2xEAAAAAcPghuQsAEFJM09S/p5hKSjZ18w2GoqP9T9pyuUy5XFUnhQEAAAAAIDN4WxeTJCMmvLFD8F0Qb8uQ2o5ANUzTlNPpdA8DAAAACH0kdwEAQsr3P0g//GgNb9pk6oVpUmRk7ZOzcnJMPfSoqY5HSJMmktwFAAAAAMDhzIgKk8Ir3x8gUcY/dMMZOLXdloZhyGG3Hv04C0sapN6GyrYEAOBwwTUs0PSQ3AUACCk//nTwIrRXL/8Su/buNfXPCaaysqWly6RTTjbV6ygSvAAAAAAEt/379/u9bnx8vGJjY73Oy8rK8vuGf2xsrOLj473Oy8nJUVlZ5VaaDMNQcXGxHFklys/JlllSOWkhOipaCXEJXsvNK8iXs8zhV7yREVFKSkj0Oi+/sEAOZ+nBOMsiZZqmDIcp0159a1MR4ZFKTkzyOq/QVih7qd2veMPCwpWalOJ1nq3YpmJ7sYzocIUpWpGK8blcwzCUnp7udV5xcbGKior8CVeS1KxZM6/T7aV25eVk1bgtq5KalKqwsLBK00sdpSooKvCrTElKTkhWRIR1m9xV4pRjf7Ekyel0Kjc/T4YMFRyo40VFRTJ97FcyKSFRUVFRlaa7XC5l5+b4HW9iUqJik+MUHls5kSaYjhGO7BK5cu2KjY5VXGyc12Vy8nLlcvlXH6KjopUQX80xwlnDMcKQwlKiFZnmud9ERUUpKcn7vpyfn6/S0lKv82oSGRmp5ORkr/MKCgpkt1d9jCjflt6qXlhYuFKTUzwnGoYcJeEqshUpKydb8uf4bhhKT0nzOqu4pES24grHiCq2ZVWqPEbY7Soo8H9fTktL836MKC1Vfn6+3+WmpKS4jxEVOZ1O5ebm+l1uUlJS1ceI7Gy/y01MTFR0dLTXecF0jCgXFxenlJQUr/Oquo7wRXR0tBITvZ/v8/Ly5HD4dx0RjMeI6oSHhys1NdXrvKKiIhUXF/tVbqNcRwTBMcIwDHfdycvLk2maHCMOCKbfGr5oiGPEocnZ+QX5KvWz3MiICCUneT9GFBYWqsTLbw1frmEj46PUrG0Lr+VyjLBwHXFQfR8jvB1jaxLsx4iqzsH+IrkLABBS7rrD0MAB0tvvmrr6Sv8Sspo3l3r0kH78ybq/tWKl1OuowMYJAAAAAIGWkZHh97qPP/64rrrqKq/zBg8erKysLL/Kvf3223XnnXd6nTd8+HCtX7/er3IvG3mpHr7xPq/zrvzXtVr82zK/yj375GF6acpUr/NufeJuffbdF36Ve9wxA/X+s296nffwS0/qtbne59Uko2NXfTNrvtd5L7zzip5+zfvfUpP09HRt3LjR67w333xTt99+u1/lSqryYcKCRV/qnzdM8LvcVXOXKD2l8kOi5b+v0AU3jfW73K9nfq7unbpJklwlZTILnZIpbdi8QadeMszvct9//i0d339wpelZOVk6+qwBfpf70uPP69yzz5WrqHJSZF2OEY/c+5CuGPsPr/MGDxpkJQn54ebLJuuWy6/3Ou+8ay7Uhq1/+lVudceIK2692u9jxIgRIzRr1iyv866//nrNmzfPr3JPOOEEffLJJ17n3X///ZoxY4Zf5Xo9RhiGjEhTz814Xo++9JRf5aYlp2r1x9634Tsfvav/e3aKX+VKVR8j5s+fryuuuMLvcjds2OD1ge+yZcs0YsQIv8v98ccf1bNnz0rTN27cqBNOOMHvcufNm6cTTzyx0vTs7Ow67cuvvvqqRo4c6XVeMF5H3HHHHXr00Ue9zqvLdcSVV16pJ554wuu8sWPH6scff/Sr3FA7RnTv3l2LFy/2Om/q1Kl6/PHH/Sq3Ma4jOEZYDrdjRFW/NcpsDg0/8yyt/3ODX+VefsllevS+h73Ou3TsJfppmff9pibnDjtbrzz3khRuyGVzyLSVuZOzb7r7Zn36tffr+poc13eQPnjhba/z7n/iAb32wRt+ldu9W4YWL13idR7HCAvHiINC6RghBcd1RKBbzSO5CwAQUgzD0OmnSacNsYb9LePWm6SsLFOTJhrqcwytdgEAAAAAAEmmZJaUybS76lZMqUtmSeU3xf1tuexgAZ5JaIHisjlUlu29ZRh68gEAAMHEZXPKLPP/AsVlL6v6usfh/zWgWepSWbZdRnSYXC5TxoHrSkl1ilcu0+t1pSSpDuWaLtPdam2lj6xL99rVlFtW6F/rZQBI7gIAhCh/E7vKNW9u6OXpdS8HAAAAAACgwVV4WBgQjmoeGpLdBQD1ynS4qk6wKK5DgkVZPSVuAKGurJrrHlcdkqUOlGtEVe7eLyiZUlmO966f63LsMU1VmTznspHcBfiL5C4AQNDLLzCVmBD4RCwSuwAAAAAAh6V6fJvea7nhRp1aQQCAw0VZcd2OwWUFpVUe3+tUbqHDXW5YXITC4yID/hmB5HJWnSxVt1Z5yqout9T/hFvT4ao6EaIOLT6aZWbV5dYlaSwEObJL5FDl786Z5337+MqZa/daJ5y5dSsXaDBVvTDgrENyv1lN8pyDlwYAfxlmgDt6zMnJCWRxqAPDMJSSkiJJys3NDXifnmj6qEOoi0DVH9M0NeE6U/Hx0qRrDXXuXH8JWU6nqd27pXbtSPoKBhyDUBfUH9QVdQh1Qf1BXTVUHUpNTa2XclF/Nm7c6Pe68fHxio2N9TovKyvL73oWGxur+Ph4r/NycnJUVlb5pr5hGIqPj5cjq0T5O7JlllR+uBgdFa2EuASv5eYV5MtZ5t/D78iIKCUlJHqdl19YIIez9GCciZEyTVOGw6yxK72I8EglJyZ5nVdoK5S91L8HfGFh4UpNSvE6z1ZsU7G9+GCcTtP3bvoMQ+kpaV5nFZeUyFZc5Fe8kpSeml7546LDVFxSoqLcAr+7JUxNSlVYWOVWEEodpSooKvCrTElKTkhWRESEwpIi5Sr/vkvK5HQ6lVeYJxmGEhKsOl5YWORzK1aJ8YmKioyqNN3lcikn3/976EmtUhUZGeWOs6Ks3Cy/y42LjVdsdIzXedm52TJr0QdkxX0nRlGKi43zulxOfq5cLv/qQ12PEUZ0uMJSoxWZ5vk3R0VFKSnJ+76cn5+v0tJSr/NqEhkZqeTkZK/zCgoKZLdXfYxwZJfIlWP3uu94PUYYhhITE1RUXKR9+/f71fKaIUNpVR0j7J7HiKq2ZVWaNWvmdbrdbldBgf/7clpamvdjRGmp8vPz/S43JSVFERGV20lwOp3Kzc31u9ykpCRFRVU+Rtj3Fmn/1t1+d7uaEJ+g6Khor/Oycup4jIiJkQwpPDVakc0OXlPU5ToiLi5Obdu2lVT5ureq6whfhBeainVEet2OeQX5cjr9vI6IjFRSQhXHiMJ8ORy1KDcqzH2sDHeGNdp1RHWq2r8Nw1B6euXzvSQVFxerqMj/6wh/jxGO7BK5cr23QCRJqcnVXEcU+njsMQzFHbiethUXS6ap5MTkKo8ReQV5BydEhSksMUqRKd73z0NVdYxwuVzKzs72LV4vEhMTFR3tPYb9+/f7XW5D/9Zw7C/W/i17VFbs33m5vn9rHHpdKVX+rVEbfv3WqOEa1kiMlGGEKS0u2Wsili/HiKrU5jqixrIOOQ5xHWHx5xhRVuyQq7j682piQtXXEfuz/b+OiI+LU2xMFceIbOu3hiHrPkFYXLiKy3w77/lzP8IX0dHRSkz0ft8gLy/P5/N9t27d/Pr8qpDc1YTxQAF1RR1CXQSq/iz/xdSNt1jrxsZK8z40FBsb+OSrFStN/edZU8XF0huvGYqOJsGrsXEMQl1Qf1BX1CHUBfUHdUVyF6rSVO67GYahhIQEOfYXK3d7lswgbTnC20OZYBQKcYZ0jAcSZSSpoKCw0bsoDOltGUSMmHCFp3kmqAQrx/5ilWXbfd+WDVxnQ2lbhoJaf98NLNDfd31d9wb7dpRC41gZlhSpsOQoRab6lrzZmBrkO6/D8TUsKVKKDlNYZHh9RRcQodAynxT8+3hQ7N811NegiNEHXGcEjmN/cZXdcAYFw1B8fJwi02NVEh2c9whqK9D33eiWEQAQ1P5YJ4WFSS6XdM5w1Util91u6t9TTGUfeE7yxlumrryc5C4AAAAAAACgOkZUmBTOfbTDRaC/b9M05XQ63cMIPq4SZ7109RlQ4YZc9uBPBHCVlMksdAZtYkX5/h0KyV1AsCmzOeSyBfFxqPw4WVU3nMHAMCTvDf7iAJK7AABBbdylhk4+SXrzbVMXj6mfG0XR0YaunSA99IjV/WNaGjekAAAAAAAAAF+EQvJHqLRGEwoC+X0bhiGH3XpU6SwsCUyCV4gk+oSKYE9Ikqzun10uUyFxVz+IEyuMqLCQOJ6zjyMYuWzOoG4VK6SOk6gSyV0AgKDXob2hu26v30uOYWdIe/caOme4lJ7O5Q0AAAAAAEBTRWtTgRXsyR+0RhNYAf2+DUOOEqubOqfNHpBuRHmAXQ+COCFJOrCPIyCC/XgusY8jiAXxsZLjZNNAchcAALLeErtsXGNHAQAAAAAAgIZA6yQBFuQPNPm+AyxQ37dhyIi0skjMkrLAJHfxABuomyA+nkvs44cbEvKBg0juAgAEJZfLVFgYF2wAAAAAAAAIPFonObzwfQMAEJqCPkE7lJKzEdJI7gIABJ1Nm03969+mxl4inTlUiohonFsa+7NMrV0rnfQ3bqkAAAAAAAA0ObROcnjh+wYAIOQEe4I2ydloKCR3AQCCztvvmsrMlB55zNS69dItNzbsJVFZmak5H0ivzjLldEpvvCa1ac1lGQAAAAAAAAAAANCggjhBm+RsNBRqGgAgqNjtppYuOzh+7tkNn1RlGNLX35iy2aTSUmnqtCB9HQAAAAAAAAAAAAAA0KSR3AUACCrR0YbefdPQDZMNDT9LyujW8MldYWGGbr7RkGFIXbpIF42h1S4AAAAAAAAAAAAAQMOjW0YAQNCJizN0wShJjdhDdY/uhp59Wup9tBQRQXIXAAAAAAAAAAAAAKDhkdwFAEAV+vUlqQsAAAAAAAAAAAAA0HhI7gIAAAAAAADqqLCwUN99951Wr16t33//XXv27FF2drbsdrsSExPVtWtXnXTSSRo9erRSU1MbO1wAAAAAAACECJK7AABB4bsfTK1ZY+qCUYaaNw/OFrN+Xm5q4SJTd91uyDCCM0YAAAAAjWPVqlW6+eabvc7Lzs7WsmXLtGzZMs2YMUNPPPGE/va3vzVwhAAAAAAAAAhFJHcBABqdaZp67XVTGzZI784x9dAD0onHB0/ylGmaevJpUx9/Yo337iWdc3bjxgQAAAAg+LRu3VqDBg3SUUcdpdatW6t58+ZyuVzavXu3FixYoIULFyonJ0fXXnut3n//ffXo0aOxQwYAAAAAAECQI7kLANDofl8jbdhgDUdFSr2Pbtx4DmUYhpKTTff4e++bGn6WFBYWPAloAAAAABrXoEGD9O2331Y5f/jw4frqq6903XXXyeFw6Pnnn9fUqVMbLkAAAAAAAACEpLDGDgAAgKOOlJ54zNDAAdLZZ0tJicGXNHXZOEMdj5BOOVma9pxBYhcAAAAAD+Hh4TUuc/rpp6tz586SpJ9//rm+QwIAAAAAAEATQMtdAIBGFxZm6LhB0nGDDJWVmTWv0Aiiow09/5yUlGS15AUAAAAA/oiNjZUk2e32Ro4EAAAAAAAAoYDkLgBAUAkPD97EqeTk4I0NAAAAQPDbtGmT1q1bJ0nuFrwAAAAAAACA6pDcBQBAHfy2ylRqitShA4lfAAAAACorLi7Wnj179M033+iVV15RWVmZJGn8+PGNHBkAAAAAAABCAcldAIBG8/NyU9HR0tG9rK4OTdNUbq5kKz64jGFIiQlSQkJwdYdomqY++Eia+ryp9u2kl16Q4uKCJz4AAACgKSstLdX69euVnZ2tgoICOZ3OWpcxcuTIwAd2wIcffqi77rqryvlXXHGFRowYUetyg+k3UV1U/DsMSWaw/l2GIcOUJNP6cRqsQiHOEI6xYriGIZlq5PhDeFsGlVCIUfIrzgavs6GwLUMhRik04gxwjPVSX0NhO0qhEWcoxCg1WJx1qq+hsC1DIUYpNOIMghhrrK9BEKNPQiFOYgwIzzobnDE2NpK7AACNwuUy9dgTpnbvkeLipJRkU/uzpNJS78vfMNnQBaM8p336mSlJat9eat9OSk1tuBP+3n3Siy+ZKiuTtm6Tpr1g6vZbuNgAAAAA6tO8efP03nvvaeXKle4WsPxVn8ldVenZs6emTJmiY445xq/1U1JSAhtQIypPyIuLj5PiGjmYKpiRklkmmRFlCo8Pb+xwqhQKcYZ6jOaB/+NTExs+sEOE+rYMFqEQo+R/nA1ZZ0NhW4ZCjFJoxFkfMQa6vobCdpRCI85QiFFq2Dj9ra+hsC1DIUYpNOIMlhirq6/BEmNNQiFOYgygA49ZExISFBFBKtOh2CIAgEax7Gdp9x5r2Gaz/lUnLbXytFmzTXcZkpUk1j3DVP9+ho7tL/XoLkVE1E/CVcsWhu68Q/r3FFNH95Ku+AeJXQAAAEB92bNnj2688UatXLlSktWSrj/KWwyu75dCTj/9dPXq1UuSVFJSoszMTM2fP18LFy7UrbfeqrvvvlunnnpqvcYQCsLiIhSp2MYOo0ouw5TpckkuKTw8eG+Ah0KcxBg4oRAnMQZOKMRJjIETCnESY+CEQpyhEKMUGnESY+CEQpzEGDihECcxBlZYHClMVWHLAAAaRft2UkaGtGGD5/TU1ANdMB4Yd7mkvHwpLc1zOdM0lZXtOc1mk1aslFasNPXKq1J8vHTSiabOHm7omN6Bb9XrtFMNRUZIxw2WIiNJ7gIAAADqQ35+vi6//HJt2bLFnZhVnqRVW/4mhdVWUlKSkpKS3OO9e/fW2Wefrblz5+rOO+/UxIkT9dBDD+n888+vVbm5ubkBjrRxGIahhIQEhcdFqthlb7DvpS4cqn3Xn40hFOIMtRjL66skFRYWBlV9DbVtGaxCIUbJ9zgbs86GwrYMhRil0IgzEDHWd30Nhe0ohUacoRCjVL9xBqq+hsK2DIUYpdCIs7FirE19DYXtKIVGnMTov0PrbFMQ6NbXSe4CANS7nFxTK1eaOuXkgwlQbdsauuNW6cOPTPXrK/XobqhlSykmxrckqbIyaewl0u7dUuZf0l9/Sbl5nssUFUnzF0jzF5iaNcNQ1y6B/KssJ/2NpC4AAACgPk2bNk2bN2/2SOpq1qyZ/va3v6lLly5KTk4Omeb6R44cqW+//Vbz58/XAw88oNNOO03Jyck+rx9MSSV1FexvCwMVhcoxBihHnUUoob4ilFBfEUqorwg1FetsU7r/ESjs0QCAerXyN4duuNmlnGzp+alSr6MOJkN1zzB01x3+JUdFRBi68nLPdXNyTK34TVr+i6nlv0g7d1rT+/WVunZpuCSsbdvMWiWqAQAAAPDObrfr3XffdSd1hYeH6/bbb9fYsWNDNjnotNNO0/z582Wz2fT999/r3HPPbeyQAAAAAAAAEMRI7gIA1Jv5X9h19z2FKi21xu9/yNSbr9VfF4apqYaGnCINOcUqf+Ofpj6bb+qE4yp/3s/LTaWnS507BTaWb7419fCjpv52onTP/wW+K0gAAADgcPLLL7/Ibre7W+264447NH78+MYOq07SKvQ5v7P8jRQAAAAAAACgCmGNHQAAoGn64COXbr3jYGJXWqp0+y2Gtm2XSksbpinNbl0N3Tg5TAOO9UywKi62ErAuv8rUrNmmnM7AxLNho6l77jNVXCJ9+ZX0wUcBKRYAAAA4bG3fvl2S1Rx/SkqKxo4d28gR1d2ePXvcw3FxcY0YCQAAAAAAAEIByV0AgICb84Gpp585mDDVpbP00nRDx/SWbrnd1Kgxpl6dZaqkpHH6S37nPWnffqmsTHrlVVMTJ5vK/KvusWR0MzTqPGv4iA7SgP51LhIAAAA4rOXn50uyWsQ95phj9P/s3Xd4U9UDxvHv6d6TKUMFWQpORAH3XuDCvRARFyI4EFQQEAFBxC2gKCqKiqICKvpzK8OBIqggCIKgyOreTXN+f1zaNDSFNk1pA+/neXhI7jj3JD05ucl9c05ISPB/lTV//vyy223btq3DmoiIiIiIiIiISDAI/m/ERESkXpn3oeWJpzxBqc5HhfHc0yE0aWz47AvYvh3S0+GDjyxhdTQ58CknwZFHeO7/vgKu72t5932LtTULefW/1dD7Wpj6nGH//TUlo4iIiIhITSQmJpbdjo+Pr8Oa7N7s2bMpLCzc5TbTp0/nq6++AqBZs2YcdZR+ESIiIiIiIiIiIrtWR5fVRURkb7RwkWXCo55w1NGdw3j2qQSKijKx1hIeBk2bwqZNcPGFhrCwugk/7b+/4fGJMOsdmDLVUlQMBQUwcZJlwUIYMhgapPpXt/BwQ98+CnWJiIiIiARCkyZNym6XjuJVXz399NM88sgjnHHGGRx11FG0aNGC2NhYcnJyWLVqFXPnzuWnn34CIDw8nNGjRxNWV794ERERERERERGRoKFvkEREJCBW/2kZPtJS4nbud2gPzzyVQEyMoajIWXbqKYaTToRvF3iPnFUXQkIMl13iTJ046mHLn2uc5Yu/g959LPcNgW5dAxfSstZijEJfIiIiIiLV0blzZ6KjoykoKOC3336r6+rsVkZGBm+99RZvvfVWpds0adKEMWPG0K1btz1YMxERERERERERCVaallFERALi56XO6FcAzZvDhEdCiI2pGGYKDTWceIIhPr5+BJ1atTI8P9lwzVUQsuNdMSMTBg+1PD/NHZBjLP3Fcn1fy3//1WzKRxERERGRfU1sbCxnnHEG1lq2b9/O4sWL67pKlZo+fTojR47knHPOoV27djRo0ICwsDBiYmJo2bIlZ555JmPHjmX+/Pl07969rqsrIiIiIiIiIiJBQiN3iYjsZT762PL5F5amTWD/loaDD4aDWjvTBdamS3sZGjWEJ5+2TBhnSE6qH+GtqggPN9x0o+HYYyyjHrZs3uwsP+CAmj+Gt962PPWMxVp4eJzlicecUcNERERERKRq7rzzTr766isyMzN55JFHmDlzJlFRUXVdrQpatmxJy5Ytufzyy+u6KiIiIiIiIiIishdRuEtEJAilpVnmzIMWzZ2pDsv77z9YVPZjdmekqLhYOP44y9lnGY44nFqbHvCkEw3dukJEhHf5+fmWenjtpYLDDjW89AKMf9QSEwOnn1rz5+mwQ50RwUpKYO1a+Odf5+8mIiIiIiJV07hxYx555BFuv/12Vq5cyS233MLEiRNJSUmp66qJiIiIiIiIiIjUOk3LKCISZBYstPS63PLCi5ZXZlis9Z7qLzS04j45ufDRxzBgkKXPjZbPvrC43TWfInDnY0PFYFdWlpsLL3EzarSblX/U/2kJE+IND40w3HNnxWDXtwstq1ZX7zG0a2vofa0TenvlJUOL5hq1S0RERESkuk488USmT59OUlISixcv5uyzz2bSpEksWbKEzMzMuq6eiIiIiIiIiIhIrdHIXSIi9dyWLZap0yxnn2k48gg4+GAIC4OiIlizFpb+Akcc7tn+jNOhzUGGjf/A6tWWZcth4z+e9av/hAdHWl5tDf36Qtdj/RvJa9lyy9QXLCOHQ2pq5fvPeqeQ7Gz45FNYt94ybWrtjRwWKMYYwsO9l2VnW8aOs2RmwfHdLdddY2jfvmqP49qrnakY6/vj3tOstaz8A9ocBGFhem5ERERExLcOHTp43bfWkpmZydSpU5k6dapfZRpj+P333wNRPRERERER2QdYa3G5XGW3RURE9iSFu0RE6okvv7KkpcNFF3iHXJYth/kfw/yPLZ06wsTxhquuMCxYaLnqCkOnjt7lNGlsaNK49J7BWsuatfDhR5a5H0B+vrPmzzUweKhTZr++cMThVQ/XbN5iuX+4JT0d+t5kGT/OCZT58tdfJWW3L7skeANO0191gl0A3yyAbxZYjuni/A12N9VlaGj9fsxZ2ZaFi2DJEstf62D7dih2QUI8NG8Ohx9m6N4V9t+/+o8jPcPy1ixLSQncerP3gKEbNsKNN1sSEuCkEy1nnm44tFP9D/+JiIiIyJ5V/sKJMZ7PFLqgIiIiIiIiAPnFeRS48mr1GAaDK6wAgJz8XCzV+zwSFRZDdHhMbVRNRET2AQp3iYjUMZfL8txUy5tvQWoq9DgXwsOdixVffmV5623PB4S2bSAmxnDVFZZrr65aUMoYw0GtYUB/w/XXOeW98ZYn5LX8V7h9oKXL0ZZ+N+x+NKqCAsvQB5xgF4DbDUmJlW8/elQc5/csZu48N6eestvq1lsXnW/Yvt3y+RfOYwb47nv47nvLAfvDhefDmWdAXFzVgkmZmZaoKIiMrJsg0/btlm8WwNffWJb8BCUlFbfJyIC/N8DCRZZnJ0PnoyzXXGU46sjd17mkxPLeHHh+miUnByIi4OorLQkJnn2/+975PysL5syFOXMtbQ6CKy6D0071DsWtX2/56GM3S3+BrVvBhECz/eCoIw3nnQPJyQqEiYiIiOzNjHF+uFLTQFdpOSIiInsiCBAICgOIiOxegSuPrIK0ageuqsMYgyvMubCSW5hXrc8VBgNRqD8X2UsFw3mlzimDn8JdIiJ1bMVKePsd5/b27fDFV3B0Z8ukJ5wgkTFw0omwaRPcerMTYKnuFHbWWhZ/D2+/Y1n+qyfYVd73P8D3P1hOON7St4+h1YEVj2GtZdwEy6pVzv3wcHj4IUPDhruuT5uDDIPuCKl0fU6OZcNGJ+QTGwsdD6l/QZ1mzQwjhhn69LbMeM3y8SdQsiPktW49THrSMnkqdO3qTNnYupXvx1BUZJn9Hkx/xXLFZYZLezlTZ/6yzBlh7b//nO1CQiA01Pk/MhJatoADD4D4BMjNgdVrYMsWZ3pOcP4WDVKhz/WGJo19H/u//yxffQNffe20g+pe0/pxCfy4xHLsMZYB/Q0tW/g+TlaWZcRDlu9/KP+44dPP4aILPMvCwqBpE9j0n2fZ6j9h1MNOALH/rZZGjVw8NzmPr75xVzjOpk1OfV6c7kx9ec1Vmt5RREREZG909NFH13UVRERkL7QnggA1pTCAiEjVWSxFJQW1Vr4xhkgbDkBRSUG1wl0RoVG1Va2ACoaACiikIvVPfT+v1Dnl3kHhLhGROtapo2HcGBj2oOXYY6C4yHLNdZCR6ay3FnJz4YUpvkfqcrnsLgMt/26yjB7jBIiq4utv4JtvLffeDeed613uy6/Cp5957t99p6l2EKukxLJipTPi1R+rYM1a2LzZs/6UkyuGu9astWzdCocfBlFRdRveadnCcN8QQ+/rLO/MtnzwEeTkOOvyC+DzL5ygUXlFRc60hNHRhq++gaefdU7uXpxueWUGFBbu/rg/L61a/a66wlJQ4LSb9AxYtQp++tny81L4a53vfYyBTh3hhOMNHQ9xAlfh4bA9zdl/wSLLV197Rvda/B38vNRycz+4+EIICfH8Tf7+23L3EMu//3rKP2B/uPkmQ7djvY974fmGC3rCyj+caUc/nO8JHq5aDQMGuYHM3T7m4mKY9pITJnt4FKSkKOAlIiIisjd59dVX67oKIiKyl6rtIEBNBUsYQET8EwxBGoVo9i31PaACCqlI/VWfzyt1Trl3ULhLRKQe6HqMYdIEy6uvw9jx3usuOB9uvcl3sGvWO5bPPrc8NsGZrnFnCxdZRo225OR6L2/QwPk/Lc0zxWB51sJ++1nAU+YHH1leeNFzQn/JxXDu2b5DNDv/YiUry7L4e8vCRZZFi6hQn/JKR2Nq1xbi453y58y1vPOuEzi65Sa4tFfdh3f2a2q4/TbDjTdYPv0MZr/vjGjWbD9o3cp725+Xwl2DLY0bWyIjnDCVtU5Yytd0iDVx1XVAFT54hYbCkUfAiccbjj8OUlMrPqcJCc5oYWeeYdiyxfLKDMvcec6IZYWF8MRTlq+/gfvuhaZNDatWW+68x5KR4exvDFx/neHaqysfUcsYQ4f20KG981y+PRtmvGYp2CnwFhICJ5/o1KXVgc7z9vtKZzS63353tln+K9x0m/N6aNG87tuIiIiIiIiIiIiISGXqe5BGIZp9U30OqIBCKiKy71K4S0SkjuXnO1PQvT7TGfmp1H77wb13G4460ndI5bWZluemOB/6Bg+1PPqI96hW3/9guW+YxeVy7oeHQ6+L4JKLDY0aOdvl5TkjOs2ZZ1mw0Lv8uwfDRRe6ueYqw+8r4JHxng+YRx0Jt91SeXhm0WLLU89YOnbMZtMmN78sc1d5CsAVK2HgXRZjoPNRlvPOMWXT+xUXQ6sDq1bOnhIVZTjvXGeUs7//tmzbToUg3so/nAdffoSyylx1BZx9lsG9I/hV4oYJE51RzsAJZVnrO5S3O+HhcGwXOOEEQ/eukJBQ9QBUo0aGu+80XHSh5eGxnvr8vBSu72vpfZ1l+sue4F5MDIwYZujWterHiIsztG9niYjAK9yVmGCY8hw0b+ZdVrNmcOrJ8MZbMOV5Z3S0TZug/x2WKc9S6fSUIiIiIiIiIiKybwmGEZJg3xslyVqLa8cX2NWZ4m5vUp+DNArRiIiI1B8Kd4mI7GFFRZbX34BLe1k++9zwwkuW7ds9642BS3tB3z6G6OjKwymJCZ7bLhcUFUHUjs9aK1d6B7ua7QcPjTS0beNdXkyMoXs36N7NGXXp+WmWRYt31LPYCc28N8cpx13us/VRR1QciWnMODcbNsJ//8HWbc6yDRuLqvXclGct/PAj/PCjJT4OmjR26nDE4d7bZWVbbrvdcvJJhjNPh2bN6i7Q07KloWVLz31rLZ9/CTNeq3oZ2TlwwP7ej6H3tZCRAYd2gpYtnWDXxo2w6k9YvdqWTW2ZmQXuEnCVOM9fbCxs20ZZsC4hAXpdXHlgsCpaHWiY8iy8+hpMf8UJVOXkwtPPerZJTICJEwzt21X9OC6X0/5em+lZFhIC+7cMYezDcbRonuv1BY+1FmMMISGGKy+Hg1rD/cMt+fmwfTsMHmJ59iknMCYiIiIisrfYtm2b3/vGxsYSHR3tc9327dv9vqAaHR1NbGysz3Xp6emU+Biu2BhDcXExAJmZmT6PHRkZSXx8vM9yMzMzy/avroiICBISEnyuy8rKoqjIv8+x4eHhJCYm+lyXnZ1NYWGhz3W7ExoaSnJyss91ubm55JfObV9NxhhSU1N9rsvPzyc3dxdDbu9Gg9LhwndSWFhIdna23+WmpKQQEhJSYXlRURFZWVl+l5uUlERYWMWvyV0uFxkZGVVqr74kJCQQERFRYbnb7SYtLc3v+sbHxxMZGelz3d7SR1RFIPqIjII0sgvSKXJ7Xp/h4WHExcf53D4nO4fiYpdf9Q0LCyM+wXe5uTl5lfY9ESGRuKIMJZXkK3bXR2zbts2vv93e2EeU/r2rMuJ9efGJ8ZX2EdmZ/tc3Lj6O8Ihwr2UGgzvCTW6m/yG0PdFH7ByUS0tLq/IPe3cWEx1No7CGAOTk53qNYJWRnkGJP79wBRJjk2iY3Mjnuvp0HlHaLt0hJX71EbsTEhJCYpLv+ubn5VOw8/QJO6msD6qPfYSvPr28xKQEn31EcVExObuaaqQcg6G40HkfyMnJwWKJT4gnLCy0wrYuVwnZWZ767q4/31ldnUfs7nmsTHRMNFFRvsvNSMv0e3S6qKhIomN8n5/U9XmEL/Xps0ZVzmH1WcOjpp81KnvtVLWPqK64uNgK5xHg9BGZGRXrW9U+qC4/a/jzuas+f9YAKn19+cvYAEfh09PTA1mc1IAxhqSkJAAyMjL22V89iP/UhmrHSy+7mfaSM4rSzn1/2zZw50BDx0OqFkh5Z7Zlyc+WBx8wREY6++TkWK6/0bJpk7PNfvvBs08ZGviYds+XX5ZZpjxvWba88m2G3w+nn+aZKrKgwHLmubZKUwwmJUHXY+CQgw3NmkFKivNcZGfD3387o1ytWAkr/6g4OlX79nDfvYZWB3oey3tzLI8+5mmbnTpCt66GQztB+3aUPS972r+bLI89bln8nffyhg3hkIOdIF5urjO9YXi48y8i3HleLr4oMHUuKnICUzPf9CwzxgkOXnt1xRHGqmvlH5YHR1r++dezLCwUxo+DLkdXPAmuzH+bLSMfsiz/1bOscWMYNTyE445zTnzK90FFRZY77rRcfqnhxBM8j2H5r5Y7BlmKdryuuh0L48Y4ATDZ9+g9TGpKbUhqQu1HampPtaFAf8kkta8m5/Djx4+nb9++Pte1adOG7eV/dVQNgwcPZsiQIT7Xde3alT/++MOvcm+44QYmTJjgc12PHj1YsGCBX+X27NmT6dOn+1zXu3dv5syZ41e53bt3Z+7cuT7X3XPPPUybNs2vctu1a8eiRYt8rhs3bhzjx4/3q9zU1FRWr17tc90LL7zA4MGD/SoXqPSC43vvvUefPn38LnfVqlU+L+Z8++239OzZ0+9yFyxYQIcOHSosX7FiBd27d/e73Dlz5nDcccdVWL5t2zbatm3rd7kvvvgiF1xwgc91KSkpfperPsJxylknMubJET7X3TdgBJ/P/8qvco/ochjPzXjc57oJIx7nndff96tcX31E6XnEiBEjGDlypF/lqo/weP2DF2nVpuJUAmtX/8WV5/pf32dencRRxxzutSwiNApXrqHLocf6Xe6e6CPS87d5TSV4ytFnk5GW4Ve5Nw24gbvuvwOA3Nw8r/PeXmddydrVf/lV7tXXXcmTk572ua4+nkfUVh9x4EH7M/PD6T7XPf/kdKY9/bJf5QZjH/HR4ndJTkmqsHzJd0u57ZpBfpdbW31EsJ1H3D18AL2uvtDnurOOuYCM9Ey/yr2h/3XcOKC317KI0CgSo1I555Qe9e48Qp81HMHYR+wN5xEA6WkZnH2s79diVeizhiNQfUSgv8/TyF0iInuIy2WZNdvy4nTnfvlgV+PG0O8Gw+mnUa0gysUXGS660PMFv7WWCRM9wa6EBJj0aNWDXQCHHWp45klYuMiZ6m6tj8/Pox6G0WMtMdGWEjfsLrzfsCGccjKcdILhkIMrf4yHHOxMSQiwbbvlw4/grVmWjB3n/StXwo03W+64HXqc6zzuBQu93xiX/+qEfMAJTLVvZ+l4CHQ8xDl2gwa1G/Sx1jL3A3jqaes1zWbjxs5Ulied4Pvx/7HK0rpVxRHRaiIiwnDbLYYuR1tGj7FsT3NG8Xp+muXPNXDfvexydLjdad/O8MIUGPOI5ZtvnWWuErh/ONx8o+X8nrt+PCUlznP17GRLXrkfJB7X3QnxJSb63nf6K7bs79zrYkv/WwxhYYZOHQ3D7odhI5y//8LF8NpMuOYqvx+iiIiIiIiIiEhQKZ3mzu3niEciVeE1lWANLlyWWBcu63xRXlRSsNPI/WrDIiIiIqUU7hIRqWUul2X+J/DKDMu//3qvS0yAq640XHyh/yNMlf/l9tffwGdfeNYNHWxotl/1yzXGma7x2GOcMj/4yPLd996f091uZzq+yhzcAU48IZoTT4igebPqDy3aINUZXeqSi+H1N5zp+oqKnJGuxj9q+XEJDL4LxjxkWPwdfPyJZcEi79BccXFp2AtKh1xv3NjS8WBnhKxDDnFGSwsPD0ygKi3NMm6CZWG5HzqEhsAlvaBPb0NMTMXj/LfZGSntf5/C3YMMF5wfkKp4ObqzYfqL8NDDlu9/cJZ98SVs2GAZOxqaNvX/8cfHG8Y8BDPfhMlTLe4dYb9JT1reeRcuvwxOOwWvx15YaPl2Abz8qnd4MCwMbr3ZcMnFlY9IUFxs+eprz/2334G1ay2jR0JCguHkkwzXXm15ZYaz/vlpliOPcP7eIiIiIiIiIrJnFbjySM/3PYWL2/o3TQpAoSu/0nJdbv+mUgpGbltS4XkwGFxhBeQX+z/lkbXuSp/fvOIcv8sFKi03t8j/qYnAmQ4p1McPULML/RstRkREpCZ2nsK2uMS/KRnBObep7P2z0OXf1ImA39Nlyt4rtyi70rZWE3nFOZWWqzB31SncJSJSi9xuyw39LGvWei9PSIBzz4brr/Md+PFHXp7l8Sc9J2Ldu8Hxx1Wv7LVrLa+8Zhl4uyEpyRAaajj5JDj5JMO2bZaP/wc/L7WsWgUZmZ5pEyMinOkfO7SDY7oYOh8FyckhJCXFAJCRYfweejI62nDD9YbTT7OMGGVZtWMk18+/gFWrLGMfNhx/nPMvK8uyaLEzotOy5fgcdWzzZuffZ1849YkIh/btLd27Gc44DRo29O/v8cOPlpGjLRkZnmWtW8H9Qw1t21Re5pdfwf8+dW6/8JLltFMhLi7wQaTkJMP4sc5obKXTNP65xhkJ7aGRcMThVT/mP/9aXMWw//7OPsYYrrwcjjoSHh7rCWz9vcEJ4k2cBK1bWRqkQm6ec9ydp1RvdSDcN8TQvt2u6xEebpj6nFNuaZDxp5+h362WJx6Dxo2c9vLrb5affnba6NjxlhenOiOZiYiIiEj9MnToUK/7xhjGjBmzy20CwddxRESCxc4XCwOhti64FLjyySzwPc1KSU3CXSUFlZa7L4W7SmxJhefBGIMrLL9GbcSNrfT5rUloDKi03LzimoW7sgvSCCuo+P1jblFWjcqV4GQIqesqiNRIdmGmz/fljALfU9JVVW0FN/ak8JAIQk1oXVdjtwpceV5T2Ba7C/0uy+UurvT9s7CkwOfyqgj0lHES/PKKsyttazWRX5xbabluhQyrzNgAv2rT09MDWZzUgDGGpKQkADIyMtRBS7WpDQXGs5PdvP6Gczs5Ga64zHDh+TWbDs+Xp55x8+Ysz/2YGHj2KcNBrXd9HGstv6+AWe9YPv/CCcN06wqPjDGVjp4ETnCtsBBCQ53pD4uLvcMztdF+ioosz06xvP2OZ1lMDAx/wHBct4p1zcqy/LYCfvvN8utv8PsKvKb/29mkRw1Hd67e36WkxDL9Fcv0VzwjmxkDV1wOfa83uw0UFRVZrult+edfOP00GHCbITm5dkNI8z+xjJ9gKdrxXWfrVvDi806Yb3eWLbfcN8wSFgbPPFlxZLjiYsu778NLL1uyq/CdXGwsXH2l4fJLK46gtqs2ZK3ljbecKR1LF++3Hzz1uKFxI8OWLZare3ume7z+Orjhen2psy/Re5jUlNqQ1ITaj9TUnmpDycnJtVJudbRv395rmnljDCtWrKh0m0Co7DjBYPXq1X7vGxsbS3R0tM9127dvr8EPcqKJjY31uS49PZ2SkorhDWMMiYmJAGRmZvo8dmRkJPHx8T7LzczMpLjYv/BGREQECQkJPtdlZWVRVOT9i/qC4nwKSnb/a/jwsDASEn2Xm5OTQ2Ghf7/UDw0JISk5yee6vLw88vMLCDEhRIZEERkeVeVyjTGkpqb6XJefn0/uzr/IqYYGDRr4XF5YWEh2VT4oViIlJYWQkIqf64qKisjK8j+8kZSURFhYxd9Au1wuMjIyqtRefUlISCAiIqLCcrfbTVqa/xdm4+PjyXNne10sLJW+3f/v5qNjo4mK8t2G0tMyqjXtWnhoJCVuN25bTEgERMf47nsyM7L8njowIiKC2LgYn+uys3JwuVy73D8mPAH3jjoWlbvYGh4eRlx8nM99crJzKC7edbmVCQsLIz7Bd7m5OXkV+p7d1bNUSEgIiUnefY8xxmknufls27rNr1E5DIaklESf6woKCsnP8/SLu6vjzpJTknwuLyoqIjfH/0BaYlKCzz6iuKgYd2FotepYXnxCPGFhFUMELlcJ2Vn+92lxcbGER4R7LYsNTyA2PAFXnv/nfvHx8URGRvpct22b/4GO8ucR6fnbyCzYXjYtY0Zapt+jv0RHR9GocSMAsrOzvfpYf/uImPAE4qLjSUpM8rk+KzOL4t30EZWJCA8nPsH3+Ul2VjZF1Tg/CTUhznmGKxd3SIlffcTu+OojSuXn5VNQsOvXQ0RIJPFRKSRFpXgtr4/nERkFaWQXpFX6Gt9VH5GzqylKyjEY4uKcv1NOTg4WW+U+wtNXuqAKr5e4+LgKfQQ45xGZ6f6PSBgbF0tEZMXzE4CcjLyy9+/q9pXRMdFERfnue2rSR0RFRVY4j4iNSCQiJJKcrFxK/DyPiIyMKPtb7iwQfUSoCSW/OI98V05ZX7mnzyN8tdfyYsITiAqPokFqQ5/lln7W8Icxzrm7LwX5BeTu6kLdTnb+rFNfP2tU1gftyfMI2NFHZFSsb1XP12LjYnx+hoEdnwn8VJU+wmBIik8iITqVMJfvbSuU68f3EVURqO8j2rRp49fxK6Nw115MFxSkptSGAiM93XLTbZaLLjBc0BOiogIf3PnnX8tV11rKn2/u3xIefcRUmHLPWsu2bbDyD1j+m+Xrr2HjP97lhYY6wZ2Oh1Strnl5luv6WE4+Ca67xhAba2q1/Xz9jWX0WE9wxxi48QbDNVdVPp0fOEGs9evh19/ht98tv/0G69Y76+LjYe67hrAwz/7WWvLzqXR0tfQMy6jRlh9+9Cxr1NAJmx1+WNX/zj/9bImMrN7UgdZaVqx0Rq1avdoJh23bDiEhznSfTZvCAfvD4YcZDju04rSfK1Zahj5gKciHqZMNLVvsPoT25ix4cbotm/rywANg+jTfobC8PMtH8+HD+ZbVf3pGeSvVsgWcfZah53mQmOj72FVpQ98utAx/0BNUa7YfPPe0ISXF8N4cy6OPOfuEhcG0qYbWrTR6175C72FSU2pDUhNqP1JTCncp3FWZveV7t2DqJ9Pzt/kM0dQnEaGRhIdEEhZa8cv9+iLEhBIZGkVUuO+QT31WH9vrzsGK+iY2IhG3202JLVYda8ifepaGu6BiWKY2BMNzGQx1BE9goT73574CCzVRG+219O/ttq56//5dUs/bZWx4AvGRSSRE1f3nht3ZE++NNWmvwdAPBUMdIThe4/Xh9b279hoMzyMEx2edQL831oZgeH0bY0hOSCEpugFhrqr/cKk+C/T3bpqWUUQkQNLSLE8/a7njduMVVrEWuh4Lp51aO8EugGkveoJdB3dwRgi7f4ghIcE7qDTobsvKPyAnp/KyuneD2242tGxZ9bq++ppl03/w+hvOtI1Tn9t1yKqmTjjeMKUFDLnPCTVZC1NfsKxbB/feUzHIVCo01NCqFbRqBT3Pc7bJyrZ8/z1kZeMV7AL44Ud4cJSl97Vw8YXe65f/ahk+wrK13A/euhwNw+93prSsjiOPqPr2hYWWOfNg9nuWDRt8b7NlC6z+E77+Bl6Z4QTHTjzect65hiMOd/42HdobXpgC//xDhWDXho3OtJYH7A9pac5oXV9+BZv+82yTmgpD7618tK+YGMPFF8HFFxny8izr1kNmljMN5v77Q2pKYNrIcd0M48Y4baGoGP75F+4ZYnnqceh5Hnz2Ofy8FFwuGDfe8tzTFf/OIiIiIlK3qnJRpD6EKWTfZbH19gtwcEZJKnDl4y7OrrcXZiJCIykKKSDfVbPp3GpbVFgM0eG+R4MSEdkTgqE/93eknD0tGN6/6z1jKHQV1Ptp/EJNKEUu/6e8k+BUn1/jQfH63qE+P48QPJ91guW9UYKbwl0iIgGwdq3lrsFO0Cct3fLoI54AySszLO/MhnkfWG6/DS7oGdhgyZ9rLP/7zHP/jtuhoMBUGC3fGENGhvUZ7IqLg1NOhl4XGVodWL36WWvLRr8CuPzSXU/nGCgHHmB4frITviodOeuTT2HTf5YxD1HlqQ0T4g2nnVpxubWWqS84Uws+9YxlexrcepPB7XamA5zyvKV0NE9j4IbrDddeDSEhtfPYi4os8z502lN1R1AvLHSem08+tXTqCI9PdAJwDVINDXyMnv3qDMuH8ysvr0MHGDPK0LBh1R5rTIzh4A7Vq3N1dDnaMGY03Huf8zf5YxWMn2gZMSyEe++Ga/tYiopgxUp4ezZcfmnt1UVEREREquezzz4LyDYiUr8vzATDRZnwkEhCTWiFcJe1tmyKPwVNRWRPqO/9uexb6vv7NyhYIbIv0HujiMJdIiIBsfIPykZw+vln+PU3OPww2L7d8t4cZ3lhoTNlXKC99LItC3Id3AFGj4UNGyy33my48nLPdlu2WA44AP5cA0mJ0Lq1s/1hhxqOOhLCw/0LJRljGPMQfP6lM13iKSfX+CFVWUKCYcI4ePpZy9uznWXLf4V+t1geGQOtajAFX1oaFOw4T4yJgUsvdsJxD4+zLFrs2S4pCR58wHB058CFulwuy1ffwCknOc/v1q2Wm/tbNm/23i4uDk4+ETp1NBx4IDRsCNYN6RmwYQOs/MPy/Q+wZq1nn9SUykc2A9i2zfLJp77XRUc7032mp8P2NOd45T081s2m/6BtGzj7TEObNntuhKxjjzEMGQwPj7W0OQj69XWO3by5oW8feHay8yKZ9pLllJOgUSON3iUiIiJSHzRr1iwg20jwKSkpwVqrsMw+pr5flPE1OonB4Apz6pyTn1vnF7c1OomIiOxp9fn9GxSsEBGRfYPCXSIiAXDO2Yb8AnjhRcvDowyHH+YER1JTDRPHw+TnLdFR0PmowB53zVrLV1977v++wnN7zjzLFZc54aDlv1ruvc9yXHeYMxtSUkICWg9jDKeeDKeevOcDM2FhhoEDDC1bWp540lLidqYPvLm/ZeSD0PUY/+qUmmqYPg1mvwtR0bD+bxg9xnsaxsMOhRHDqj6CVVV8973lqWdKR0NzntcGDeDAAygLdzVqBNddYzjrDN9BrYYNnYDVqacYbrsF1v5lmTPPMu8D6H1dxe03brQ0a+b8HUNC4JabDD/9bElLd8JgzZvBMV0MTz7jTOsJsHUrtG/nXc5f65yg49JfoF1baNMmYE9LlZx9piE2xpkes/wUqJf2gv996kxVmZ8PTz5jGT1S4S4RERERkbpkrSW/OI+M/O11HpapjEI0+x5fo5MYY3CF5QOQW5hX54FEjU4iIiIiIiKy71G4S0QkQC6+0AniJCV5h0aOOtIw9VnIziHg0xW+/KrvLxQTEqB7N2e0sI3/WO6405mW7sOPoGkTw/XXBbQa9cJFFxiaN4NhIyy5uZCXB4OHWG64Hr+nSwwLM/TsYZk81TL+Uc9yY5xRzw5qDfHxAXwQwC/LPNNcPjfZclw3J8B110AYdLflkl6GHudCRETVH0+rAw0Dbzf0vd4SF+e9X1a25YabLC1bQO9roVtX6HoMdOtqaNHce9tTT4YX/nLa3FYfU0Nu2+78Hx0NJxxf5eoF1AnHV3xewsIMdw2CW/o7o9x9+RUs/s5yrJ/BPxERERERCYwCVy5ZhWm4bf0MqihEs2/aeXQSYwyRNhyAopKCOg93aXQSERERERGRfY/CXSIifigosISFOaGR8nYOdpUyxpAQ4BDQho2Wz7/wXhYWBpdd4ozqFBPj1KXVgZaTT4KPP4HUVCegU1P5+Za58+DiiyA0tP4EZLocbZjyLAweavn3X7DWGU3tu+/hrkFwUOvq1fWnny0THrNs2OBZlpIMV1wOz06G336HRd9ZbrsFTjguMOG9I4+AmW9ARARcdaUhbMc7ddOmhtdf9S+kVmrnYBfArLedMNyKlfDcFMvCRTDvAzj1FBj+gPf2Z5wOiYmGQzvBAftXLH/aFMPqP50gY3S09765uZbnplpuvtH4rEdtWrvW0qE99DgP5sx1lj32hOXVl3Y9RaWIiIiIiNS++jzNj0I0IiIiIiIiIlIfBHZeLhGRfYC1ltFjLXcNtqRn1M2vNa21DBvhfeymTWDyM4ZbbgopC3aBEwa6717DJRfDU48bWrasWZjF5bKMHG158hnLoLst27fXr+kzDtjf8Pxzhi5He5Yt/xVuuNHy5NNusrN3XV9rLUt/sdx5j5sBg7yDXSedAC+/ZNiyxQmOAfz7L9w/zBkd7c81NXsunp/mZuBdUOxywlUXnm+8wnM1CXZVJjTUEBXl3D7lZHh/LpS44bMvYOtWS1a552u/poYLzze0bmV8hvpSUw3HHmM4/dSK656ZbHnvfWe6zE2b9kybKSmxvDLDcv2NltffgJtvNCQlOuv+/Rdefa1+tV0RERERERERERERERERkZ0p3CUiUk1vvOVM67bkJ7ihn/UZFnrqWTc//Vx7wZFnnrP8+afnfps2MG2qoX073+Gf0FDDHbeH0LJFxfW7Czvt7NsFzj+An36Gpb9Ua/c9IjHRMGGcoW8fQ7gzcwIlbnjrbTj/YsuwEW7mf2JZt96SlmbZutXyyzInCNS7r6X/HZbvf/CUFxcLw+83PDTSkJxkGNDfMOw+Q1KSZ5uffoY+N1pGjXbz1zr//vatWnn+Pp9/Wf2/jT96X2uY9Ybh1psNva81dO/mLO9yNOTmWS653HLzbW5eeNHNtwss27ZVv05/b3BGegNYtw4WfRe4+u/KJ/+DqS9YSkqcEdz+3QS33ux5jl+b6dRNRERERERERERERERERKS+0rSMIiLV8PsKy+SpnjDIySdBfLx3YOrHJZY334I337J062oZ97AJ6IhLmZmW9+d67sfHw+Sn/ZtebtVqJ8h0aS/LtVcbIiJ2X8ZJJxpuvRmenWy5/jo49ZT6Oa1daKih97Vw2ikw6UlnakaAoiL44kv44svdh3pCQ5yp/K6/zpCa6nmcxhjOPAO6d4Ppr1jeng0uF7jd8Mmn8MmnlkM7WU49xXDkEc4UhuWnbCwstPyyDJo3d0bDKnXKSfDhRxAdBXfcbrzalrU2INM+lioocKZjTE11AmtXXu4sv+1muLQXHHWk4YsvLbm5ll9/g19/A3Ces7hYS0wMREdDVBSEhJatKhvRrPT/8HCIiYETj4eFi+Gcs+HC8wP2MHbpjNNh3ofwyzIoKYGRoy3TpsAHHznLiovhscctkx4NzJSaIiIiIrLn/ffff2RmZpKdnY211QvuH3300bvfSEREREREREREpI4p3CUiUkW5uZYRDzmjAAEcdijc0q9iIOTlVz0XFBo3DvxUetHREBkB+fnO/UEDITKy+gMx5uRYhj1oycuD6a84AZzSgE95vkJFV15u6NQROh7ixwPYw5o3Nzz6CHz9Lcx43bJixe73iY6Cs86Cyy81NNuv8r9fXJyh/62G83tanp1s+eZbz7ply2HZcltWXrNmlpBQyM6C/zY74ac+vQ19env2McYw5qGKQb3/Nlseethyw/Vw5BE1b08rV1pGPWxJSYEnHsNrisWWLQ0tWzq3N/3nhLOKi733z8l1/lVHt67wwmSn7NL29O8mS1oaHHJw7YSrQkMNw+6D3jdYcnJhwwaYPBXuGmi4/kbntfzjEvjsczjt1IAfXkRERERqgcvlYt68ecydO5dffvmF3NxqnpjuYIzh999/D3DtREREREREREREAk/hLhGRKnryGcu//zq34+Nh+AOGsLCKgZQHHzBMf8Xy6Wdw3TWBD6x89jlkZDq3GzeCU0707xj5+dCwIfzzrzP60jlnea9fvdry8quWX3+HCWOhTRvv43TqGDwjHRljOPF4OPF4w98bLAsWOiOsbdkC2TkQFgoJidC+HRx1hKFbV4iOrvrja9HcMHa0YdVqy2uvW77+1jsQlV8Af66puN+ixZY+vb2Ps3Ow65dlliH3W7KzYfgIy3PPOMfzV0aG5bY7LIWF8PcGeHOW71AfOCG+Huc6U5Cu/MOyYiX88Uf1g13gjF5WftpJgLfetrz9DrQ6EPrfCl2ODnybatLEcOcgGDXaCdrNfg9OOhEuuwRef8PZ5qlnLMce44T1RERERKT++uWXXxg0aBCbNm0CqPZIXXvCb7/9xjfffMOPP/7I6tWr2b59O+Hh4TRq1IgjjjiCXr160blz57qupoiIiIiIiIiIBBGFu0REquDHJZYPPvTcH3KPoXEj30GQBg0Md99puOUmS2xsYMMi1lreeMtzAePSS3wHzKqiYUPDk5Pggw9h23ZISvIu559/4cuvndszZlpGDt87gi8tWxhaXgZXXBb4x9O2jWHkg4asLMuXX8OSJZZflsO2bd7bhYU5YaejjgS32+5ydLeWLSAiwrmdXwD//AMtmvtfx6Qkw3XXwNQXLHGxTsBvV+LjDSed6EzHCU4bzMtz6lKQ7/xfek2t7FHsuGGMMw1mTg40auRdblGR5ZP/ObfX/gVFxbZ8CQF1+qnw9Tfw5VfO/bGPWCY/A59+Dlu2wPY0eOEly8Db9442LiIiIrI3WrhwITfddBMul6vC6MLlb5cPfO08Omxth8GuvvpqfvjhhwrLi4uLWbduHevWrePdd9/l/PPPZ/To0USUnuiLiIiIiIiIiIjsgsJdIiK7UVhomTDRcxHgjNPgxBN2HwIJVLDLWmfKv+O6G4qKYM3a0vLhvHNqVnZIiKHHeb7XlU4/CbB0qTMtZaDDanurhARDz/Og53nO85WTY9n0nxN2io5ypuusaigvOdkwfiw8MNzy4DBDx0Nq/je46grIzIJLLjY0aVy98owxxMY67a8mcnMtycmQleXc/2djzcrbFWMMdw2EpUstGZnOdJPTX4WBtxvuG7ZjRK934bRTbECeXxEREREJrG3btnHnnXdSXFxcFthKSUnhhBNOIDY2lhkzZgDOeV///v3Jyclhy5YtLF26lH93DL9sjCE1NZVLL72U0NDQWqnn5s2bAWjUqBFnnXUWnTt3pmnTprjdbpYuXcqLL77I5s2bef/99ykpKWHixIm1Ug8REREREREREdm7KNwlIrIb06Zb/tkxHWNiAtzef8+GPz6cDzPfhLdmWZru51ne49zABch8ad/emXqyXRto0YJdji4luxYXZ2hzkP/7t2trmDmj6oEwcEKBX38Ls962jHnIkJDg2Tc01HD7rXX790xODuHozm7Wr3fuf/0t9LrYEhrq1GvVaktWFpx+WqCO50zPOHyEE+Z69z048XhL926wYCG43fDwOMv0FypOjSkiIiIidevll18mIyOjLNh10UUXMXz4cKKiovjnn3/Kwl0A/fv399p30aJFPPbYYyxfvpy0tDSWLFnCc889R2xNf63gQ6tWrRg0aBBnnnlmhQDZ4YcfTs+ePbniiitYt24d8+bN44orrtAUjSIiIiIiIiIislshdV0BEZH6bMVKyxtveu73v82QnFQx+PH6G5bX37AUFgZ2mo+/1lkee9wps8QNG3eMbhQaAr0urt0ASrP9DGecZth/f6NgVz3gK9i19BfLPUPcfP6lxeXybnsvvwr3D7Ms/QWeeqZ2p5/xV/9bDId2gosvhMcnmrJgV16eZfhIy6C73UyclLtjysaaO+Ukw8knee4/8RTceQfExTn3N2yAqdPq53MlIiIisi+bNWtWWbDrmGOOYcyYMURFRVVp365duzJz5kwuvPBCrLX88MMPDBgwoFbqOWXKFM4555xKRwZLSUlhyJAhZffnz59fK/UQEREREREREZG9i8JdIiKVKC62jBtvcbud+8d0gbPOqLjdtm2WaS85Uydeda3lv82BCYcUFFiGj7AUFjr34+M96046iWpPpyd7l+Jiy6OPWRYtdkajKj+NJkCXoz23Fyxy2ml9ExZmmPSoYdAdIYSHe9rztOmWjRvBWnhxegG9+2QF7HV150BDUhIcfhiMG2No3DiEgQM8x35rFvyyrP49VyIiIiL7qjVr1pCRkYG1zjnaoEGDql1GWFgYDz/8MJ07d8Zay8KFC5k1a1agq1olXbp0Kbu9YcOGOqmDiIiIiIiIiIgEF4W7REQq8eprsGatczs6Gu65y5T9Wry82e95AljJKdC4UWCOP+lJy1/rnNtRUVCQ71l3+aUKdu3rfvoZ1v/tub/z4AAd2kPbtnDVFfDma4YGDepnm/E1BeI1Vxq6d/Pc/2WZi+v7uln0Xc1DV8lJhslPG56cZGi2n3PsM0+H47o7662FMeMs+fkKeImIiIjUBytWrCi73aBBAw477DC/ygkJCWHw4MFl92fOnFnjuvmjuLi47Lavz5ciIiIiIiIiIiI7U7hLRMSHNWstL7/qCXfcdrOpdKSsPr0Ng+82pKY408wF4gv6jz+xfPCh5/5RR0Cxy7l92KHQob0uAuzrjulieP1VQ7++ho6HQMhO7+jGGKZNMdxyUwjx8cHVXtb/DQ8MhYEDDGFhzrKsLLjnXsuUF9wVpqCsrubNvacaNcZwz52GhATn/j//wsTHbdnoECIiIiJSdzIyMgDnnK1t27YV1u/8+auw9Jc3Phx66KE0a9YMay0rVqyok5Gzfvjhh7LbrVq12uPHFxERERERERGR4BNW1xUQEalvXC7L2Ec809wdfhj07FH59mFhhp7nOaP/+BqFqLr+/tuZbq/UWWfAtws866+6IriCOlJ7WjQ3XHs1XHu17zYRbCMB5OdbpjxveXs2nHcODL03hGO6xHLX4Bz+/deZH/XVGfDrr5YHh0GD1MA9vuJiuGug4cFRzmtv/sdw+KFw3rkBO4SIiIiI+CEnJ6fsdlJSUoX1UVFRXvdzc3OJjIystLw2bdrwzz//ALBy5UpatGgRmIpWgdvtZurUqWX3zz777GqXEWzn+JUp/ziMCcyPpGqDAQxO3eprHSE46hnMdazsdl0J5ueyPgmGOoJ/9dzTbTYYnstgqCMERz0DXcfaaK/B8DxCcNQzGOoIe66eNWmvwfBcBkMdITjqWR/quLv2Wh/qWBXBUE/VMTDq2+eu+kjhLhGRnbz1Nqz8w7kdGQlD7vEe5acygQh25eZahj5gyS9w7h94ALRoATm5zv1WB0LXY2t8GJF6aekyeHu2c3veh3DKyZYzzwhn1huJDL43nQWLnHU/L4U+fS0jhsORR9TsdVdUZHlxumXmGzDhEcP5PeD9uc66x56wtGsHbQ7SSaSIiIhIXdlVUAsgLi7O6/6WLVtISUmpdPv4+Piy21u3bq1Z5app+vTpLFu2DIDTTz+dTp06VbsMXwG3YOVyOcNTx8TEEEN0HdfGt1DCcVs3rpIw4sJi67o6lQqGeu4tdUyKT97Dtapob3ku61ow1BFqXs890WaD4bkMhjpCcNSzNusYqPYaDM8jBEc9g6GOUDf1rG57DYbnMhjqCMFRz/pWR1/ttb7VsTLBUE/VMZCc63FxcXGEhSnKtDM9IyIi5fy9wfLCi55Rs268wdC8ecVgR2GhJSIi8MnhseMt6/92bkdHwbD74Z4hnvVXXlF/f9EsUlNdjzGcebrl4//BiSfAQa2d5UmJIYwbE8LMNy1TplpK3JCWDgPvstxwPVxzFVUKYPoy7SXLazOd2w+Ps0x+GlashFWroagIhj1omTYVYmP1uhMRERGpC4mJiWW3y4/iVSoiIoL4+Hiys7MBWLt2Le3bt6+0vNJpHisrr7Z8//33TJw4EYDU1FRGjBixx45dn0WFxZJUP3NdDmuwbovbugkNC6nr2lQuGOqpOgZOMNRTdQycYKin6hg4wVBP1TFwgqGewVBHCI56qo6BEwz1VB0DJxjqqToGVFS9Dp/VLYW7RETKmfmmpajIuX1wB7jkYt/bTZxkSUuHu++EJo0DF/roca5hyU+W7Gy4b4hh1SrYvt0JmzVuDKedErBDidRLd9xuOP44OOlE7yBjSIjhysvhkIPhwVGWbdvA7Ybnp1l+WQbD74ekpOq/Fq+83DD/Y8v2NNi+HR4eBw8+AP1uhdxc2PgPjHrYMuYhCA1VwEtERERkT9t///3Lbm/cuNHnNgcddBA///wz4ISozjnnHJ/bFRcXl42cBRAbu2e+MFy9ejX9+/fH5XIRERHB448/ToMGDfwqq3w4LZgZY4iLiyM6PIaSQjfW2t3vVNdcdV2BKgqGegZZHUvbKzih0HrVXoPsuay3gqGOUOV61mmbDYbnMhjqCMFRzwDUsdbbazA8jxAc9QyGOkKt1jNg7TUYnstgqCMERz3rqI7Vaq/B8DxCcNRTdfTbzm12bxDo0dfrdyxPRGQPGzTAcOUVEBEBQwYbn2GO7763fDgfFn8H115v2bYtcB84j+lieGGKYdAdhhNPgNff8JR92SWGsDCFS2TvlpBgOOnEytv5YYcaXnre0Pkoz7Lvf4A+N1qW/1r912JiouHBYYbQHWdES3+B2e/B0MGebRYshMlT69GX9yIiIiL7kIMOOghjDNZa1q9fT1Hpr3HKOfzwwwGw1vLhhx9WGoB64403yMzMLLvfqlWr2qiylw0bNtCnTx8yMzMJDQ3lscceo0uXLn6XZ63da/6FhoZqmgUJGmFhYWqvElTUZiWYqL1KMFF7lWCi9irBpnybrevvLALxL9AU7hIRKSciwnDrTSG89bqh1YG+AyZr1kLIjt7zhOOhQYPABq6a7We4+ELDF1/C3xucZQkJ0OPcgB5GJGglJxsmjjf06W0oHdxry1bof4fl2clu8vKqd8J05BGGm2/yvI7feRf+3WS47hrPNjPfhHkfKOAlIiIisqclJibSpk0bAEpKSvjxxx8rbHP22WcDzq88s7Ozufnmm/nnn3+8tpk1axaPPPJI2eiwUVFRHHHEEbVa982bN3P99dezZcsWjDGMGTOG008/vVaPKSIiIiIiIiIiex+Fu0REfNhVYOvKyw1Tn3VGDrr91poFuzZstPyxqmJgxOWyvPCSZ3mviwzR0Rq1S/Y9brfltZn5TJ7q9loeGuqEux6bYCgd1bSkBF5/A6653lJYWL0g1uWXwpnlrrM9O9myX1M46UTPsgmPWX5eqoCXiIiIyJ7WvXv3sttffPFFhfWHHnoonTt3Lru/dOlSTj/9dHr06MEVV1xBt27dGD58OC6XC2stxhguueQSoqKiaq3OaWlp9OnThw0bnF/sDBs2jAsuuKDWjiciIiIiIiIiInsvhbtEZJ/3w48Wt7t6gY327Q2PTwwhMdH/wNXatZY7BlkGDLL8ssz7+PM/gQ3lRu267BK/DyMStPLyLL1vyGLMuDxmvF7xdQJwdGfD9Be8p2nsegxERlbvtWmMYchg73LGTYDDDoUDD3Dul5TAXfdY7hvm5oHhzr+Hxrh55jk3c+ZZVq+2lJQo/CUiIiISaKUjc1lrmTNnDoWFhRW2GT58ODExMYBzbud2u1m9ejVLly4lLS2tLNQF0LJlS+64445aq292djZ9+/blzz//BOCuu+7iqquuqrXjiYiIiIiIiIjI3k2TrIrIPu3bhZYh91mOOBzuHwpNGu+Z0bF+XGJ5YLglJ9e5/8CDlrdeh+hoQ36+5cVyo3ZdfaUhNlajdsm+JzoaknYEKK2FWe9YDju04muhQQPDpEfhy6/g+WmWa6+uuM3d97qJiID27UyF9Sv/sPz2G2RkWlJTIDYGcvOcYz7xlHc5RcXw9Te+auu8Zg8/DJ5+Qq9XERERkUA69NBDeeqpp3C7ndFc8/LyiIyM9Nqmbdu2TJkyhYEDB7Jt2zaAsjCXMQZrLdZa2rVrx+TJk4mNja2Vuubn59OvXz9+++03AG6++Wb69etXK8cSEREREREREZF9g8JdIrLP2rbN8tDDTiDj56Uw/WXLkMG+Qxlz5llOOQni4moW2igutrw43TLjdSc4AhAXB6NHeqZdnPG6ZctWZ12DBnDxhTU6pEjQMsYw7P44li7L4KIL4Kordr3tySc50yiWXsQrtWmTZfF3zu21f1UMfy3+Dl54MTAjbh11pIJdIiIiIrXh9NNP3+02nTt3Zv78+cycOZPPP/+c9evXk5WVRWJiIu3bt+fss8/mwgsvJDQ0tFbqWFRURP/+/fnpp58AuPbaaxk0aFCtHEtERERERERERPYdCneJyD4rNRWuv87w7GRL0yZw2y2+Qxlz57kZ/yhMewluudHSrZshIaF6AY68PMunn8Mrr1r+2+xZ3qgRPPqIodWBTnn/brLMfMOz/tabTLWnlxPZmzRsGMLHHyRTWJiJtbsPYO0c7AJY/L3ndnJSxX3i4yovLzoaGjeGRg0hPAy++x5cJc66Rg3hmqshL8+w+k/L0l/gjNMqljF2vJvDOhnOOhNCQvbc69nttmzcCNu2Q0gIpCTDfvtBWJj6FBEREdl7xcXFceONN3LjjTfu8WPfddddfPvttwAce+yx9OrVi1WrVlW6fXh4OAceeOCeqp6IiIiIiIiIiAQphbtEZJ9ljOHyS6HNQZCUBPHxnsCDy2X5cD68P8fyx47v4rdvh9HjACytDrQc1x169jBlUzkWFVkiIrxDE8t/tbz6muXHJVBU5H38rsfCffcakpOdfdxuyyMTLEXFzvpOHeF0H0ERkX1NdLShsND//XueB4cdavhzjRPQ2lm7dnDJxZCQYGjY0Altlf6/85SoCxe7uXeoM/Lelq3w3hx48jFITAzB7bYVwlurVls++BA++NDy7hx4ahJERdVeuMpay/c/wIfzLQsXQX6+9/rwcDi6s+XsMw0nHA+hoQp6iYiIiATKJ598UnZ78eLF9OzZc5fbN2vWjM8//7y2qyUiIiIiIiIiIkFO4S4R2eftPI3akp8s4yZYNm2qfJ+1fzn/XplhiYuzuFxQUABf/A/Cwz3lFRTAwkXe+6amwPW9Def38B5l6J13YYkzewehITBwgPE5CpGIOKPc7de0aq+P0FBDqwOhVSWDInQ8xNDxkKqV9d9/xmsEsTVr4JrelnvutnTpbIiM9N7+/TmebZs0rt1g189LLc9OsaxYUfk2xcVOn7RwkaVFC7jxBjjZx1SWIiIiIiIiIiIiIiIiIlI/KNwlIvuMjAzLxMctd9xuaJBaMcjgdluen2aZ8bozKk+p0FBo2QKioiAtHbZs8V6fk+O5/fcGS+tWnrLbtfWsa98OzjrT0ONcKky1+OtvluemeAq97lpDu7YKW4jsLDvb8vRzlvnzYeIE6HzUnn2d/O/TilNDpqXD0PshPMzSoYPlsEOhU0fDoZ1gQH9nNLBZb1tuu7l26pqX54S63nu/4rrGjaF5M6fP+m8z/PuvZ92GDTB8hOX47nDPXZCSoj5HREREpCb++OOPuq6CiIiIiIiIiIjshRTuEpF9woqVluEjndG4/t5gefpx72kYCwstD42xfPmVZ5+kJLj2KsO558CKlfDUM5bNm3d9nJtuhRuut/S6yBnBKyHB8PBD0PYgaFrJKEP//GMZcr8tm7axfTu49uqaPV6RvdWkJyyffOrcHj7S8uLzlE2Nuic88Zhh4SL48mvL1994T7da7IJly51/YLnmaripbwi9r4XLL604aldhoeXTz+Gcs/wfOWvDRsvQByzr1nmWRUbChedDj3MN++/vXe5/my3zP4a33rZkZTnLvlkAK/6wjB5JlUcwExERERER2VdYa3G5XGW3RURERERERPY0hbtEZK9WWGh5baYzfeKO7+FY95cTvujezblfXOyEI77/wbPfMV3ggfsMyUmGx5908/Zs73IjwqFbV2jRAn74EVbu+IF2QQE885xl7jy4vT90PcZw4vGVhyVWrbbcM8SSkeHcT0mGh0YYwsIUsBDxpf+thqXLLFu2wOmnQoPUPXv8iAjDSSfCSScaCgstU563vPW2721POdHzOi4Ndllry4JcTz9nefc9+PobuH8oJMRX73W/cJFl1GhLTq5n2aknw+39fY9OCE4Qrve1cMnF8MKLlrdnO6N6bdsGtw+0DL0XzjhN/Y+IiIiIiOyjivOdf+UYAzbE+WWPyc+hXuS7wqOdfyJSdT5e3/WSXt8iIiIi4oPCXSKyV8rLs3z0MbzxpmXTf57lCQkw7D5D12Od8EJJiWX0GO9gV0QEbNkKrmLnfsOGBnC+uYuJgauvNJzfAxITnTL69XX2f3ayZc1aZ5+/N8A991oOO9Ry9ZWGLkdDaKgnMFFUZJn1Drz0sqWgwFkWGQmPjDWVjvAlIs7UgWNHw+rVcN65dftaiYw0DOhvaNXKMm6859v9+Hg45GA46CDv7bOyLbcPtFx9JSQlOsEugAUL4YZ+lodGQPt2u39Mbrfl5Vfhxem27KJCVBTce4/h9FOr9pzExhruuN1w/HHOqIYZGVBcDKNGW7ZtgysvVz8kIiIi9VNBQQEffPABixcvZsWKFWzfvp3s7GxKSkqqVY4xht9//72WaikiQas4H5OfTun3QAAGMBQ6t/Nyfe+3Rxmndgp/iFSPj9d3/aPXt4iIiIj4pnCXiOw1MjMtCxfDtwss331PWWiq1GGHwvAHDI0beUILz0+zfPaFZ5v4eMjOhr/+gmEjLM897Uyn9u0CaNIEBtxmSE72Dj0YYzimCxx1JMz9wCmzdLqzX5bBL8ssqanQqaMlNQW2bYclS/AabScxAcY+bOjQXoEKkd1p19bQrm1d18LjvHMM1g0THrO43U4fsmoV/LHKmWa11OszLWvWwMiHLEceARf0hPfmOOs2bYJb+lvuuB3O71H5NI25uU4g9ZsFnmXN9oMxow2tW1W//zjyCMO0qXDvUMufa5xlz062lJTANVepPxIREZH65Y033mDixInk5OQAmh5NRGqLxbgKy+4ZA6E2wrldUljnuRAbFlm3FRDxpb6PimVCwVXIzq/v+kavbxERERGpjMJdIhJ0rHVGlvlzLaxZA2vWWtauhXXroMRdcfvkZLiln+GsMyEkxBNW+PxLy4zXPdtdeTl06mgYNsISFQn33GUwxhAaCo9NgOjoXQcdwsIMF54Pp5zkjMj1/lxnJByA7dvhy69879e2DYx80NCiuYIUIv6y1vLb79DxkLp5HfU4z5CcDA+OshQWQlo63H6HZdRIZ3pWl8t69QE//QwrVsKlveCjj51AWHExPPqYZflyuPvOin3O+vXOFLJ/b/AsO6YLPDjMVHtKx/IaNzI88yQ88KDlhx+dZVOet4SEwFVXqF8SERGR+mH06NG89tprZYEuY0xZIL46IS9jjEJhIiIigVbPR8WyoZFgqzfKp4iIiIhIfaJwl4gEjfR0y1PPWH5c4gQndqfNQXDhBYYzToOoKO+Awj//WsaO83zZcMLxcHM/w+8r4Mgj4Oor8RoFZ3fBrvISEw0DBxiuvtLyzruWjz9xpnncWfNmcPmlhh7neU/ZKCLVY63TN7z1NgwcAL0u2jOvp5V/WGa944RBO7Q3nHeu4YnHYMh9loxMyC+AIUMtg+6A83vCSy8Ypr9ieeMtKCmB/Hx46204/TT4+29npC+Aj/8Hq1ZbRo+E/fd3Hss331oeGmPJy/Mc/5qroe/1JiD9R2ysYdzDcN8wZ+RDgOemWEJDnX5KREREpC7NnTuXGTNmAJ5wlrWW8PBwWrZsSUJCAmFh+opLRESkbtXfUbFsaERdV0FEREREpEb0zZeIBI3YWPjmWycw4UtoCHTqBCccZzjuONivqe9AQkmJ5eGxtqycA/aHB4Ya/loHd99rycmB8HA45GBLZKT/oYYGDQw33Wjo28ey9i/4ax3k5EBCPBx0EOzfsvKp10Sk6ma97YSkAB5/0tKyBXQ5uuavLbfbsmy5E6xq2NBUCDn99x98/Ilze+s2y3nnGjoeYnjuGbh7sOWff53RBB+dZPn5F7jzDsMtN4Vw+mmWEQ9Z1q1z9v3fp9D5KDjvXJj3gbPsr3XQ9ybLgNst//yD1yiD0VFw/1DDSScGtv+IjDSMeQiG3O8ZwevpZ52A1yUXq68SERGRuvPkk08CnmDXIYccwoABA+jevbtCXSIiIiJBzFqLy+Uquy0iIiIivukbMBGpd9xuyxdfwsEdoGm5gFZEhOHwwy2LFkNighOQat0KWrc2tG4FBx5AlcJYb86CZcud28bAkMGQlgZ33u0EuwBWroT0dGjSpOaPJzTU0OYgZyQxEQm8886Fr76BX5bB2WfC0Z0DU+4XX8GDI50vldocZCuEu3Z87wRAo0ae2y2aGyY/A7fcbtm40Vn22efww4+WG66H83vAtCmGRx+zfPSxs/7HJXDAATCgPzz/ghNizS+ARyZ416l5cxjzkKHVgbUTtoqMdEbwGjzUsuQnZ9kTTzkBr4suUMBLRERE9rxVq1axYcOGsh/GnHTSSTzzzDOEhobWcc1ERERE9lHF+c6/ADAGbEiRczs/h4Dlu8KjnX8iIiIiewmFu0SkXlm71jLhMcvyX52Qxv1DvcMEffsYbu4HrQ70b9SrNWstz0/zfEK0Fp6bApu3WLanOcvi4+GxRw1NmijIIBIMYmIMkx51gpuXXVKxbygosBWmZi3PWsuatXBQa+9tuh4DkZFQWAhr1kJOjiUuzrNNx44wYpghJ9cZia+85GRDs/084S6ArCyY9ITlvffh2msMdw2Cli0NU553+qR16+CVGdCnN7z0Cl5TMIIT/nr6cUhKqt2+KTLS8MgYuGeI5eelzrLHHrfExsCZZ6hfFBERkT3rt99+A5xztrCwMEaNGqVgl4iIiOyVbGg4mCA4zynOx+SnAzVPYhnA4EznafJya1xeaakWFO4SEdlbBDBUXGsUKpY9QOEuEalXtqfB8l+d2x//D6660nLA/p4wQbu2nttutyUjA5KTqxb0Ki62PPSwpbjYe/nvKyhbFh0FE8YZWrdSgEEkmEREGK65quLyggLLZVdaUlIsZ51puOwS79f2Y4+7+eRTZ8rU11+Fli0862NiDOeebQkJhe5dDZGR3mU3aWxo0th3fbKyLcuWObdDQqBJY/h3k3P/r3Uw8iFLbCx0Pspy/HGwcBGUlEBuLjwz2XeZ69bBzf3h+mstp54CYWG1109FRRnGj3UCXkt/cZaNGWeJjYPjuql/FBERkT0nLc35FY4xhk6dOtGo/JCp+6Bt27b5vW9sbCzR0b6/bN6+fbvfUyFFR0cTGxvrc116ejolJSUVlhtjKN7xQTwzM9PnsSMjI4mPj/dZbmZmZtn+1RUREUFCQoLPdVlZWRQVFflVbnh4OImJiT7XZWdnU1hY6Fe5oaGhJCcn+1yXm5tLfr5/FzmMMaSmpvpcl5+fT26u/xfYGzRo4HN5YWEh2dnZfpebkpJCSEhIheVFRUVkZWX5XW5SUpLPKV5dLhcZWdkYAwWFTnvLya36qDIJcXFERIRXWO52u0nLyPS7vnGJKURUct1ob+kjqkJ9hGN3fcS2bdv8+ttVu4/IT8fkZ2BKdv84GqT4rm9hURHZOf73PSlJiZX0EcVk5KSBtRi3q0p1LC8pIX6XfYS/fPcRBndRLmnbtvhdbnxcHJE7f4m1w7bt2/0uNzYmlujoKCd85ioELMblPJfb0zP87iNioqNIiI4AcP425YpJz8iixF39PsKGRhKRFE58TIrP9eojHDqPcFTnPMLXOewuzyMyMvyub0JCAhERERWWu93uss9I/oiPj6+8j9B5BLD39BFV+cwVNH1EfjomPxOwNEit5DyisIbnEcmVn0dkZefsZm+DjU6E6Ip1Ux/hqGofUdrmcnJ295w76nsfUdnry18Kd4lIvXJ0Z8MpJ1u+/RauuBy2bbO8/Y5ly1YYP9b7TTUtHS642BIXC+3bWx6f6L0+I8Oybj1s2QqHHwofzoc/1zjroqLg8MPgt9+h9PNAeDiMGW3oeIiCCyJ7i9nvOaHR7WnQqpXF+T2gh9tSNh3r519A72u9979zYMWT+apIiDe88xa8Nweysiw39zO88y68ON1S+rklNxe++tp7v53PB4/u7PRh69c79zduhIfGWKY8D7fcDKefWnv9VXS0M4LX7YMsq1ZBiRuGj7A8NgEOP0z9pIiIiOwZ5Ufp2m+//eqwJvVD27Zt/d53/Pjx9O3b1+e6Y489lu1+XvAdPHgwQ4YM8bnunHPO4Y8//vCr3BtuuIEJEyb4XHf11VezYMECv8rt2bMn06dP97luwIABzJkzx69yux/bhblvv+5z3ajhDzLt5df8Krdd24NY9Pl8n+ueeuwJxk96yq9yU1NTWb16tc91r732GoMHD/arXKDSiwkfffQRffr08bvcVatW+bzg+/3339OzZ0+/y12wYAEdOnSosHz1Xxvo2vNaH3tUzdyXn+T4LkdUWJ6WkclB3f2v70tPjuH8iy71uU59hKNe9hHduzN37lyf60aNGsW0adP8Krddu3YsWrTI57oJEyYwcuRIv8qtzT4iY8U3Ppd/9PkCeg8a7ne5fy6Y4zM49t3SX+lx3QC/y1005xU6tDmwwvJa6yO2bqZtl1P9LvelJ8dwwdmn+VzX9rBj/C53/IP3cOPVl2BDI8F6Xyjtcu7VbE/3L7Q65LbrGTP0Dp/rzr76NlauWedXuTdcdxUTKnmPVB/heOqppxg/frxf5eo8wqPS84jVq+nevbvf5c6ZM4fjjjuuwvK0tLQavd+/+OKLXHDBBT7X6TzCoT7CUV/7iMrOI+b/74taOY/4/sefa3QeEXR9xOQnueC8c3yuq1EfMfpB+va+xue6Y4/pwva0dL/Kre99hL/B1soo3CUidcpaW2HUrQG3GW7qC6v/hIF3OZ1efHzFbbdudf7PyfUEtMr76huYMNHZ/9qr4Y03Pev69YWvv/HsFxLiTK92dGcFFkT2Juv/tkREQFER7Ne04vr9WxrAkpLs9AOBlJBguPZqKA2UXXYJnHk6fPARvPmWpbJz1dRUOPkkuKCnoWkTp+97b47h1RmWzB0/ItuyFQoLvPez1vL+HOdwCQlwykne/dm3Cyz/+9SSm+cEy0JCICEeWrZ0wlpHHE6F6StjYw0Tx8Ntt1v+3uA8j/feZ3nqcWjbRv2liIiI1L4mTZqU3fb319Mie4Tbhcmv5BfSLv9G2wAw7pJKyzWuej41iYiI7HGmxFU2olZtlGtDK44SIiIiInsHU5RT+efamijOq7zcAAeg9mYKd4lInVn8nWXG65ZHxjgBglINGpgd/1ua7Qf//OuEsDIyITnJs39eHiQlOssPOKBi+eVHuXzvfSjacR3gkINhyU+UTTUGMOQew4knKKggsrcZOjiEQQMsy5ZDYx8z+Jx1hjP6VVLSnnn9JyUZLu1lmf2eZ9nxx8HBHQyNG0PrVtDqQGfYYmstox62bN0Kox6EnucZZr8Hb892pqQ94QTvstPS4NFJzklw69YVw10bNsJnX/io1AJ4baYlJgZOO9Vy+SWGli09+yYnGR57FG7t74yimJsLd95jefYp72ksRURERGpD+/bty25v2LChDmsishvWXenFdOPHlFKecm3lF+lrVK4b8ir5cr3I/+lMAN/lmtCal5ufDnk+fpVT4P+UjM7+mU6dy6Yak31aSVHlr40S/6ZScvYtrrxcV4Hv5X6y1uJyuXC73QEtV0RERET2brUdEvdN4a6qUrhLROrEp59ZHhpjKSmB+4ZZJoyDiAjvkEBkpOH2/vDVV5YLzjck7TSd9FFHGua9b0jPsBT7+G4lJdmZerGoCH5f4SwLDYVbboJJT3i2G3Cb4ZyzFVAQ2VtFRRm6HO17XXz8nn/tGwPXXGmY8bql2OWMGhgZ6V2PwkJnFK7/fercv6GfZfQow9VXGi67BFasdKZ+LO+/zbs+bkzMrtfn5cGcufDBB5YePSz9+pqyYzRpbJj0KNw2wJKRCRkZMOhuy3NPQaNG6j9FRESk9hxwwAEcfvjhLF26lD/++IPNmzfTuHHjuq6WSPCztvJfThfn1ahoX+Xa0MgAlJuBya/4+cMU+RjOvTrlFmZi8tN8TjUm+x5TUlT5aHk1CXfV0uh+2JIKoTFjwIYUYYtq8JqrzQCoiAS/PR0SByjKqVm5sncpzq/ZeZurYBdh7hqMGF0+JB4e7fwTEQkQYwM80WN6un/zYUrgGWNISkoCICMjI+Bzesrer7ba0BdfWh4cZSn98Viz/eCpxw2JiVQIONRUZqblqmudMALA1VfCzf1CyMqy3DPE0uVouOH6AM/FJoD6IKm5vb0NuVzOVIetDtwppPWf5ZrelkaNYMMGcO942OHh0K+v4ZKLISysYl+59i/L+3OcjRs0MFxzlfc2//xrWb0aYmMhOhrcbkhPh99XWBYugr/WeZfXpDGMGmE4uIOnnJUrLbcPsuTvmP3lgP3h6Sf23Mhn1bG3tx+pfWpDUhNqP1JTe6oNJScn10q5gfbFF19wyy23YIzhkksuYdSoUXVdpTqzevVqv/eNjY0lOtr3xYXt27f73c6io6OJjY31uS49PZ2SkooXXYwxxMXFYa0lJ8f3hbrIyEji4+N9rsvMzPR7ms6IiAgSEhJ8rsvKyqKoaKfwRn66Eyoq2XX4IiwsjKQE3/XNzs2jsNC/8EZoSCjJSb7rm5uXT35BAe6IOCes5Xbttp6ljDGklh8evZz8gkJy8/wPhTRIqdi3uCPjKSwoICcrs8p13FlKUiIhIRW/wykqKiarknZUFUkJ8YSFheGOjHdGYHM7vyp3uVxkZGVjDMTFxgGQk5tT5VlDEuLiiIgIr7Dc7XaTVvpFlR/iElOISGoCMSkV1m3bts3vcutTH1EVAekjfLy+w8PDSYyP811udo7ffY+/fYTn9V2Cr1ENQkNDSN7pF7EGiI2JJTcvj23b0/waC8EYQ2pKks91+QUF5OZ6poW1oRGe104VXt+++giAwqIisnP8D4Xsqo/IKKLa/WSp0j5iZ6V9hL989RHuyHjcJS7St2/3u6+Mj4slMsL31Inb0vy/fhcbE0N0VGSFvhJge7r/56sx0VE0aeQMt5+dk+3Vx6ZnZFHixyiVNjSSiKTGxDdq6XP9Hj2PqKLw8HASExN9rsvOzvb/PCI0tNJz/tzcXPLzqzDFc346Jj+T8n1QdfqI6mqQWkkfUVh5H2FDIyA03PlXiZTk5Er6iCKysqv2WjYGYmKc97S8vFyshaTExMr7iMyd3u/DoiE8qkrHSkhIIMLHa9ntdpOW5v+UafHx8URGRvpcF1TnEXlpZGxaV4PziAji43yfn2RmZVNc7PKr3PAI5zzChkZAZCJEe17XddFHxMXtOIet5Fw5IH2ED8YYUlNTfa7Lz88nN7ea7/flztnq4jxid581bGgkNjoJoivWLSkpqfI+IiPD3+r610dU4bNtbZ9H+FJ6HmEMRMclY2OSyXVXbRroev1ZA2jTpo1fx6+Mwl17MV1QkJqqjTa0YKHlvmHOiF0AB7WGxyYY1v4Fo8daHh5lOOTgwIUExo13M+9D53bTpvDqS4aoKKf8wkJLRITzOCXw1AdJTe2rbejRSW7ee9+53b0b/PYblP/ev20buHMgdDwkcMFUay2/r4AXp1u++96zPCwMht1nOPUUTz/508+WuwfbsqluO7SHJx4zxMTUr750X20/EjhqQ1ITaj9SUwp3VfTQQw/x2muvYYxhxIgRXHbZZXVdpTqxt3zvVhbuKs4nN31LlcMye5wJheI8THFurUxNESi+LrTXN8FcR2MgPs75Yn/n4EFdsGGR2OgUn+Euqaa8NEx+Wr1tk+Dfa2dPt9lgfn3XN8FQz0DXsTbaqzsyDiKTvEIV9VZxvvOvvgq6cyHfQdhAKQ3PAuTm5VbrSL7CPlID9fw93B0ZD6ERzr86YgzE7viBQm5lP1AIltHF6vnfO2jOz+v582gMxMSnYGNTyaliuKu+C/T3bpqWUUT2mB9+tDzwoCfY1epAJxCQlwcPDLfk5MKAQZbxY50pF2vql2W2LNgFcNdAT7ALAj9KmIhITZWUWDZs8NzvdZFh0B0wfIQtm1521Wq4+TaIj3dz10A47VTvkNf69Zb4eEhI8D3Cly/GGA45GCaON3y70DJmnCUrC1wuGDnaUlAI5+6YvvbIIwwjhsMDDzojMK5YCUMf8D29roiIiEig3H///QC89tprjBgxgiVLlnDLLbdw4IEH1nHNpEaK8jD56dR5WqYSmqZP6iMbGu5cbK/vgiGwUE8vbIlITRlw5UNePX8PLwtO5VGbgaSaCL5zIVuroQVjINQ6gQNTUlitP5sNjQiOdhksYZ9g4CrAFOVSV69vAxic14PJqziilQ2NcPoh/b1FgobCXSKyRyz/1TLkfkvpKIUtWsDjEw2JiYY1ay1mRzYhOQn237/mxysutkyY6H3C9N9/NS9XRKQ2hYYannjMsG2b5dsFcMThTkDr2adg1jvwwouW0hGWs7NhxEOw+k83t9zkdKLWWq7v64yqZQx8/gmEh3sCV9Za3pwFLZo7Uyo2a1YxjHVcN8NLL8C9Qy1/rnGmbxz7iCUqkrIRvE443jDkHhjziNPPLvnJCYFdcZklK8tQUAiHdnSmhxQRERHZlaFDh1Zr++TkZNLT05k7dy5z586lRYsWtG7dmsTExGqNymyMYcyYMdWtrtQGW7sX4WrC1uEv7UUqFwShBQUWRKSu1XGooio8/ZDOhfYZ9bxdKuxTG+ru9b27MGLQBA6DIJAfND++kKCncJeI1LqNGy1D7vMEEpo2hScmGlJSPKPATJ8GY8ZZbr3Z0CC15mGAGa/DuvXeyx6dZGneHDofpbCBiNRvDRoYLjjfcz8szHDFZXDUEZZb+kNhkWfdAQd4+rT8fMqmSwwLg/kfQ9OmlqZNoXEjSE+Hp591PsUlJ8Pcd737w7Q0y49LnH76oREwagys2DFi2OixFmMs8fGGzVvgqCOg/62mrLyvvoaff4asbOf+uDGG4xp4Py6Xy1Z5NDERERHZN7z77rvVCmWBE8wqnary77//ZkP5oU+rwFqrcJeIBLd6f3FYgQURqQ/qbx8E6of2XfW3XSrssw+q5+eUECyB/CD58YVeN0FP4S4RqVWZmZa7h1gys5z7qSnOVIyNGnl/ed+4kTNaTSD8tc4y/ZWKJyLnngNHHhGQQ4iI1Im2bUP47BP4eambN95yRszqeoxnfX4+HHgg/PUXFBfDI496+sLQEEhM8mwbGQmLv7McdaRndK8VK2HUw84+55wNkyYYbhtgWbPWKW/8RMjJcdbfd6/h8ksNmVmWV2c4ZWZllyvfx/dTjz9p2bzF0u8GQ5s2CnmJiIiI/6obCBMR2fvU84vDIiIiEnwU9tkH1d9zSgii88p6/trR62bvoHCXiNSawkLL0AcsGzc696OjYPw4w35Na+9LeLfb8sCDlpKd3p+uuQr69TW6ACAie4UjDg/hiMOdfjYy0tOvpaYaRj0I1/Su+AGixA1paZ77//0Hg4daPpxjCA93lm0qN31tRDjExRnGj4Obb7U0aQKHHAxvvOWs37DRAoZ+Nxhycyyz3/Ps27w5pKY660v9869l7gdQUgLffW955kno1FF9soiIiFA2CpeIiIiIiIjUNYV9RPxTf187et3sHRTuEpFa4XZbxjxiWbbcuR8SAiOGG9q1dS7kf/WNpUM7KozgVRMul+Xe+yzry03HGBYGg+4wnN9DAQIR2fuUD3aVapAKIx80/POPE6jatAk2bYItW5yAV3nt2jkBrlLN9oNu3WD9OkhMdJY1bmR45ilo1BAWLoI1ay0NG0LbHSNvGWMYOACKXZa585x9Nm6EDz6E/rfaslDtz0sp+9HKYYc6QTERERGRzz77rK6rICIiIiIiIiIiUq8p3CUiteL5aZbPPvfcv+N2Q/duzgX+LVssDz1sCQ2FW/pBzx4QElKz8NWKlZaHx1rWlQt2xcXB4xMN7dsp2CUi+474eMOpJ5fe8/R/Lpdly1bKwl7r1luaNfPuH7sea/j5F8vChfD2bDDGzaWXeEZcPOF4OOH4in1qSIjhnjuhxGX5cL6z7M1ZAJb+tzoBsPPOMRzaCaY8b7n9VlPjfl9ERET2Ds2aNavrKoiIiIiIiIiIiNRrCneJSMDNnWd59TXP/csuhYsv9FzEnzzVUlDg3J73oaXHeTW/wP/idO9gV0wMvPayM0WZiIhAWJhhv6awX9PSJRX7R5fLMn9HOCs3F6a/ArPesVzay3JpL0N8vGef5b9aDtifsmUhIYZ774GSEsvH/3O2eXOWM5LjgP5OwKtlC8PDo3z3y9nZ1qv8PcFazzS+YWF6vxAREREREREREREREZH6J6SuKyAie5fvf7A8+pgtu3/C8XDbzd4XzM8529DqQOf2wAGG0NCaX1A/8ADPbWPgsQmQmqouTkSkOkpK4NprjFefmpsLL70Ml19lmfeBJb/AzbOT3dx6u+WpZ6zX/qGhhvuGGM483bNs1jvw+JMWt9t72/K++sZyyeWWn36ufJtAcLstPy6xPDrJTe8b3Jx0muWk0ywnn265/Go3D45089U3luLi2q2HiIiIiIiIiIiIiIiISFVp5C4RCZg/11geeNBS4nbud+gAw++vOPVW56MMLz4PS36CjodUL9jlclnmfwxdjoZGjZx9f/3N8uZbnm369jHVLldERCAy0tDrIrjoAvj6G2dUxLV/Oesys2DcBMvMt2D9jpESP5wPJ5xgOa6bp891Al6AsXz8ibPsnXchK9sydDBERHj3z4u/szw40uJywb1DLU8+Dh3aB74P/+Ajy4vTLZs3V1xnLWzc6Pz77AtL61bw0gs1nzJYREREREREREREREREpKYU7hKRgMnPh9BQ53bTpvDIw4aoKN8XxsPCDMd0qXrZJSWWTz+Dl162bPwHLugJd99pyMmxjBztCZQdcThcfWXNHoeIyL4uJMRw0onO6ItffQ1Tnnf6XvAEuwC6HQvt21bcPzTUcN+9EGIsH33sLPvfp7B1q2XMaEgoN/1ii+aQmgqbN0OjRpCSUjuPadOmisEuYyAiAlwuyqZnBOjZo2IwWURERGpXeno6V111FYWFhQBERUUxefJkWrRoUaNyN2zYwE033VRWbkxMDDNnziQuLq7GdfZl+/btLFu2jGXLlrF8+XKWL19ORkYGABdeeCHjxo2rleOKiIiIiIiIiMjeS+EuEQmYTh0Nzz0NIx+yPDjMkJJS8wvjbrfly6/hxZcs68oFCuZ9CFdc7ua5ybBpk7MsIcEZKSwQ0zyKiIgT8jr5JOjWFV5/A16dYSkqdtZd0BPuGmQwxnefGxpqGHovJCRY3pzlLFv6C9za3/LIGGjWzNmvWTPDExPhiact9w0xJCfVTh9+xWWG9963hIbCGafDcd0N7dpCVJShuNiy/m/45ltYttxyfo9aqYKIiIjswuTJk1m7di0AxhgefvjhGge7AFq0aMENN9zA/fffX1b2888/z6BBg2pcti/dunWrlXJFRERERERERGTfpXCXiATUAfs7Uy7ufLH/hx8tcXFVn2rLWsuChfDCi5Y/13ivS0qEq640vDfHCX6Vuu9eQ8OGCnaJiARaZKTh+uvgjNNg0pOW8LBdB7tKhYQYbr/N0Lix5alnLNbCuvXQp59l8F1w6inO/s2bGyaMC1z/vXWrJT4ekpI8y2JjDZMehf33rzg1ZHi44aDWcFBrgIr12LTJMu9DS5/eChCLiIjUhoyMDGbOnFl2bnH22Wdz0UUXBaz8iy++mG+++Yb58+djreWVV17hxhtvrLXRu0o1bdqU1q1b8+2339bqcUREREREREREZO+mcJeI+M3ttmzZAk2aeF/o3vlif3GxZfxEy6ZNcOIJlkF3GBqk+r44bq3l+x+cUNeKld7r4uLgyssNvS6CTz6Fmc951l15hTMKi4iI1J5mzQwTxkFhYcW+/tffLGFhlvbtQirsd2kvQ+PGzsiORUWQmwsPjrL8+JPljv6VT+G7br0lNQXi46vevy//1fLAcMthh8KTj1uverZpU/33iexsyz1DnNEj16+3PDjMCYOJiIhI4Hz44YcUFRUBEBYWxsCBAwN+jDvvvJNPP/2UkpISCgoK+Oijj7jkkksCfpzbbruNTp060alTJxo0aMDGjRs59dRTA34cERERERERERHZd1S8+iYiUkXPTrb07mtZ+ovd5XZz5nmmTly+HGKiK9/26ecsdw32DnbFxMD118GsmYZrrzZ8/S1MnOQ55gnHw8036kK7iMieYEzFMNa2bW7uvMdy480w/RWLy1XxfeHE4w1TnjW0LDe70tx5cE1vy+dfWtxu731++91yS3/LvfdZCgp2/T7jKc9y+0DL9jT4/EvLCy8WVP8B7mTOPMqmBf7ya3jgQUtRUdXqIyIiIlXzwQcfAM55Ro8ePWjZsmXAj9GyZUvOO+88rHXex+fNmxfwYwAMGDCAk08+mQYNGtRK+SIiIiIiIiIisu9RuEtE/PLObMsbb0FODgy627J6deUXurseC2eeAcbAddcYYmIqD2KddIJnXVQUXHWFE+q64foQ4uMNs96xPDzWmdoLoFNHGHafISRE4S4RkbqQmWm58hrIywNrnZEXb73d8vffFd8X2hxkeGGK4ZyzPMs2/QfDR1h632D54CNLfr4lPcMy6G5LdjYsWw6PPLrrMJXLZXnscTePPGpxuZxlKSlw1JE1H6T2ysvh6is99xcshOEjfQfYREREpPqKi4tZtmxZ2f2zzjprF1vXzNlnnw04I0YvXbqUkpKSWjuWiIiIiIiIiIhIoGhaRhHxy+GHQ8MGsHWbM3JW69aVb7tfU8Ow+wxXXW5pUW7ElnXrLU2bQGSkJ5jVqaPhhOMtTRrD1VcaUlKcdUVFlqeftcx+z7N/27YwYZwhOlrBLhEnOu2AAAEAAElEQVSRupKYaDj8MMvCxZ5lv6+A62+03HoTXHgBXgHcmBjDfUMMnTtbnn7GkpbuLF/7F4x9xPLEU3DsMc6/z7+AhAQ4vrszJaKrBPLzoaDA+ZebC1u3WebMg3//9Ry/eXO4a6ChY8ean+oaY7i5nyEiwvLidCfQ9e0CmPCYZcg9FaenFBERkepZtWoVxcXFAERFRdG1a9daO9axxx5LVFQUBQUFFBUVsWrVKjp06FBrxxMREREREREREQkEhbtExC+tWxmmPAuvzLAM6F+1kbNatXK22bzFMu0ly/yP4bZbDJdd4r3dw6OM18XylX9Yxj9qWbXas83hh8HY0Ya4OF1UFxGpa0MGG67ubcnK8iwrLIRJT1q+WQBD74XGjbz76zNOM3TvCq+/YXlnNuTkOsvz8pxQV6msLBg+EqDqI2Vt3OiMKhkWlkb7dqEc08VN927Q5iD/w1h9ehvcbsv0V5z7H3wIyUmWm/vpfUhERKQm/vrrL8B5j95///2JiIiotWNFRkZywAEHsHLlyrJjK9wlIiIiIiIiIiL1ncJdIuK3Ro0Md99Z9Yva2dmWl1+1zH4XipwfZvPKq5Zzz8YrpFV64f2ff53tP5pP2TSMAKefBkPuMV4jfomISN1JSTEM6A+jx1QMYP24BK673nLnQKf/Lh+uio013HiD4YrLLB/Ohw8+tKxZG7h6uVzw628l/PobTHsJGjeGHufC+T0gObn67yE3XG/IyLC8N8e5P+N1SE62XHaJ3o9ERET8lVUuHd6gQYNaP175Y2RkZNT68QJtbxk11PtxGOrrw/KqZT2tIwRHPYO7jju317qdoj24n8v6IxjqCP7Wc8+22WB4LoOhjhAc9Qx8HQPfXoPheYTgqGcw1BH2ZD39b6/B8FwGQx0hOOpZP+q46/ZaP+q4e8FQT9UxUCpmBcSbwl0iUiVzP3DTIBWOPaZqnenWrc4UXeeeDaGh8PH/4JnnLOnp3tt16uSM0hIX59zPzrYsWgyffGr5/gdwuz3bRkTAHbcbep6nTl1EpL4583T436fw3ffO/eRkyMwAt3VG5Rr1sOX3lTDw9or9d1yc4dJecGkvw4aNlsXfwdq/LP/+C0VFzr/iYgjbcea6bTukpXn2j4qCrsdCUpIzYlhGOmz8FzZs8A4Hb94ML7xoeflVOO0Uy5VXGA48oOrvJ8YYBt0BGZmWL79ylj31jCU52RmJTERERKovOzu77HZycnKtHy8pKcnnsYNF+foHO5fLBUBMTAyGmDqujW8uEwbWDW4XYSGxdV2dSgVDPYO9jiU7/o+Jr/1+aneC/bmsL4KhjuB/Pfdkmw2G5zIY6gjBUc/aqGOg22swPI8QHPUMhjrCnq2nv+01GJ7LYKgjBEc960sdd9Ve60sddycY6qk6Bk7p5Zy4uDjCwhRl2pmeERHZJWstk6fm8/SzlvBwGPMQdD129xewp71kmfchvDID4mKpMBLLoZ3g5n6GQzsZNm2yvPOu5dsFlp9+hpKSiuUd3x0G9Dc0baqL5yIi9ZExhnvugmt6W/LzIT0dzjoTfv8d/t7gbNO1CgHhFs0NLZqD929JHJu3WG693ZKWBkmJkJHpvJ+MGmFokOq9vTGG8PBEFi0u4uNPclm42FI6OEdxMXz0MXz8P8tZZ1j69DY0aVK195fQUMPw+50w8pKfnGVffW05/VQFj0VERPxR/v1zT4StcnJyfB5b6kiEE+qq23GQdsEa5wtw3NiQ0LquTeWCoZ6qY+AEQz1Vx8AJhnqqjoETDPVUHQMnGOoZDHWE4Kin6hg4wVBP1TFwgqGeqmNgRdTPH3/VBwp3iUilSkoso0bn8tbbhYBzMfy1mZZjj9n1l+B/rbN88JFze/Nm2FxuXZPGcNstEB8PX39jGf+oZd163+UYA8ceA9ddY+h4iL50FxGp75o0NvS/FSZMdC7PffwJPDYBFi2GjRvhmC7efXl6umX939DxEAgL893Pb9tm+XcTHNrJ8NYsy+YdbyqFhXB+Txg0wFS6b2ys4bRTI+l8VD7FxW6+XQCz3rH8ssxZ73bDh/Phf59ZLjzfcs3VhuSk3b/fREQYxjwE/e+wHHIwDBxgdHFYRETET7Gxnl+Mpu881HMtKH+M8scOFsE4laQvxhji4uIgPJqcwhKsrbfxLg/37jepF4KhnkFWx7L2ihMQrVftNciey3orGOoIVa5nnbbZYHgug6GOEBz1DEAda729BsPzCMFRz2CoI9RqPQPWXoPhuQyGOkJw1LOO6lit9hoMzyMERz1VR7/t3Gb3BoEefV3hLhHxKS/P8tAYyzffFpYt63osjHpw9xewm+0HJ50AX3zlWRYe7pmicfxEqOwH2cY4F/mPP85w+qnQsKEulouIBJOe58G3C5xAl7Uw9hGY9rwhIb7itvM+hCnPW2JioEN7S8uWzjS91g1bt8Kfa5yRHxs2gFlvwC03GTKzLP/7FMaNMRx1ZNXfI8LCDCedCCedaFi12vLSy5ZvvnXWFRfDW2/DvA8tV14Ol10C0dG7Ljs21vDMkxAdrVE/REREaqJp06aAM2r0mjVrKCkpITS0dn5F6nK5+PPPP8vuN2nSpFaOU5vqVaikhmrr7yxSGzQliAQbtVkJJmqvEkzUXiWYqL1KsCnfZvem7z8CRa9oEangzzWWYSMsGzZ4lp13juHuOysfWaW8iAjD8Afg742WNWugdSvn4vd7c3xvHx0NnY+CbscauneDlBRdJBcRCVbGGO69B3r3sWRkwpatMPIhy8Tx3n27222Z94Fzcp6XB0t+omyaw51t3QaffwlnnGa4717odRG0b+f/e0XbNoaxow2//maZPNWy9BfK6vHCi5b35sCNN8BZZzjTMFYmJqbiOmstxcXOe6GIiIjsXps2bcpu5+bm8tNPP3H00UfXyrGWLl1Kbm6uz2OLiIiIiIiIiIjUVyF1XQERqT+stcydZ+l3i3ew66YboxkyuPJpr3wJDzdceZkziteatfDrb97rmzeDyy+FxycaPnjfMHZ0CD3OMwp2iYjsBRqkGh4cZigd0OrHJc4IXeUVFDgjQjZvtuuyIiKgy9GQmuLcDwkxPoNdf62zPDrJTX5+1X/N0fEQw1OPGx59xHBQa8/ybdtg7COWPjdavv+h6uW5XJaJj1uG3G9xufSrEhERkapo0aIFqampZSNhzp49u9aO9c4775TdTklJoWXLlrV2LBERERERERERkUDRyF0iAsC2bZYnnrZ88aVnWUwMjB4Zx5lnRJKRUVTp8Ifbtlvee9/Sp7chJMSwdatl0pOWr7/x3i40FE44Hi4833DE4ZrGSkRkb3Z0Z0PfPvD8NOe94/U3oEVzS4/znL4/JsYwcIBze/MWy19/wT//QGGRM51jaio0bQLt20Fk5K7fLwoKLMNHWP5aB999b3noQejQoWrvMcYYjj3GCZB98ilMfd6yZauzbs1auPMeS5ejLbfebDiodeVlut2W+4dbFix07k94zDLkHr3XiYiIVMXJJ5/M22+/DcCcOXPo06dPwEfVWr16Ne+//37Ze/Mpp5wS0PJFRERERERERERqi8JdIvs4l8vy9myY9pIlP9+zvG0beGhECB07Ru5y/99+t9w3zLJ9O/z0s6VbV8urr0G5mS4IC4Oe58E1VxkaNtRFbhGRfcU1V8HqP+HLr5z7j06yJKfAcd283wsaNzI0buT/cb74Ev5a59zOynKCYdUVEmI46ww4+UR462149TVLXp6z7vsf4IcfLWefZbnhekPjRhXfy0JCDIccDAsWOmG2Dz6E+DjLbbco4CUiIrI7l156KW+//TbGGEpKShg0aBCvvfYaiYmJASk/KyuLO++8E7fbDTjvzb169QpI2SIiIiIiIiIiIrVN0zKK7KPcbstX31hu6Gd5+lnvYNdFF8BzTxuaN9/1xeivvrbcPtAJdgEsWw6Tp3qCXcbAeefAGzMMdw4MUbBLRGQfExJiGHafoUMH535JCTww3JYFoALl7LMMI4YZkhLhln41CxJHRhquucrw5uuGiy90Rp0EZzSxDz+Cy660jHnEzfr1FR/DNVfB+T089994C16crukZRUREdufQQw+la9euWGsxxrBmzRr69evHli1balz21q1b6devH6tXr8YYgzGGY445hsMOOywANRcREREREREREal9GrlLZB/jclk++R+8NtOy/m/vda1bw92DDJ067vqiuLWWN2fBM89ZKpmpkQMOgCH3GDoeokCXiMi+LDLS8MjDcPtA533H5YL7hlkmjofORwXuPeK0Uw1djoa4uIrrvllgOaCl3W1oubzkJMOgOwwXX2SZPNUz1bDL5YS8PprvjFbZ4zzDsV0gLMy5WHznQMjNs3z6mbP9Sy9DdLTlysv1figiIrIr999/PxdffDFFRUUA/PLLL/To0YOhQ4fSo0cPQksT11VUUlLC3LlzGTt2LFlZWRhjsNYSGRnJAw88UBsPAYAff/yRv//2fNhOT08vu71+/Xpmz57ttf1FF11Ua3UREREREREREZG9g7G2smiGf8p/aSV1yxhDUlISABkZGQT4Ty1BKCvLctV1lp1fpjEx0LeP4aILnIvTpXy1IZfL8uTTltnvVX6c3tfCtVcbIiJ0IXtfpj5IakptaO+ybbsz2uOGDdChPTz1uCEqqvbeJ0rbz+bNJZx3QQauYrjuWsNVV3i/11XVL8ssL063LPmp4rrUVDjzDDi+u+HgDs4oX8MetHyzwLPNwAGGXhfpfTGYqA+SmlD7kZraU20oOTm5Vsr116xZsxg2bFhZEAuc5yI1NZWLL76YY489lo4dOxIfH+9z/5ycHJYvX87ixYuZPXs227ZtKxsNrNSIESO47LLLau0xDBkyhHfffbfK2//xxx/VKn9v+d5N/aQEE7VXCTZqsxJM1F4lmKi9SjBRe5Vgsze22UB/76aRu0T2Um63pagIrwvnCQmGBqmecFd8PPS6CC6+0JCUtPsLznl5lgdHWRYt9r3+4A5wy01wxOGa8VVERLw1SDU89Tg89rjlzoG1G+wqb8LEPPLynNsff2K5/FJDmB9nwIcdanjiMcPKlZYZMy1ffU3Z6JXbt8PrM+H1mZaEBOhyNHTqBFu2wh+rnG0ef9JSUABXX7n70TFzciA9HbanQVqa8396umV7GmRlQVERFBc7o4hFREB0NERFOSGzFs0NLZrDgQdASorCZCIiElwuueQS0tPTmTRpUlkgy1rLtm3bmDp1KlOnTi0LeyUkJJSFvHJycsjKyioLc5XuB3iVc8cdd9RqsEtERERERERERKQ2aOSuvdjemG6U3Vu33vLeHMsXX0LP8+CG672DVq++5qzvdZHh/B4QE1P5hd/ybeiPVekMHuLmzzUVt4uOgn43OiN/hYbqQrI41AdJTakN7TtycixPPWu56AJDu7aBeR8pbT+rVrsY9mAmv6+AZ58K3HTBmzZZPpxv+eBDJ8RVVa1bQ4tmYEKgpATy8iA3D/Jynf+zMqGoOCBVpEULOPwwOOJwQ7djIS5O79HVoT5IakLtR2pqXx25q9Rnn33G0KFDy6ZTBHw+B1VdFxcXx9ixYzn99NNrsdZ7xt7yvZv6SQkmaq8SbNRmJZiovUowUXuVYKL2KsFmb2yzgf7eTeGuvdje+AKQ3ft2oWXIfc7fev+WMONl4zUFRVGRJTwcr2WVKW1D1louvjStbPSR8rocDYPvMjRpogvG4k19kNSU2tC+Y8oLbl6d4dy+9WbDlZfX/D2lfPtJS0vn198snTpWLLe42BIe7v/xSkqcqRq//tYZ2XLzZr+LqlUREXB8dzjrTMPRnf2bmnJfoz5IakLtR2pqXw93AWzYsIEJEybw6aef4na7q/QZtjxrLSEhIZx22mncfffdtGzZspZqumftLd+7qZ+UYKL2KsFGbVaCidqrBBO1Vwkmaq8SbPbGNqtpGUUEcKZd/OFHOLozhIR4vuTu0hliYyF3xwgg6emQkuLZLyKi6l+IFxRY3p9byEvT81n9p/e6hARnxJHLL0XBLhER8VtOjuXttz3327bxXm+t5b5hlsQESE6BlGRDYgLExHj/i45yRsMCMIAxUOxyY4wzGlbzZpCZaUlM9LxnrVxpGTrMcstNljYHGeJioWFD7/e031dY/tsMrmIodjnTIZb+c7mccJjLBZGR0L0bpKc5I3llZkF2FuTkOu+X1REfD6kpzuP6fUX19m3U0DkP2LQJCgo9y4uK4LMv4LMvLI0aOdMy9zgX4uP1Hi4iIvVTixYtePLJJ1m/fj3Tp0/n22+/ZcOGDVXat3nz5hx//PFcd911HHDAAbVbURERERERERERkVqmkbv2YntjulGci8j/+xRef9Oybh2MHW04/jiD221JT4e0NPjiK0tqKrRu5UyTGB7ujNgRUfp/uX+hoU5bsdaSkwPr/4Y//oCfllq+/wHy872PHxYKPXrA/I+ddcbA6FGGE4/XxWHxpj5IakptaN/x5xrLrHcsixbBO28Zr5G0/vvP0uvywPztmzaFWTOdBFhmpuWGfk5wq9QF58Pdg7ynM35wpJvPvgjI4bn8UmeKRGvB7QZjLE88Df/956x/8jHo2NGUBbGLiizPTrHERDvv16GhhqIiy+Ytzghh/26CLVt8H6t1azjrDCeE9u0C3yGx6GhnCuerrjCkpOh9fGfqg6Qm1H6kpjRyl2+bN29myZIlbNmyhYyMDDIyMgBITEwkOTmZRo0aceSRR9KkSZO6rWgt2lu+d1M/KcFE7VWCjdqsBBO1Vwkmaq8STNReJdjsjW1WI3eJ7KPcbifUNeUF63Uhd8w4S0qKZdMmKCr2teeuOz5jICLCYt2V7e+Ii4MLesIlFxsyM2HRIkt+Puy/vzNamIiIiL8Oam0YOtjsmDrYO2T017raOeaWLc5IXOW5fLwPhkcE7phxcYbu3TyP7+3ZzshlV1wGh3YytGnjPcJmRIRh4O07h66872/eYvnhB/j8S8uPS5zQGMCaNfDMc9CpI9x2iyE5CeZ/YvngI9i+3dkmPx/enAXvz7X0ushy5eWGhASFvEREpP5q3Lgx55xzTl1XQ0RERERkn5GfbykoqOta7F5UFERH63stERHZeyncJRIEfvvdMukJy8o/Kq7LznH++ctaKCysfH27dqH0PDeS008rICbGWZaaCs9PgdFjLLfdbHTCLCIiAeFr6uAO7WHCOMP2NHaMUGnJzoG8PO9/+Tu+ZCr9MYczNaMzCleJ2w0WUsr9SKJNG8NLz8Oguy3Z2RCfAA0bVqxTx4MNLpclPMwJeoWHQVi48394OISHG8JKb/vYJizcGTkzMtKZGrLU4u8sTz5tcbth9ntOWDourvrPWeNGhnPPsZx8kuHffy0ffwpz5znTMwMs/xVuG2C5+05Dv74hXH+d5fMv4M1ZllWrnW0KCmDG6/Du+07Q7NJeEBOj93YRERERERERkX1dQQFkZNZ1LXYvCWeUehERkb2Vwl0i9VhOjpuRo2HR4qptn5IMDRpAbKxnmdvtTMlUVOT5v2in+6WjfISEeG4DJCTAq9MTiY0xZGQUeg1/mJxkmDheF35FRKR2JSUZuh5bfknV3nuqMoRvSoph+jRn251t3mJp3MhwwfnOv0CLjHTCXFlZTsh63HjLkp/gnjt3HawqLLRERnqvn/0uTHrSeXxdjoa3XjfMeN3yzrvO+3xsLDRqaCkpccJoZ54BZ5wOP/wIz0+zrFjplJObCy+8aHl7NvS+Fs7vQYWR1EREREREREREZN+zq0EC6lpkZF3XoGqCYRQ0jYAmIlJ/KdwlUg+5XJaXZ1hmvOYEsHw5qDUcdSQceqihZQto2gSioqp3wlVSYlnyk+X1N/Caygmg2X5w7z0hxMYYSkosmzZZmjSpwYMSERGph3wFu/75x3JDP8uJJ1ruvMNUCFMFwhGHG6Y+Cw88aPlzjbPsf5/CipWWEcOgfTvPMf9aZ3nzLcv3PzrTLI4c7l2f1FTP7YQESEw03HaL4dJelsnPW0JDYfBQSEiwnHOWpf+tIRhj6HI0HN0Zvl3ghLzW/uWUkZEBjz9peXMW9OsLp54MISH+PQfWWjb+A6tWw4YNzshrBQVOoDw+Hpo0NrRuDe3a6osjEREREREREQmMYAjRgII0+5pgGAUtCY2AJiJSXyncJVKPZGVb3nvfMuN1Z4qpnbVuBT3OM5x6MiQn+3/Cv/g7y6LFli+/hu3bvddFhMNll0HvawxRUYbcPMu9Q7P5cYmbSY8ar4vNIiIie5vCQsv9wy05ufDBh5CbYxk9qnbe+5o3N0x5Fp5+zvLue86yjRvhplssl15i6dPbmfo4OxvmfeisX7bMCUyVD6U1auSMzhUVBU2bespv2NAw7D7Do5Oc9HZWFoTtOPt/7HE3SUmGq66A448zdO8Gn30BL0yz/POvs82mTTDyIcvMN+DGvnBsF99huF3ZvBmuuLriqGkezrrwcDi0k+WmGw0Hd9C5hoiIiIiIiIj4LxhCNKAgzb6qvo6CFhcHoaF1XQvZk4IhCBsaCm63xdr6/Z2xwrqyJyjcJVIPbNhoeeVVy/8+BVdJxfVdusBNfSEry9CiuTMqx+643c5IGdYN++/v/WYy43XL0l+8tw8NhTNPhz7XG5o09mw/6fFcvvjSGT5s4J2WF6Y4F6NFRET2Vu3bwZ9rICICrru2dt/zIiMNdw00HHm4Zex4S14elLhh5pvw5VeWuwY5Uy02bABbt0F+vvPlZHKSp4wO7eHjD0IqPUaDVEOTxpb/NsO55xiW/mKZ/R6A5ZP/Qd8+loMOMpx+quHkE2HOPHjpZUt6urP//9m77/im6v2P4+/TvRdThoBIcbA3LhDBPRBQXIiDq6iIE9SfE9d1XO9VQQVRcKPiQERQEUVEGSIgiDJky6Z7t2nO749DQ9MkbZq2aQKv5+PBg5z1Pd8mn3xzxud8vxs3SePuM3XiCdLIEdKpp7hP8srNNRUZ6TyUY5MmUuNG0v4Dlb8PJSXSbyulpKTK1wMAAAAAAPBWoCbRSMEzlCCOLoVFpkoz6rsWVSORpnYEQyJseLh1r9vd/fNAkiSSdVH3SO4C/Ky01NT+/VLTptKq1dLHn5ha/LP7dVu0kJ55UmrdOkRbtpi6616rd4tjmkozP3Q+aMnONrXmD2nNWlNr10qb/rZ+lM/sLz3xmPO6vXtZN3YlqWFDadBZ0tAhzkldZW4aFaOv5hUrO9vUsKFSs2Y1fQcAAAhckZGG7h9vqGNHUyEhUrvj/XORYOVqU8XFzvP27JVmzTbVp3eI7r3bGn4xtZ3rEIlV9aZ13bWGRo6Qdu+Wmjc39O57h8dhbtdO+u9LUk6OqdNPMzXuHkNDBhs692zpo5nSBx+aKiiw1v1rvXT/g6aOayMNGSydPUiKiTG0d5+pmZ+a+nKOdNdYQ+ed61y300+zjn1at5aaNDYUHS2VlkpZ2dKOHabWb7COW3p0l5od4/y3FBZaCW8pKVysAQBAkg4ePOjztrGxsYr2cLU5LS1NpllZb5ueRUdHKzY21u2yjIwMlZa6XoU3DEMlJdaDZFlZWW73HRkZqfj4eLflZmVlObavroiICCV4eGouOztbxRUPyrwUHh6uxMREt8tycnJU5OPd5dDQUCUnJ7tdlpeXp4JDB2uFhdV76t4wDKWkNHC7rLCwQHl5edWua5kGDRp62GeRbLZcn8tNSUlRSIjrQw3FxcXKzs72udykpCSFhbleJrfZbMrMzPQqXt1JSEhQRESEy3y73a709HSf6xsfH69IDxkBR0ob4Q3aCEtVbcTBgwd9+uwMw1CDBu7biIKCmrURDRu6byOKioqUk5Pjc7n11Ub4ijbCEhMToyQPT3rVpI0oKIiQ5L6NyMnJks3mWxsRHh6huDj3bURubrZKSrxvIyIjpVKbVFpq1PtxRGUyM01l5zgnyhmGoaQk921EUWGB8gt8byOSk923EcXFRcrLc99GlH8vPamNNsLdMUF12gh376UncXEJCg9330ZkZfneRsTGxisiwn0bkZ5+UKbdVKm9+tfhoqNjFRXlvo3IyEhTWe/91RUVFa3oaNfjiCRJhYUcR0ie2whvjmFzckIkI9ltTBYU5KmwsOo2wp3abCNiY+WIy6Ii39oIbyQmum8jSkqKlZtbeRtRWRvEcYTFm+MIX867Av1cw9NvsK9I7gL8JDvH1KRXTC3+RTJNKTHRGnrJk9tvky4bajhu4O7cdXjZccdZ/6elmVrwgzR/gam//nJfzt+bXeeddqqUXyD16WWow8lSaKi1j9xcUyUlzkM+Nm4coscfjVV6Rp7OHsiNVQDA0eGC89z/5s2Za/VodfkwKxGstoSHSTab9bpDB+sYoahIuusOax+nnlKzfRmGoebNrdf3jzfUqZP0znum2rSWflhozd+yRYqPsy40JSUZun6kNPhi6f0ZpmbNluNm4Zat0n/+Z2riq1LDhqb27JHsh/LFPvzY1LnnOCec3XWH517FJGu9jExTeW7u8334sZVgNuLq2n/PAQAIRqmpqT5v+9xzz2nUqFFul/Xp00dpaWk+lTt+/Hjdf//9bpedf/752rBhg0/l3njjjXr++efdLrvmmmv0888enpSrwsUXX6y33nrL7bKxY8dq9uzZPpV76qmn6ssvv3S77PHHH9ebb77pU7nt27fXkiVL3C6bOHGinnvuOZ/KTUpqoAXfb3S77OOP3tezz97nU7mS9NtK97H0y89f6/bbb/C53I0bN7pNClm+fLkuvvhin8v9+eefdeKJJ7rM37Rpk0499VSfy509e7ZOO+00l/np6ek1+i5PmzZN55xzidtkvpqU+9hjz2rECPdtRO/efZSeThsRbG3E888/rwkTJvhUboMGDbRp0ya3y95//32NHz/ep3IlebzhOG/ePN1wA21EbbQRgwcPdrssEI8j7rvvPj3zzDNul9Wkjbjmmht0193u24j77xuhVat8ayPOPPNiPfX0dLfL/v30Hfrhh+BpI2p6HDF3nvvjiDlz3tcLL/h+HPHLEvextPinr/XQQ0dPGzHplS/UrZtrG5GVla4Lzm/vc7lPPjlNA866xO2y/v18L/eee57V0GHu24hhQ/sqM9O3NuKGG8dr1CjneCobPvKccziOkGrWRrRr114ffvSL22Xvvz9J0948etqIr+ZucJs4tnbtco25zf13xhscR1iO1usRvia/e0JyF+AHaWmmflxk6tvvDt+49fQQUkqKdPWV0vDLnG+ERkVK3bpaN3ubNpXuHmfXit8O30x1p3FjqdWx1hCNuXlSZIR1U7RNa0M3jzp8c3TLFlPT3ja1dJl0/rnS3Xc63zgdNDBSmZkFtd4AAQAQTHJzTU2eYiozS/r4E+mVl6VjW3qfbHQwzdTixVJunnTNVc7bXXShoY8/MdWls3TpJYZ69rCGQ2zS2Hm9Awes44mhl0pRUb4lOoWEGLrwfOm8c6yEri1bTP34kzUEZUaGdMU1prp3M3XeOYZ69zI15tYQXXOVqY8/MfXJZ1J+vlVOUZG0a5dz2bm50oYNptq3r7pHsfKSkwynoSYl6/16/wNTBYXSlKlWgtldd0in1TDRDQAABIeiIlMZGe6vQ5RdW/FFSYk8luvjA/pBy1OvETV5fz2Vy9BTtasuhtApGwLencquPwKoXYWFNbsGn5fn+XeuJvLzD/8uMxwagPpWWGTW6PjEH+catJWQpOxs97/LNehUVJI1Eoe7cjMzuZd/JCO5C6hF6zdYSVw/L7GGOszKsoZe3LjJ6q2rovh4q5vG/EO9Wl45XPrXjYYiIlx/7Hv3MtS7lzU/Pd2uYcOdL6wYxuF9jLhKuvIKQwkJh8v59zN2/fSzFB1l6r13DKebxUaItPBH6/XX30qjbzIVE8MBBwAA5X351eGbHfFxUvMKQxXv228NYRgVJSUmOJ+8791ratgV1g91TIzVC1X53/s2rQ3NnCEdU25Ywh7dXesw/R1Ts7+UZnwkXXKRqcEXG2rUyLff7NBQQ+3aSU8+bmjHDlPNmkkTXzFVVCT9skT6ZYmpsDApOdmuQWdZf3ODlMPJXe7s2y+NGm316JV6vKmWLaWWLQwdc4yUkiwlp0hJiVJYWNV1zs6Smjc/3Avpvn3S/f9nqt8Zpu683fe/GwAABIeiIs+JJjW54VJc4rnc4qMsuQvBz8dRutyy2Wq3vGBVVwmgNpvncouKuAmHw6ozxK47efm1n/wpOSeAJknyMLISAPhFUaHk42hr1vZ1fK4RHm71LkZbiZxc97GW4/to9ZKsB8jdlZvt+8iUkvyTJF4Rfct4j+QuoBpsNuumbX6BdWMzL086cEDaf0Dat8/q9WLfPmvdKVs8l9Otq9VDxxmnSev+lJ56xtT/3WeoezfXm5T5+dZQiYmJh5elpITonHPs+mquVdbZAw01b25q3Z+GVq02dfnlzoldkjWEkiQVFEoVh5Nv3cq6Qb1rt9SihfU3tWrl01sEAMAR6/JhUny8obffNTXiasMxrHGZzz439f4M6/WjDxsadNbhZU2bGmp1rKntO6xjiN9WSX17O5dfPrHLnV27TH31lfU6M1N6+13pvQ9M9T/D1IUXGOraxbukKXeOPdaQaZrKqvDEkM1mHRd88KHrNoYhJSdLxcVWj13lHTxo/dNSSXI9O4uLM5WQYCXBxcdbw1UnxEsJCVJCgmHNT5DuvVtat056f4aUnmFt++Mi6dcVpm4aJV16iVw+BwAAcGQoLfWcaFKTp/TtlZVbgxtEANwrLPR8gygQe9yoqwRQm81zuSTVoTbZSuompsoSQOmJEcCRoK7PNcLDrd7FSjMOLwvEJHF6Z617xcXuY624uGbllnj4va/pMYA/ksQrIg69Z5i1PM5aRkZG1SvBLwzDUFJSkiQpMzMzYIbU27DR1PJfpd27TXXtaujsgc435B6dYNcPh3qRiomxeomIj5eSkqRmx0jNmhlq3lxq28bqzaE6Q/5IUmmpqQMHpfR0KSPD+peeYXVTmJ9/OHHL8e/QdEGB7w1iaKjUtYvUsKE0+l9Sw4bOQy4WF5suvXUVFZn6/AvpvfdN9TtDGneP8zYH06zPs2GDqv/+khJTI64ztX+/dRHivbcNtW7lvN3KVaYaNbJ61ygTqDGE4ED8oKaIIdREXcaPzWaVVTGRasKTds3/znr98P8ZOuds5+XT3jK17k9Tp59mqN8Z1lCE1d3vN/Olt981tXu36/KkJKl/P+msMw117OB7oteWLXYt/sXQJ5+ajoSq+hYZaf2r2F31Ce2l8fcaSm1X/b+1pMSUzWZdbHH3XtEGoSaIH9SUv2IoOTm5TspF3dm0aZPP28bGxiraw6PjaWlpPsdZdHS0YmNj3S7LyMhQqZtH6g3DUGxsrDIyTO3dm6dCNzckIiIiFRsb77bcnJws2So+ueal8PAIxcUluF2Wm5utkpLDV9kjI60E9CQvjtvCw8OVmJjoob45KvLxolJoaKjH72peXp4KCqzu4DMzTWXneH/tympnGrhdVlRYoPyCPJ/qK0nJyQ1d5kVGStFRRQoL8/0R9ZSUFIWEhLjMLy4uVnYNxjVJSkpSWJjrM9A2m02ZmZkyDMPx2WZlZXn9XUlISFBERITLfLvdrvT0dJ/rGx8fr/z8CGVmuX7eGRkHfS43JjpWkVHu24jMzOq1EbGxkmk3VWo3FBUVreho921EVlaG7D5mVda0jQgLO1zH8u9jddqI6ggLC1d8vPs2Ii8vR8XF7r+8sbFl18fdt0Oe2oj4+Hjl5eVp//79PtXXMAw1aOC+jSgoKFBenu9tRMOGrm2EJBUVFSknx/fuJuqrjfCVpzYiLa1U23ek+3wvIjY2XhER7jOwaqONiIy0euROTj4ckzU5joiJiVHz5s0luR73ejqO8EZBQYRspfFu30d/HUdUJTZWiogwFRZqKDw8XAkJ7tuI3NyaHUckJbk/jsjPP3wc4Xl7qaDQVGGhc1vp7+MISSouLlJenvs2wptjttpoI9wdE1SnjajO8VpcXILCw90fR2Rl+X4cUVkbUVx80O1vozdq8ziiPHfHEXFx1m94WnqmCgrq5zjCk7I2oqyOttLDMZmTky2bzX/HEYYMRcdYn0lBfoHMCg/ghoVJIUaIYuNS3H7eBQV5KiysvI3wpDbbiPLHlUVFvrUR3khMdN9GlJQUKze38jaiYh3Li4/33Ebk5GT6XN/qthGV1dF5vbo9jnCnrI2w4iZaiQkhCg/3LkZ8uR7hjcjISMXHu28jsrKyVOJltma7du182r8nJHcdwerzhoLdbmrrNusGXNcuzgdTMz4y9cprVl2GDZHuHOvcUD4ywa7vf/BuP3FxUvtU6cQTpO7dDHXqKEVGWvsrLTW1a5c1JOKmv636/POPtHtPzZ7e8kZ4uNTueKtXrW5dDdntpia+Im3fIT3ykGtCW3nFxabmzLVu3KalWfNCQ6UP3jXUvFnNeqYwTasXsPBw75LiuCmFmiB+UFPEEGqiPuJn0qt2LV1mJVLfdouhfqfXTY9SpaWmliyTPv3M1K8r3K/TprX07lvOx1g2m6nQ0MPHAKWlprKzpb37pG3bpU2bTK34TcrIlL741JBhSD8tNvXBh9bTM+s3VO8pmltHS5Khnf+YOnBASkuTNv3ty19ctUEDpbMGGOraWYqNtf4+u93UwYPW8WLF4aZvGWPX2j+s1y++YKhHd+flr79hV3q6oS5dYtTv9HDFxOT4HEOmaaqwUI5EsogIKSSE3sbcsdlMl0S7JUtN/fcla4jQ1HbShEdcL7IEIn7DUFMkd8GTI+W6m2EYiouLU3q6qV27ct0mdwUCdzewA1VGhuk22SdQxMWV9dQa+O9lRYH4ux4Mn3fZDU3qWDNxcVbyR3h1Ht4xDMXFxkmScvNy63ysm5AQq72Migq+73cgCvTvd23/NtZVGxvo76Mkt8kfgSY8PDjaSn8ds9U0XgM9LoPptzHQ6xkIdTQMw5GckpPjem0zEOrojWCoJ3WsHYZhKDk5RslJIQoPr+G4lQGitq+7MSwjas2u3aaWLpNW/Gbq9zVWYlfr1tJ7bzkfTDVrdvi1u+73QkKsf6ZZ9Xlnbq7020rr33sfWDd9mjQ2FRJqDSFU0/HpKwoLc04Ma58qHXOM1LiR1LixoebNpOOOk45p6nzTbvrb0vYd1h/zv5dM9erh+gRBUZGpr+ZJ788wHUM7lmnaxLoh2ryZasQwDLl5GAgAANSCMbeGaMytdb+f0FBDp50inXaKoa3bTM372tSCH+R0/HDSSa7bTXjS1M+/SGFhpkzT6pXUkw0bpRNPMHTG6YbOON2aZ5qm9u6V9uy1hqR+dbKpsg4HUttJpXYpK8saMtJmk7ZtkxITTTVsII2/x1BGhnTxkEM9jzaUhl5qXcwyDKl1K0Orf7d6LTUMKTrKOh40QqSSYqmwihPO+d9J878zFRoinXCCKbvdSvAvLZUmPGLorAHO68fFHX7tLul/6TJp4yZTc+bmqcmL8erWtfL9W+WYWrPWGnL7n13WQwa7dklp6c5JcaEh1vsy4VHD5SGIo9HBNFPffCst/NHqRfbpJ5zfk7Awac8e63XjRq7b7/zH1JTXTfXqZahXT6lpE95TAAACVcWhaQJRVJQUHc3xBAJLUaGUV41OBwxJJSXWSUh+nlTX6Yjh4VJRsVnpOWYg4PtdO8LDrYfRa4tpmrIdOjEPhOTZ+hKoN9rDw+u7BgAAoAzJXfBZUZGVxLV0mZXUtWOn6zrbtkkZmabTsEPtjpeuusIaXvGEVNdtHns4RI89bB3IFxRIOblWEteBA9Ku3dZwjjt2Shs3WjfLyrPZrHW8dfJJ0nFtpORkK9kqLlZ6531T//xjLX/kQaljB0MxMdYQkeHhhr6aZyouTjqxvZXQ5Y0rh0tffiXl5UljbjVUvpf+ggJTX86R3v/wcE9dZZo0ka6/1tC55/g+tBIAADhytWlt6NbRhm652dS6P6UF35v6eYnUp5frcUNWllRcbP2rTFSUtPMfq2fU8gzD0DHHWInt2dmmXn/Dmh8SIk16yXD0jmWapnJyTF042EpqigiXbrzeUGioqauulHbvlsJCpSlTre1bt7KGjN67T5KsxLP8Sm4KREZaSVvukrJK7VZyVXnT3jKVk2MlAe3bbw1pEhNt1Ssi0komK880TcfxZFiY1Lt3uCqOqjDpVbs6nGyoT+/DT6cXFUl33mNW2btZqd0aErxJkwrzS0099Iipk0+2kpTaHV/94ceD0aZN0mtTrAv4/+yyelwr/5BEQrnRLhq66c196TJp4SJp4SJTA86UHn/0yH/PAAAIVtVNUKkPSZI8jF4K1Dvvh12VIiKt7Jui4jrvuMtK7uL7fVSp1WRdw1BJiRWkuXmqlYANDbUSDq1URxwNajvp0BOSEQEA9YnkLlTL7j1WItfSZaZWrqq8Z6yGDaUuna1eIZKTDs9vdox1E7IqhnE4qapJY6ntcdb8vfukRT9ZSVHpGZUf68fGSt26SO3aGWrbVjqmqann/mMNKyRJ551jaPAlznUJCZVycqx9duns2l38Bed5rvvfm03N+MjUwLMM9e19eL2oKENPPGb16JWScnj+9wtNPfe8aZ20lNOwoTTiakMXXSBFRHACAgAAKmcYhjqcLHU42dDYMabb46OKNwJCQ6T4BKuH0GbNpOPbGjrxBDkNc+1JQoKhTz6U/t5sDTtdfthDwzBUXGIl6UhWApUkJSYauvVma72d/5j67vtDlTy0aVSk1OpYaxjt0koSpKr7NOv2HdJ//uf8hlx3rTRvjhQZeXiIv9vG2mUYUrt21tDhIaFSQny0YmMMZR5K7iopMfXtfFMffixJplKSpc9mWkn4sbGG2qea+mu98/5DQqxksrAwqcQm5edbNxSaVkju+mu9qZ9+ln762dTk16W4WKlZM1PNmkkNGlhvU0SkFB9nKC7OOr5u3lxq0Tx4nj43TdMlYa1Pb2sY0a3brHOL3bulFi0OL297nPTZx4ZKbNZ7WNGvvx7+bHv1cH0fFv5oqrBI6tPLtedcAABQPwK1d5K4OPc3hrmRC3gvUL/fkZH1XYMjS20m89VFT3PWUIK1UBCCil96CK1BMiJJhwCAmiK5C5XKyDC1crW0cqWp31bJ0aOVO9HRUo/uUp/ehrp3tW421VZvAzt2mPrxJ+nHRaYjMcudpk2sA/edh+rZt4/VE1iZX1dI6zdYB1tt2kinn+Zaxrlne19n0zS1cZO0+GdTPy22bnBK0v79plNylySdfJJrua2OlVNiV5Mm0jVXGTr/3KpvqgIAALhjGIZLb1SSNOXVENlspkoPXYCNiKjZsVpIiKHUdtaQjBXFREsP/Z+hrCzXnrEkKTZGGnyJJFNq0MBaYegQQ0OHGCouNrVkqamPZlo9uBqGVd7Bg9LBNPc9dlXXW+9IH34sdetqV5/ehrp1NfXHOqtHsNW/H16vaZMi/flnqcLDS5WeKa1dI+XlH17etatz76pnDzLU7nhTx7eVWrc21KyZ1KihNZRmGZvNru07pGW/Slu3mtqy1dSWrdLmzc51zM2zhpbcuKli7V0vHDZsaKp9qnTSiYZOOtHqnbZ8wl19s9lM/bhI+uBDU3fcLnXq6JwMePttUla2dGpf13qHhRlq3Nhz2WPHGOrdW/p1hamePV2Xv/eBdf5gGNJL/5W6dQ2c9wUAEPj81QsEAofbG8N10KtMTXBzGECgqI1kvrroaY6hBI9O/uhBsCbJiCQdAgBqiuSuSmz629TMT0yFh0vhEdbQLeHhVi9McXHWkC7x8Yf/lc07EobP+2yWqS9mm9q8pfL12rS2Eqj69DbUsYM1bGFtME1TGzZYw6ss/sUa3tGT7t2kU08x1LeP1LKFoS1bTF3/L1MnniCltnOuz7Llhw+1evc8fDOxzMxPTW3fbqpJE0NNm0oNUqyew0JDpOISKS1N2n9A2n/A1Pbt0l9/WcPqVLRqtbR9u6ljjrFuyK39Q/pliamxYwy1O/7wPtseZ6hzJ2uooMuHGTrn7Np7DwEAACoKCzPc9n5U22JiDJ17tuflKSmG7r3L/TFPRIShfmcY6neG6zLTNJWXZ/UMW1Bg9YJlq3Dh7vNZpuZ/J9mruMJWWCj9ssQ6RvNk7z679u5zP45laKh0Zn/neZcNNfTmdFOvvS6ddqqp886Vdu82DiVwmdq6Vdqy1Rqqu3aeR7YcPGj9+/kXq8ywMKljB1O9ehrq2cNKwCs/1KG/vTHN1HsfWK9nfGg6JXdJUq+evtetRQtDLVpIQy91LeNg2uEHQ8LCpBPaOy+3200t+knq3FlOw8gDAFCeX3qBqCGSfWqPuxvDddGrTE1wcxioPpJ1gaNHXfYgWJNkRJIOAQA1RXJXJfbuleZ+7W5J5b/WcbGmEhOlxEQp6dD/7Y43dPllzhdYcnJM2UqlhHjnp/n9ITvb1JKl0j+7TMXEGLpyuPP+9+1zn9hVvneu3r2kpk3c1/vnX0xHD1mnnmLohPbO633zrakdO63l555jqGULQzabqVWrpZ8Wm5ozVyp2fx9N4YeGtJGsE7JnnzYUFXW4/NatpW++cp4nSaWlVo8GF14gLVsm9e5lLS8qMvXlV9Y6H8wwdeCg5OtlmrAwqXUrqekx0r+fM7Vho1RScnj5j4tMp+QuSfr3k4bi42uvlzMAAIAjlWFYD1nExXlep8PJhq4faeq9D0zNX1B3F/VKS6X/vSTNnWtX06bWwx4hIdLHn1iJZ/O/s/5V57iyaRPp2GOllGRraMoDB6Tt26WMTOf1unax3oNdu6R/drkeN9ts1sMGq1abmjLVOifp1dPUKX0N9eolJcT797jzgvMNvT/DGi70t1XWuUjFoc/rQkS4dPtthn5ZYioywrVXsM1bpIcetT6fXj1N/ff5EHfFAACOcv7oBaKmSPapfeWPIeuiV5ma4OYw4BuSdQEAABDMSO6qRHFJ1eu4k5tn/du1+/C8g2mmS3LXzE+laW+ZMgxp9E3S1Vc6L3/3fVOZmaYiIqweDKyhc6xlpinZD120sdut6Q0bTO3eY90+stslmZJhZKjULl17jaljWx7qXSxeOrDf1BNPW9u3bmW6JHdZyVimIsKljh2t4Uu6d7OedvemZ7Ily0zN+sJ63biR61PyC34w9csS63Vhoam0dFNLlzoPUVhedLR0Sh/pjDMM9e0tjbvfVGys1KWz4RhaqExWlrR1m7R1m6lt260etvbssXrcKi2V5swydN+9hy/EFBVJL77s+1WZmBir1wjJupH29+bDwzNWtOgnadQNzvP8cWMLAADgaNKihaH7xxu69RZT3y2Qflho6vc1h4+fy1w30hoOccVvVkJWdaWlSb+kVX+70FApKUk6s5/Vk2ubNlaPuLGx7o8Ld+ywerP9abGpP/+UHnvYcPRAa7eb2rnT1KjRVm9kERGuCW2ZWdK330nffmcqNETq0MFU3z6GTuljDVUuWcfJJSXWv+Ji61youFgqKbZuYpaWWg8yNGwoNWnsWs/CQruWLZcW/CDdd6/h+FsW/mido5zQXurUSRp5jeF0/Pv9QuucoyxpLzrKVFaOtHu39M8/hg4cMHXggDUkZ06udW4x/h5DrVpVfQydkGBo+GXS8MsM2d105bZq9eHXyUmu26/709TWbdJJJ0itWtXuAzl2uzVEarD22muaptLSpYwM6/yrLHZspZK9VIfOYQ//a3e887Dzpmkeiqng/PsBHJ3qsheImiLZBwCqRrIuAAAAghnJXZU4+UTpof8zZCuxbm6UXbAuKDCVmyvl5Fg3GByvc6TsHOeemsokJrrOy862bjCYppUgVNG3862bCRZfk4+sM4Enn3aee8vNh1/v2m31avXqZFMH06weB0qKrR66kpOtnrJ27zG1d6709TdSaKip6641lJx8+EJ8aamp7xceHqoyN9e1JqZpas9e6c8/5dQr2EczPdfeMKRR10tXDDecbga88rLzTYDXptj113prmJvMzMrfkb37pKQkQ750lBUWJl1ykdS4saGmTaT2qdLW7aYeeNDzNq1bSx1Pljp2MHRK3+rvEwAAAL5JiDc0ZLA0ZLCh7Gyrl9g1f1jDI/6zSxo62DqmLSkxtfYPacVvVg+yOR6O6asrNlY6ro2Ulm4lK5UpLbWOm+8ca/UUdc11dpl2qaTEOh6PCJdi46SGDaxj89DQQ/+HSSedJD39rKmwMGv4+LhYKb/gcHJaVTeeS+3S72uk39eYmvy61KSJldhUNnxhVTp3kk5obyX2pKVJ6Yf+trKedSWpsMDUaadZPZG9P8PUX+ut+aNvck7sSk839eTTpscee92dA+3ZY/WQO2iglJBg9YJc9n/Tpp4TsNwNS9mwoTXE+9o/pK5dXJfP/87UJ58drvs1Vzkv373HVGSEKfuh87nYmMM9f5mmqUmv5mv9Bpv27y/VhEcNp16Pt2w1NfEV629s0Vwad49zr2GrVpu68x4r8a1XL+mpx52X799vasVvUvPm0rEt5XRuVluKi03t2i3t2Cl17midQx3++6Shl5kq9fLG0ycfWedPZfbtk4ZdYSo01FRkpPTMU4a6dSXRCwAAAHWPZF0AAAAEI5K7KtG0qaFzm7pb4vmis2maKiiwnl7OyrKeks/Kkho1cl03IkJqkGKt4y75y/NNjpqLCLeSlFJSpBbNDdnt0k8/O990qszlw6zErzK5udKEJ1xvvhiG9NIkU5NeM1VUZPVsVZmmTayksmOPlVq0kKKjpLw8Q9/Mlw4csGv3Hum0Uwyd2d/5M1i5So6bRp6EhFg3yCr2yhARIQ2//NCEad3IKyq2TvLK/hUfmo6Jke66w/nGSnaO1O54qyexBg2kZsdIzY4x1KyZ1K6d/4e9AQAAgKuEBEP9zpD6neF6bBYebqhbV6u32ptGWcf0u3cbSs+I1c6dpdq0uUDp6dYDHrm5Vg9ZISHWsW1hkWQrsRKs8vKkAf2lIZcaatnCOtY2DEN33G13Oc5ue9zh19u3Ow/vU1xs9Wi7b1/dvBfl7dtXvf1YiWGVr/PLUumXpa7nBk8/Y+qEE0zl5Hj3UIYnf6yT/ljnWv6cWYaSkg5Pb9li6r4HreShE9pLDz3gfBwfFyu1OtY699j4t6mJr5oKMSQjRAoxpIU/Hl53zVpTT/7bqnt2tvWQz86dcvQiPOIa6eZRh9cvLpZem3L4xOPgQTklN9nt0m8rrddZWa5/Y/Gh3tIKSq0Hbypa+4eV5CdJZ/aXnnjMOa53/mMqLU1q0dw6R/E0BHxJial9+6Q9e60krp3/mNq503q9b9/h3u6ef8ZQ3z6HtwsJMZSUZCX5eSMywvXvk6y/MT/f+j4BAAAAAAAAANwjuauWGYahmBgrCeiYYypf99bRIbp1tHXzqOIQMZJ04w2GsrMPDYtSLP26wqzyRoq3XppkJV4lJkhxcaY+/qR6N3U++MhURPjhG1wHPQxHY5rWzS9PoqOlrp2luHjp2/lWr1pz5rqU4jSVEG+6JHe1aX04uSsuzppu00Zq3cpQm9bWE+2NG7kf9iMqytDtt/qegHXSiYamv0ECFwAAwJHCMAy1aGGoQwcrIyUzs0imWXVPurm5pkxTiq+Q3B8baw3DmJMt/fc/1vFnxKEnsk3TlBdFV1uf3lJUpLRtu/Wvoh7dpI1/W4lK/rJvv/WvrmzZag31V1RkPayxebOpPXusZUWF0o+LTKfkvj//kj6b5V3ZZUPKe/LJJ9K8r+2yl0p203UI0DF3mHptknTiCdb+U5INlZ3n/L1ZOnOQXbGxVsJZbKzzQzHbd0hT37TrumsNxzCO/+w6vDwyUvp7s+mIqRKb9NFMU3PnWdPnDJIuHSx1OPnw3776d1Pvvm9q+a/yKv527pRTcpckHXeclTiWmGjFWli41dNxiHF4WM+yf5GRztuW2KyHbMqSvCour0uFhaYKC619JyY6DxcpSUuXmcrOthI3B50lRUc7L9+6zVSb1pz/AQAAAAAAAPAfkrsCgGEYCg11nX/2QOcLxpcPk2bNlrZtN50ulBcWWkPHZGRYT317OzSGaVq9hmW6eVK8Kl/Mrv42ZWJipKuuMNSju/UEfViYoS++NPXtfO/uau3Z6zpvyGBDZw2whr1p2NDzk+kAAABAXYmLc38M+vQTzsP1VTxW/egDqyfd3BxTe/ZJBw5YSTMtmhkqtVuJQna79OVXppYus3o6uuQiqUsXQ3m5Vi9feXnS199Yw+hJ0tBLDfXtY2jtH6b+72FTeblW8k1+vrX81lsMtT1OeuFFU7O/rJO3o0pxcVLrVlZPXN6IjZVuutFQdo6UlW0qJ1vauk3auMlaPvYuydNw9nv2St9975zcVVRUe1l1BYXWP09stsO9fElWst9jD0uPPWFNl5RYPZm5681s127p7XelG647PK/tcVLPHtKvK6Svv7E+e0++mS/l5Zt65qnDf/s771mJXVUJC5O6dbWG7yxjmqbuGW8qPExq1kx6coJzt1tpaaae/68pw7B6Y77nTuflW7aYeuNNU717Sm3bSiOuNhRW7srEylWmPv7EegCqV09Dw4Y4f1/mfWNqzlfW8gvON3Th+c7Lp79t6vsfTJXYpNtGGzr9NOfl9/2f6eg1bdJLhrp0dv6bX5xo6p9/rNc9uhuKjnZevmeP9TARAAAAAAAAAPgLyV1BJCbG0FVXSJUNC2m3W0OFZGRKmZmGiopilJZm1z+7rKFk0tOltHQpPV1Kz3C+wVBbQkOtm1GNG1k9ZjVqKCUkSAnx1lPsUVGGS+JaVKTUsqX1l4WEWL2KhYdL8fHWtokJ1jCQzY4x1KaN6z5POIFkLgAAAAS+ioldhmGoeTPHlE480fO2nTtVfszbvZu0e4+Ul2v1qiRJHTsY+vJza7uHHrVr23ZreXycFBpq6F83SEMGS6Zduvk209GT0jmDrKSiHTtr3rtXcpKU0kBKSbYSko5va/Wu27ChtGGDNGq0d0lWERHSUEeij/X/DwtNPfyYd9tXHPb+jNMN/bXe1IrfvPs7Bg6QzjnbcJyjJMRL4+43qxwevkz5HrLCwgyd2V969nlTdtPqbawy0VHW51XmtFMNRURYvTt7o+LQj+WHU2zUSDq2pdSyhdSypTWk6NPPmMrMspLSHn3IUGLi4X2XlsqRGBYd5bqvwkJp8c/W61bHui7PzJJ+OrS8sMi156z9Bw5vn5xsquL57/79h4cG7dHddfnBg6a2bjv0d7uJ3fJDRFaMCcm5F7HKeqEGvLF79269++67Wrhwofbs2aOIiAgde+yxOu+883TVVVcpumL2IAAAAAAAAOAGyV1HmJAQQ4mJ1vASRmtDSUnWlWl3Q8nY7YeGVcyT0xP/+fmHh9EoOfR/aamVdFX+X3iY9bR9XJyVhBUXdzgJKySkeslW55xt6JyzSdACAAAAfNWpo6FOHT0vr9jDkiQlJxtKTrZev/iC9X9IyOEediVruMk9e6whFXMODcuemyvZbNaQkqaksFBr+LqYaCk2znrAo3FjqWEDKSLC83F++/amZn1qaO/eQ70KZ5Q9qGIqI8M6RykqkgoK3A/dFxtr9f4UGWEtd/yLsJLByqYjIqwh28s78QRDY2+Tdu+VIsKth0tCQ13Pe8r+pSRLSUnOZTz378PnSkaIFHroQZXQMEPJSUkKDZWyszMlmS69NYeGGpr/tVWezWYqP9/13Kzs/4rDPJb97V27HDpnK5FKiq19h4Vb52rh4Yf/VexpqlcPqVED64Gffz9lqElj57+rsFyvZmEVrhqUHzKyrplu/u6QcmHsbkjJkHLvs7ukucREqUGKFRMhrl8JndpXat9Oioi03uOK6LUL3lq4cKHuvfde5eTkOOYVFBRo7dq1Wrt2rWbOnKmpU6eqZcuW9VhLAAAAAAAABAPDrJjxU0MZGRm1WRxqwDAMJSUlSZIyMzNdkruAqhBDqAniBzVFDKEmiB/UFDGEmgj2+Nm/35St1Epca97M+eEdm83U72usJK+QEKlnjwqJYYWmVv1uvY6Okrp0dl6elWXqz7+s14mJ0kknVuyZy9TmLVbZjRpKxx3nvPzAAVP79h9e3qiR8/K0NFN5eVaSW1Ki1QN2MPJXDCWXZXeiVq1fv15XXHGFCgoKFBMTo5tvvlm9e/dWYWGh5s6dq48//liSdNxxx+mTTz5RrLtMQg+OlOtuhmEoLi5O6emmdu3KdUoqDSRxcZJpN2UrNarsZbE+BUM9g7mOhmEoPj5ekpSTk1Pvv+vB/F4GkmCoo+RbPf0ds8HwXgZDHaXgqGdt17Eu4jUY3kcpOOoZDHWU/FfPmsRrMLyXwVBHKTjqGQh1rCpeA6GO3giGelLH2mEYhpKTY5ScFKLw8Nz6rk6tqO3rbvTcBQAAAAAAHBo39pwQFRZmqHs3z9tGRRnq29vz8sREQ337VL7vxo09L2/UyFCjRp6XN2hgqEEDz8sBf3jqqadUUFCgsLAwTZs2TV27dnUs69u3r1q1aqXnn39eW7Zs0fTp0zVmzJh6rC0AAAAAAAACnZtBCAAAAAAAAABU15o1a7R8+XJJ0tChQ50Su8rccMMNatu2rSTpnXfeUUlJiV/rCAAAAAAAgOBCchcAAAAAAABQCxYsWOB4PXToULfrhISEaPDgwZKkrKwsRzIYAAAAAAAA4A7JXQAAAAAAAEAtWLFihSQpJiZGJ598ssf1evbs6Xj922+/1Xm9AAAAAAAAELzC6rsCAAAAAAAAwJFg8+bNkqRjjz1WYWGeL7sdd9xxLtt4wzAM3ysXQJz+DiNw/y5DknmoaoFaRyk46hnMdfT0ur4E83sZSIKhjpJv9fR3zAbDexkMdZSCo561Xce6iNdgeB+l4KhnMNRR8l89axKvwfBeBkMdpeCoZyDUsap4DYQ6eiMY6kkda0egnXcFIpK7AAAAAAAAgBoqKipSRkaGJKlp06aVrpuYmKiYmBjl5+dr7969Xu8jKSmpJlUMKDabTZIUGxOjmJh6rowHYaF2lZZKpeFSbGzgDoAQDPUM/jqWSpKSkqL9X7EKgv+9DAzBUEepJvX0X8wGw3sZDHWUgqOedVPH2o3XYHgfpeCoZzDUUfJ3PX2L12B4L4OhjlJw1DNw6ug5XgOnjpULhnpSx9pTltIVFxdX6QNzR6taf0eSk5Nru0jUgiPp4h/qBzGEmiB+UFPEEGqC+EFNEUOoCeIHNUUMBY+8vDzH6xgvspWio6OVn5+v/Pz8uqxWwAoLC1PjxlLjxvVdEwAAAAAAgMAWuGl5AAAAAAAAQJAoKipyvA4PD69y/YiICElSYWFhndUJAAAAAAAAwY/kLgAAAAAAAKCGIiMjHa9LSkqqXL+4uFiSFBUVVWd1AgAAAAAAQPAjuQsAAAAAAACoodjYWMdrb4ZaLCgokOTdEI4AAAAAAAA4epHcBQAAAAAAANRQZGSkkpOTJUl79+6tdN2srCxHAljTpk3rvG4AAAAAAAAIXiR3AQAAAAAAALWgbdu2kqQdO3bIZrN5XG/Lli0u2wAAAAAAAADukNwFAAAAAAAA1ILu3btLsoZlXLduncf1fv31V8frbt261Xm9AAAAAAAAELxI7gIAAAAAAABqwcCBAx2vP/30U7fr2O12zZo1S5KUkJCg3r17+6NqAAAAAAAACFIkdwEAAAAAAAC1oFOnTurRo4ckK7lr1apVLutMmzZNmzdvliRde+21Cg8P92sdAQAAAAAAEFwM0zTN+q4EAAAAAAAAcCT4888/deWVV6qwsFAxMTEaPXq0evfurcLCQs2dO1cfffSRJKl169b69NNPFRcXV881BgAAAAAAQCAjuQsAAAAAAACoRd9//73GjRun3Nxct8tbt26t119/Xa1atfJzzQAAAAAAABBsSO6qZ7t379a7776rhQsXas+ePYqIiNCxxx6r8847T1dddZWio6N9LnvixImaNGmSV+u+88476t27d6XrZGRk6N1339V3332nXbt2yTRNtWjRQgMHDtSIESOUnJzsc13hu2CIoQEDBmjXrl1VltG8eXN9//331aojaqYu46eiX375RbNnz9Zvv/2mAwcOKDQ0VA0bNlT79u3Vp08fXXLJJYqNjfW4PW1QYAqGGKINClx1FT/Lli3TtddeW61tevXqpXfffdfjctqgwBQMMUQbFLj88Rv2999/a8aMGVq+fLl27dql4uJixcXFqV27djrrrLM0bNgwr3rsoQ0KTMEQQ7RB9WvXrl165513tHDhQu3bt0/h4eE69thjde655+qaa66p1WPlYOLPcwgcWdatW6effvpJK1as0KZNm5SWlqbw8HA1btxYXbt21bBhwxzDonpj0aJF+vjjj7VmzRqlp6crJSVFnTp10uWXX64zzjjDqzIKCgr0/vvv6+uvv9aOHTtUUlKipk2bqn///hoxYoSaNWvmVTmbNm3Su+++qyVLlmjfvn2KiYlR27ZtddFFF2nYsGEKCwvz+u9C4Hvuuef05ptvOqa9uTZPvMKf0tPT9emnn2rBggXauXOnsrKylJSUpGOOOUY9evTQ2Wefra5du1ZaBjELfyguLtYXX3yhr7/+Whs2bFBmZqbj2KBbt24aPny4unTpUmU5xCt8lZaWpjVr1mjNmjVau3at1q5dq8zMTEnSpZdeqmeeeaZa5R2JsfjVV1/ps88+04YNG5SVlaVGjRqpe/fuuvrqq736fqJ21UbMFhUV6aefftKSJUu0Zs0abd++XXl5eYqNjVWbNm102mmnafjw4WrcuLFXdSJmvUdyVz1auHCh7r33XuXk5Lhd3qZNG02dOlUtW7b0qfzaTO5as2aNbr31Vh04cMDt8saNG+vVV19Vx44dfaorfBMsMcQNhcBU1/FTJisrSw888IAWLFhQ6XqzZs3SiSee6HYZbVBgCpYYog0KTHUZP74k5gwfPlyPP/6422W0QYEpWGKINigw+eM3bNq0aXrhhRdks9k8rtO8eXO9+uqrOuGEEzyuQxsUmIIlhmiDEGj8dQ6BI88111yjX3/9tcr1LrnkEj355JOKiIjwuI5pmnr00UcdQ6S6M3z4cE2YMEGGYXhcZ8eOHbrpppu0detWt8vj4+P1wgsvqF+/fpXWeebMmXr88cdVXFzsdnmXLl00efJkkrmPEOvXr9fQoUOdft8ru65KvMLf5s2bp8cee8xxo9eds846S6+++qrbZcQs/GXPnj266aabtHHjxkrXu+6663T//fe7jTfiFTXVvn17j8uqk9x1JMZiUVGR7rjjDv3www9ul4eEhGjMmDG67bbbKq0LaldNY3b9+vW66qqrlJeXV+l6sbGxevLJJ3X++edXuh4xWz0kd9WT9evX64orrlBBQYFiYmJ08803q3fv3iosLNTcuXP18ccfS5KOO+44ffLJJ5X2ZuNJ+cScL7/8stJ1W7RooZiYGLfL9u3bpyFDhujgwYMKCwvTddddpzPPPFOS9MMPP+itt96SzWZTw4YN9dlnn6lJkybVriuqL5hiqOyGwllnnaU777zTYxnh4eFq06ZNteuJ6vNH/EhSTk6ORo4cqXXr1kmS+vfvr/PPP1+tWrVSaWmpdu/erbVr1+qbb77R5MmT3Sbm0AYFpmCKIdqgwFPX8ZOfn69//vmnyvWeeOIJLV++XJI0Y8YMdevWzWUd2qDAFEwxRBsUePzxGzZ37lzdddddkqzP9uqrr9Ypp5yi5ORk7dixQx988IF+++03SVKjRo00b948xcfHu5RDGxSYgimGaIMQSPx1DoEj06BBg7Rjxw41btxY5557rnr06KFjjjlGdrtdq1ev1rRp07Rv3z5J0oUXXqgXXnjBY1n/+9//NHnyZEnSSSedpFGjRqlly5bauXOn3njjDf3555+SpNGjRzva4ory8vI0bNgwbdmyRZJ0+eWX6/zzz1dUVJSWLVumKVOmKD8/X9HR0frwww89JuH+9NNPuummm2S329WwYUONHj1anTt3VmZmpmbOnKlvv/1WktSzZ0+98847CgkJ8e0NRECw2+26/PLLtXbtWjVo0EBpaWmSKk/uIl7hT7NmzdIDDzwgu92uBg0a6Morr1T37t2VmJiogwcPaseOHfrhhx8UFxenl19+2W0ZxCz8wWaz6dJLL3UkdrVv317XX3+92rRpo7y8PP3222+aPn268vPzJUnjxo3TqFGjXMohXlFT5RNljjnmGLVt21aLFy+WVL3kriMxFu+55x7NmTNHktS7d29de+21aty4sTZu3KgpU6Zox44dkqQnn3xSl112mVfvE2qupjG7YsUKXX311ZKkbt266cwzz1SHDh2UlJSk9PR0ffvtt/rkk09UWlqq0NBQvfbaax4Ts4hZH5ioF9dcc42ZmppqnnTSSebKlStdlk+dOtVMTU01U1NTzYkTJ/q0j5dfftlRRk3cd999jnLmzp3rsnzu3LmO5ffff3+N9gXvBVMMnXnmmWZqaqp533331agc1B5/xI9pmua4ceMc+/nqq688rme3282SkhK3y2iDAlMwxRBtUODxV/xUJisry+zQoYOZmppqDho0yON6tEGBKZhiiDYo8Pgjfi688EJHGT/88IPbdcaMGeNYZ9q0aW7XoQ0KTMEUQ7RBCCSB8PuN4HXTTTeZX331lWmz2dwuT0tLM88++2xHDP36669u19u2bZt50kknmampqeaQIUPMgoICp+X5+fnmkCFDHLG6fft2t+WUv2Y2depUl+UrV6507GfEiBFuyygpKTEHDRpkpqammt26dXO7r8cee8yxn88//9xtOQge06dPN1NTU81zzz3XfOGFFxyf7dKlS92uT7zCn/7++2/HOe5VV11lZmdne1y3qKjI7XxiFv7y9ddfOz674cOHuz0+WLt2rXnyySebqampZs+ePV2uHROvqA0vvfSS+f3335sHDhwwTdM0d+7c6ficvD0PPxJjcdmyZY51br75ZpfvaFpamtm/f3/H9zMrK8ttOah9NY3Z3377zbzjjjvMTZs2eVxn/vz5Zvv27c3U1FRz4MCBpt1ud7seMVt9pPXWgzVr1jie8B86dKjbsclvuOEGtW3bVpL15E5JSYlf61jm4MGDmj17tiTptNNO03nnneeyznnnnafTTjtNkvTFF1/o4MGDfq3j0SiYYgiBx1/xs2LFCn3xxReSpFtuuaXSrjcNw3A71jFtUGAKphhC4AmU37C5c+c6uui9+OKL3a5DGxSYgimGEHj8ET+5ubmOp4dPPvlk9e/f3+165bvwXrVqlcty2qDAFEwxBASSQPn9RvCaMmWKzj//fIWGhrpdnpKSovvvv98x/fXXX7tdr6zXS0l6+OGHFRUV5bQ8OjpaDz/8sCSrV5C3337bpYySkhK98847kqS2bdvqhhtucFmna9euGjp0qCRryO8//vjDZZ358+dr+/btkqSbb75Zxx57rMs648ePV2JioiTpzTffdPs3ITjs2bNHL730kiTpscceU3h4eJXbEK/wpyeeeELFxcVKTk7WxIkT3fYKW8bT0LfELPxl5cqVjtc33XST2+ODDh06OM6lsrKyHD3DlCFeURvGjh2rM888Uw0bNvS5jCMxFt944w1JUmhoqB577DGX72hKSoruvfdeSdb385NPPnFbDmpfTWO2W7duevHFF3X88cd7XGfgwIE6++yzJVnDLv71118u6xCzviG5qx4sWLDA8bosICsKCQnR4MGDJVkBUnYBzN++//57lZaWSvJcV0kaMmSIJKm0tFTff/+9X+p2NAumGELg8Vf8vP/++5KkmJgYXX/99dWvqGiDAlUwxRACT6D8hs2aNUuSlRh4ySWXuF2HNigwBVMMIfD4I37Kkv4ka+hyT8pfbCi/TRnaoMAUTDEEBJJA+f3Gka1Xr16O1zt37nRZbpqmIxaPO+44denSxW05Xbp0cQxV+91338k0Tafly5cvV3Z2tiRp8ODBHof1KPuNlqybDhV99913jteXXnqp2zKio6N17rnnSpI2btyobdu2uV0PgW/ChAnKz8/XpZde6nEIxvKIV/jT5s2btWTJEknSNddco5SUlGqXQczCn8o/BNCyZUuP65VfVv6ciXhFoDgSYzEvL8/xm3LKKaeoadOmbssZNGiQ4uLiJMkxbB6OHOWPd8uGMyyPmPUNyV31YMWKFZKsm9Unn3yyx/V69uzpeP3bb7/Veb3cKaur5FyfigKhrkeTYIohBB5/xE9xcbHjgPSMM85QbGysJOupgl27dmn37t1e3YCiDQpMwRRDCDyB8Bu2Y8cORw8nPXr08HgRiDYoMAVTDCHw+CN+UlJSlJSUJEn6559/PK5X/sJG69atPda1Yn0qog3yr2CKISCQBMLvN4585W/0Gobhsvyff/7Rvn37JFX+2yodThTbu3evS1tc/je6fEJZRR06dFBMTIwk9/FcNq9NmzZq1KhRlXXxVA4C39y5c/XDDz8oKSlJ48eP92ob4hX+VL63w7Kbn5KVbL1t2zZlZGRUWQYxC38qf/7jLqG74jLDMJy2IV4RKI7EWFyzZo3j3k1ldYmIiHAks61du5aem48w5e/fuUvcImZ9Q3JXPdi8ebMk6ynbyoaQOu6441y28dX111+v3r17q0OHDurbt69GjBih119/XVlZWV7VNT4+vtIvROPGjR2ZijWtK6oWTDFU3q+//qqLLrpIXbp0UefOnTVgwADdeeedbrPMUXf8ET/r169XUVGRJKvbzAMHDuiBBx5Qz549NWDAAJ155pnq0aOH/vWvfzl1oeyprrRBgSWYYqg82qDAUB+/YRWV9bgkydE7hDu0QYEpmGKoPNqgwOCv+Ln88sslSevWrdOPP/7odp1XX31VktXd92WXXeaxrrRBgSWYYqg82iDUt0D4/caR79dff3W8Lh9LZcrHlLvl5ZVfXnEYJ2/LCQsLczwEUDGe8/LytHfv3mrXhe9F8MnOztbTTz8tSbr33nu97hGJeIU//f7775Ksc4+2bdtq9uzZuvjii9WrVy+dc8456tOnj8466yxNmjRJeXl5bssgZuFPF154oeM8eOrUqY5er8v7888/tXDhQknSBRdc4FhfIl4ROI7EWCxft6rKKeuNzGazOYbWw5GhfE/cNTk3I2adkdzlZ0VFRY6nHDx16VYmMTHRkYlYFpi++uWXX5SZmamSkhKlp6dr+fLleuGFFzRw4ECn7uoqKttvVXWVpGOOOaZW6orKBVsMlffPP/9o48aNKigoUGFhoXbt2qV58+bptttu01VXXeXITkfd8Vf8lP9hLCoq0kUXXaTPPvtM+fn5TvMXLVqkq6++Wm+99ZbbcmiDAk+wxVB5tEH1r75+wyqaPXu2JCkqKsrpidSKaIMCT7DFUHm0QfXPn/EzevRonXLKKZKkMWPG6Nlnn9WPP/6oNWvWaO7cuRoxYoS++eYbhYaG6sEHH1Tbtm1dyqANCjzBFkPl0QahPgXK7zeObHa7Xa+//rpj+rzzznNZZ8+ePY7XVcVi+eXlt5MOx2ZMTIwSEhIqLafsNzo9Pd3p6fW9e/c6kmurUxe+F8Hn+eef14EDB9S1a1cNGzbM6+2IV/jT33//LUlq3ry5nnjiCY0bN04bNmxwWueff/7RxIkTdcUVV7g9diRm4U8pKSl65plnFBUVpZUrV2rYsGGaNWuWVq9erV9++UWTJk3SNddco5KSEp144om6//77nbYnXhEojsRYLF+3Jk2aeFWXitshuK1fv97xoGK7du10/PHHu6xDzPrG86NyqBPln2oou1hVmejoaOXn5zvdzK6O1NRUDRw4UJ06dVLjxo1ls9m0detWffnll1q8eLGys7M1duxYvfbaa+rXr5/H+npb1/LboG4EWwxJUnh4uAYMGKDTTjtN7dq1U3x8vLKzs7V69WrNmDFDe/bs0cqVK3X99dfro48+Unx8vE91RdX8FT/le3SbNGmSiouLdeaZZ2rMmDFKTU1VTk6OvvnmG73wwgvKzc3VM888ozZt2rjEEG1Q4Am2GJJogwKJv3/D3FmxYoWjS/aBAwc6PbVXEW1Q4Am2GJJogwKJP+MnNjZWU6dO1eeff67XX39d06ZN07Rp05zWOfvsszVq1Ch17ty50vrSBgWOYIshiTYIgSEQfr9x5Hvrrbe0Zs0aSdKgQYPUsWNHl3WqE4tlv62SXGLRl9/osu0iIiKqXZfyy/leBJcVK1Zo5syZCgsL04QJE9wOF+oJ8Qp/KrsOt2XLFq1fv14JCQm65557dPbZZysuLk4bNmzQyy+/rEWLFmnjxo2644479MEHHzgNs0TMwt8GDRqkTz/9VNOnT9enn36q++67z2l5w4YNNXbsWF1++eUucUC8IlAcibFYW38TglNxcbEefPBBR4+Kd911l9v1iFnfkNzlZ2VDTEnWRdaqlAVnYWFhtfc1cuRI3X777S7zO3furMGDB+vDDz/Uo48+qtLSUj300EOaP3++oqKi3Na3OnUt/zei9gVbDEnSzJkz3Wbd9u7dW1dffbXuuOMOLV68WJs3b9akSZP0wAMPVLuu8I6/4qf8D1pZUs6rr77qOOFv0KCBrrrqKqWmpmrEiBGy2+36z3/+ozPOOMPpQhdtUOAJthiSaIMCiT9/wzz54osvHK+rGk6PNijwBFsMSbRBgcTf8fPHH39ozpw5jmTAin755Rc1aNBAbdu2dZskSBsUeIIthiTaIASGQPj9xpGtrHd5yTpXfOyxx9yuV51YLItDyTUWffmNrrj/8k+c16QuCFzFxcV65JFHZJqmRo4cqfbt21dre+IV/lRQUCDJ+qxDQ0M1depUdenSxbG8Y8eOmjJlim6++WYtWrRIq1at0rfffuvUkzUxC38rKSnRl19+qR9++MHtUPMHDx7UnDlz1Lp1a/Xv399pGfGKQHEkxmL5MsuvV91yEJwef/xx/fHHH5KkSy+9VGeddZbb9YhZ3zAso59FRkY6XpeUlFS5fllQukuYqUpVXdhdccUVuuyyyyRJ+/fv17fffuuyTll9q1PX8n8jal+wxVBV5cTFxenFF19UUlKSJOnjjz92aoxRu/wVPxXbgfHjxzs9yVWmR48eGjRokCRp48aN2rhxo9tyaIMCR7DFkEQbFEj8+Rvmqbyvv/5aktS4cWPHcFee0AYFnmCLIYk2KJD4M36+/vprjRgxQkuXLlVqaqpeeeUVLVu2TH/88Ye+++473X333bLZbJoxY4auuOIKHThwwGN9aYMCR7DFkEQbhMBQ37/fOLJt2rRJY8aMkc1mU0REhF588UU1bNjQ7brVicXy7WHFWPTlN7ri/svfFKhJXRC4pkyZos2bN6tZs2YaM2ZMtbcnXuFP5T/vc8891ymxq0xISIjGjx/vmP7qq688lkHMoq7l5+fr+uuv1+TJk5WZmalRo0Zp7ty5Wrt2rX777TdNmzZN3bt319q1azV69Gi9/fbbTtsTrwgUR2Isli+zqmsMxPSRZcqUKZo5c6Yk6eSTT9YjjzzicV1i1jckd/lZbGys47U3XbWVPTHhTZd0vhg+fLjj9a+//uqyvKy+1alr+b8RtS/YYsgb8fHxuuCCCyRZf1NZRi9qn7/ip/x+WrRooeOOO87juqeffrrj9dq1a92WQxsUOIIthrxBG+Q/9f0b9t133yk7O1uSdNFFFyk0NLTS9WmDAk+wxZA3aIP8x1/xc/DgQT3wwAMqLi5Wu3bt9OGHH2rgwIFKSkpSeHi4WrZsqZtvvlmTJ0+WYRjatGmTnnjiCY/1pQ0KHMEWQ96gDYI/1PfvN45cO3fu1A033KCsrCyFhobqv//9r3r16uVx/erEYlkcSq6x6MtvdMX9V6cu5ZfzvQgOmzdv1pQpUyRJDz30kE+fG/EKfyr/GZ9xxhke12vXrp2aNGkiyfN1XImYRd2bOHGi437UU089pXHjxqlt27aKiIhQXFycTj31VL3zzjvq3bu3TNPUM888o/Xr1zu2J14RKI7EWKytvwnB5cMPP9R///tfSVKbNm30xhtvVPqZErO+IbnLzyIjI5WcnCxJ2rt3b6XrZmVlOQKoadOmdVKf448/3vF63759LsvLDtSrqqsk7dmzR1Ld1RWWYIshb7Vt27ZWykHl/BU/xxxzjON1VduWX56enu60jDYo8ARbDHmLNsg/6vs3rLrD6dEGBZ5giyFv0Qb5h7/i56uvvnJse/PNN3s80e/bt6/69u0rSZo/f76ysrKcltMGBZ5giyFv0QahrtX37zeOTPv27dP111+v/fv3yzAMPf30045enT0pH1NVxWL55eXPT8uXk5+f70j896TsNzolJcXpyXJf68L3Iji8/fbbKikpUcuWLVVYWKivvvrK5d+mTZsc6y9dutQx310bSLyirpX/rMrOQzwpi7G0tDSPZRCzqEumaeqzzz6TJLVu3VqXXnqp2/XCwsJ0xx13SJLsdrtjG4l4ReA4EmOx/HRV1xjK6iK5/k0IHnPmzNGECRMkSc2bN9dbb72llJSUSrchZn1Dclc9KLtwumPHDtlsNo/rbdmyxWWb2uZuHOryyhJ3cnJyPA7zIFlD8uXm5kqqu7risGCKIQQef8RP+aS/0tLSSte12+2O1xV7QKENCkzBFEMIPPX1G5aWlqbFixdLsroETk1NrXIb2qDAFEwxhMDjj/jZvHmz4/VJJ51U6bonn3yyJOu3bNu2bU7LaIMCUzDFEBBIAuk6BoJfenq6brjhBu3cuVOS9PDDD3uVeF/+PLN8rLlTfnnFnqTLx2Zl5dhsNkcdK8ZzbGys42ZAderC9yI4lA3XsnPnTt19991u/33zzTeO9V999VXH/LKH1ohX+FO7du0cr8tfZ3On7DpdWFiY03xiFv5y8OBBZWZmSqr6fKlDhw6O1+U/a+IVgeJIjEVv6yJJW7dulWT9phx77LGVrovAtGDBAt13332y2+1q1KiR3nrrLa+ST4lZ35DcVQ+6d+8uycpEXLduncf1yg9x161btzqpy99//+143bhxY5flZXWtWJ+K/FFXHBZMMeTvclA1f8RP8+bN1axZM0ly/Oh6smPHDsfrik+G0QYFpmCKIW/RBvlPff2Gffnll44biZdccolX29AGBaZgiiFv0Qb5jz/ip/xNjqoSlMsnOFRMUKYNCkzBFEPeog2CPwTSdQwEt5ycHI0aNcrRdt1zzz26+uqrvdq2RYsWjnaust/W8subNGmiFi1aOC0r/xu9fPlyj2X88ccfjl6Y3MVzWTlbt26tNJG7/D74Xhw9iFf4U48ePRyvy19nc6fsOl3F40ZiFv5S/rynqvOlkpISx+vy51nEKwLFkRiLHTt2VHh4eJV1KS4u1urVqx3blO+RCcFhyZIluvPOO2Wz2ZSUlKTp06d7nfBEzPqG5K56MHDgQMfrTz/91O06drtds2bNkiQlJCSod+/edVKXjz76yPG6Z8+eLssHDBigkBArTDzVVZKjO9OQkBANGDCglmuJioIphryRk5OjuXPnSpKio6PVsWPHWqkb3PNX/Jx99tmSrCdpVq5c6XG9b7/91vG6/IUEiTYoUAVTDHmDNsi/6us3rGw4vbCwMF100UVebUMbFJiCKYa8QRvkX/6In/IX2FasWFHpumUX5gzDUPPmzZ2W0QYFpmCKIW/QBsFfAuk6BoJXQUGBbrrpJkeC4OjRo3XTTTd5vb1hGDrrrLMkWU9kl12Yr2j16tWOJ7bPOussGYbhtLxXr16Kj4+XJM2aNctjr/blh38q/x0oU1YXSfr888/dllFQUKCvv/5aktWzQ5s2bdyuh8DyzDPPaMOGDZX+GzNmjGP9d955xzG/7DiAeIU/DRgwwHFTc/78+R7XW758uaPHpIrX4IhZ+EtSUpLi4uIkSatWraq0V9jyyTLlz7OIVwSKIzEW4+Li1LdvX0lW8o+n4fLmz5/v6IneXV0Q2FauXKlbb71VxcXFiouL05tvvunUE2hViFnfkNxVDzp16uQ48P3000+1atUql3WmTZvmGIrh2muvdRxYl/nss8/Uvn17tW/fXhMnTnTZfsOGDdq+fXul9fjwww/1ySefSJIaNWqkQYMGuazTqFEjx82rxYsXOwK/vHnz5jmGqLnkkkvUqFGjSveLmgumGFq0aJEKCws9lpGbm6s777zTcVI4bNgwsrPrmD/iR5JGjhypyMhISdKTTz7pyKwu74svvnBkQffv39+lq07aoMAUTDFEGxR4/BU/5W3atEl//vmnJOn000+vcrz3MrRBgSmYYog2KPD4I3769evnuMg2efJk7du3z21dPvroI/3xxx+SpC5duig5OdlpOW1QYAqmGKINQiCpje8Ojm7FxcUaM2aM48Gfa6+9VnfddVe1yxk5cqSj544nnnjCpZ0sLCzUE088IclK6h85cqRLGRERERoxYoQkayjdN99802WdVatWORIZe/XqpU6dOrmsM2jQIMeT7VOmTHHbW85zzz2nrKwsSdKNN97o9d+JIwPxCn9JTk7WsGHDJEk///yzvvrqK5d1cnNz9fTTTzumhw8f7rIOMQt/CAkJUf/+/SVJ+/fv1+TJk92ul5WVpf/85z+O6bJtyhCvCBRHYizecMMNkqzexidMmODSy156errj+5mQkKDLLrvMbTkITH/99Zduvvlm5efnKyYmRq+//rrTMLjeIGZ9E1b1KqgLDz74oK688koVFhbqhhtu0OjRo9W7d28VFhZq7ty5jt6QWrdureuvv77a5a9bt04PPfSQevfurTPOOEOpqalKSkpSaWmptmzZotmzZ+vnn3+WZHVhOmHCBMXExLgt66677tJPP/2k9PR03XPPPfrjjz8cB0ELFy7U9OnTJUkpKSm68847q/9mwCfBEkNTp07VuHHjNGjQIHXv3l0tW7ZUbGyssrOztXr1as2YMUN79uyRJLVp08bpqTXUnbqOH0lq1qyZxo4dq+eff17r1q3TZZddplGjRqldu3bKycnR/Pnz9eGHH0qysqIfeOABt+XQBgWmYIkh2qDA5I/4Ka/8ExuXXnpptbalDQpMwRJDtEGBqa7jp23bthoyZIg+/fRT7du3T4MHD9bIkSPVo0cPxcbGas+ePfrqq680Z84cSdaxtKeb07RBgSlYYog2CIHG37/fOLLcc889joTmPn36aNiwYdq4caPH9cPDw932aNGmTRvdcMMNev311/XHH3/oyiuv1L/+9S+1bNlSO3fu1NSpUx1J/TfeeKNat27ttvwbb7xRc+fO1bZt2/T8889rx44dOv/88xUVFaVly5Zp8uTJstlsioqK0v/93/95rONDDz2k0aNHKzc3V1deeaVuueUWderUSVlZWZo5c6a++eYbSdZwI7U9NDgCH/EKfxo7dqx+/PFH7d69W+PHj9fKlSs1aNAgxcXFaePGjZo6daqj15grr7zS7Q1WYhb+cuutt2rBggUqKCjQxIkT9ccff+jSSy9Vy5YtVVRUpN9//11vv/22du/eLUnq27evTjvtNKcyiFfUhhUrVjglk2RkZDheb9++3anXIUkaMmSISxlHYiz27dtXF1xwgb766it9//33uv766zVy5Eg1btxYGzdu1OTJkx3fz3vuuUeJiYke3mHUtprG7I4dO3TjjTcqOztbknTHHXcoPj6+0nOzBg0aqEGDBi7zidnqM0xPfZyhzn3//fcaN26co/u2ilq3bq3XX39drVq1cln22WefOW5ijxkzRrfffrvH5ZVJSkrSU089VWXXcb///rtuu+02j2OVNmrUSK+88oo6d+5c5T5Re4IhhkaMGFHp+LRlevbsqRdeeEFNmjSpcl3UjrqMn/JeeOEFTZ061WOXmg0aNNArr7yirl27eiyDNigwBUMM0QYFLn/Fj91uV//+/bVv3z4lJiZq8eLF1e6VhDYoMAVDDNEGBa66jp/i4mLdd999juHuPImJidHjjz9e6VCftEGBKRhiiDYIgagm3x0c3dq3b1+t9Zs3b67vv//e7TK73a6HHnqo0mGPhw0bpieeeMIxRLI727dv10033aRt27a5XR4XF6f//Oc/OvPMMyut68cff6zHH39cJSUlbpd36tRJU6ZM8br3WASHiRMnatKkSZKsYRk9DUVLvMKfNm/erFtuuaXSET2GDh2qCRMmeOxhk5iFv/zyyy+6++67nRIT3OnTp49efvlltzfiiVfU1P333+9xKDh3NmzY4Hb+kRiLhYWFjsRhd0JCQnTrrbdWel0Wta+mMett/kB5lV1/J2arh5676tGAAQM0e/ZsvfPOO1q4cKH27dun8PBwHXvssTr33HN1zTXXKDo62qey+/Xrp6eeekqrV6/Wn3/+qbS0NGVmZso0TSUmJuqEE07Q6aefriFDhjjGpq5M586dHXVdsGCB/vnnH0nWGNVnnXWWRo4c6TIEBOpeMMTQ+PHjtWTJEq1evVpbt25VRkaGcnJyFBUVpcaNG6tz58664IILdNppp7mMEY26VZfxU94999yjAQMGaMaMGVqxYoUOHDigyMhItW7dWgMGDNCIESMc4yp7QhsUmIIhhmiDApe/4mfJkiWO4azOO+88n4abog0KTMEQQ7RBgauu4yciIkL/+9//NHz4cH3++edavXq19u/fr+LiYsXFxalNmzbq27evhg8f7jKkcEW0QYEpGGKINgiByF+/30BlQkJC9PTTT+ucc87RRx99pLVr1yojI0PJycnq2LGjhg8frn79+lVZTqtWrfT555/r/fff19dff60dO3aopKRETZs2Vb9+/XTttdeqefPmVZZz+eWXq0uXLnr33Xe1ZMkS7d+/X9HR0Wrbtq0uuugiXXbZZY6henD0IV7hT23bttWsWbM0Y8YMffPNN9q+fbvy8vLUoEEDdevWTcOHD1efPn0qLYOYhb+ccsopmjdvnj755BMtWrRIf//9t3JychQaGqqGDRuqY8eOuvDCC3XWWWd5PN8hXhEojsRYjIqK0uuvv64vv/xSn3/+udavX6/s7Gw1bNhQ3bt31zXXXFNppw84OhCz1UPPXQAAAAAAAAAAAAAAAAAQgDz32wcAAAAAAAAAAAAAAAAAqDckdwEAAAAAAAAAAAAAAABAACK5CwAAAAAAAAAAAAAAAAACEMldAAAAAAAAAAAAAAAAABCASO4CAAAAAAAAAAAAAAAAgABEchcAAAAAAAAAAAAAAAAABCCSuwAAAAAAAAAAAAAAAAAgAJHcBQAAAAAAAAAAAAAAAAABiOQuAAAAAAAAAAAAAAAAAAhAJHcBAAAAAAAAAAAAAAAAQAAiuQsAAAAAAAAAAAAAAAAAAhDJXQAAAAAAAAAAAAAAAAAQgEjuAgAAAAAAAAAAAAAAAIAARHIXAAAAAAAAAAAAAAAAAAQgkrsAAAAAAAAAAAAAAAAAIACR3AUAAAAAAAAAAAAAAAAAAYjkLgAAAAAAAAAAAAAAAAAIQCR3AQAAAAAAAAAAABUsW7ZM7du3d/ybOHFifVfJo+XLlzvq2a1bN6WlpdV3lZzeuxEjRlS67sSJE53WX7ZsmZ9qWTuq87cGgyPt76nMww8/7Phbb7311vquDgAAboXVdwUAAAAAAAAAAABQNwYMGKBdu3ZVuk5ISIhiY2MVHx+vVq1a6cQTT1S/fv3Uu3dvGYbhp5rCVyUlJZowYYJj+qabblKDBg3qsUZA8Bg7dqzmzJmj/Px8LViwQAsXLlT//v3ru1oAADih5y4AAAAAAAAAAICjmN1uV05Ojnbv3q0lS5Zo2rRpGjlypM4++2z9+OOP9V09VOG9997T33//LUlq1KiRrrvuuvqtEBBEKn5nnnrqKZWUlNRfhQAAcIPkLgAAAAAAAAAAALjYsWOHbrrpJk2aNKm+qwIPcnJyNHnyZMf09ddfr6ioqHqsERB8Ro4cqZiYGElWu/fxxx/Xc40AAHDGsIwAAAAAAAAAAABHif/+97/q3Lmz07yynrs2bdqk+fPn6/vvv5fdbncsnzhxolq3bq0LL7zQ39VFFd58801lZmZKkhISEnTFFVfUb4WAIJSUlKQrrrhC06ZNkyS99tprGjJkiKKjo+u5ZgAAWEjuAgAAAAAAAAAAOEo0bNhQLVq0cLvs5JNP1uDBg7V06VLdcsstys/Pdyz7z3/+o7PPPlsRERH+qiqqkJeXp/fff98xPXjwYMXGxtZjjXCk2LBhQ31Xwe+uuuoqTZ8+XaZp6sCBA/rss8909dVX13e1AACQxLCMAAAAAAAAAAAAKKdPnz565JFHnObt2bNHS5YsqacawZ2ZM2cqOzvbMU2vXYDvWrZsqVNPPdUx/fbbbzv1YAgAQH0iuQsAAAAAAAAAAABOLrnkEiUnJzvNW7p0aT3VBu58+OGHjtcnn3yy2rZtW4+1AYLfRRdd5Hi9fft2/fzzz/VYGwAADmNYRgAAAAAAAAAAADgJCQlRx44dtWjRIse8vXv3VrucHTt2aMuWLdq1a5fy8vIkSYmJiWrcuLE6d+6slJSUWqtzmaKiIv3222/atWuX0tPTFRcXp2bNmqlnz56Ki4ur9f3Vh1WrVmnr1q2O6XPPPdfnsnJzc7V582Zt3bpVmZmZys/PV2xsrBITE5Wamqr27dsrNDS0NqodkHJzc7V69Wrt379fGRkZstlsiouLU4sWLZSamqpjjjmmxvvYs2eP1q5dq71796qwsFDJyclq3769OnTooJAQ3/viCIbPrq6+j1lZWfrrr7+0fft25eTkqLi4WFFRUYqPj1fz5s3Vtm1bNWnSpFplnnXWWQoPD1dJSYkk6fPPP9fpp5/ucx0BAKgtJHcBAAAAAAAAAADARUJCgtN0VlZWldvk5+dr4cKF+vbbb7V8+XKlpaVVuv7JJ5+s6667ThdccIHXSSj333+/Pv/8c8f0ggUL1KJFC2VnZ+ull17S7NmznYYrLBMWFqYLL7xQd999d7WTPqpj3759Gj16tP7880/HvC5duujVV19VgwYNamUfX331ldP0gAEDqrX9xo0bNXfuXC1evFh//vmnSktLPa4bGxuriy++WDfeeKNatmzpU30Djd1u1zfffKO3335ba9eulc1m87hu69atNWjQIA0fPrzaf//KlSs1ceJELV261O0Qfw0bNtTo0aN19dVXe53k5Y/Prn379o7XvXr10rvvvutxXX9/H5cuXaqpU6dqyZIllf7tktSkSROdccYZuuaaa3TCCSdUWXZ8fLx69erl6LHru+++U0FBgaKjo72uHwAAdYFhGQEAAAAAAAAAAOCirKetMhEREVVuc/fdd+uuu+7SvHnzqkzskqR169Zp3LhxuuGGG5Senu5zXdesWaPBgwfrvffec5tIIkk2m02zZs3S0KFDtX79ep/3VZl169Zp2LBhTold559/vt55551aS+ySpB9//NHxumHDhjr++OOrVceLLrpIr732mtauXVtlgkxeXp5mzJihCy+8UF988YXPdQ4UW7du1aWXXqo777xTq1atqjSxS5K2bdumqVOn6pVXXqnWfiZPnqxrrrlGv/zyi9vELkk6ePCgnnzySY0dO1bFxcVVlhksn11dfB9N09STTz6pkSNHavHixVX+7ZKVaDlz5kzNmzfP67r37t3b8bqoqEhLlizxelsAAOoKPXcBAAAAAAAAAADAxbp165ymven5xzRNp+m4uDgdf/zxSklJUWxsrIqLi7V3715t2LBBhYWFjvWWLl2qUaNG6cMPP/Qqiay8bdu26Z577lFmZqYka9jHDh06KDk5Wfn5+frjjz+0f/9+x/oHDhzQmDFjNHv2bMXExFRrX5X57rvvdO+996qgoMAxb/To0brzzjtlGEat7Wfbtm3asWOHY7p79+7V2r5iopFhGGrRooVatWqluLg4hYWFKTs7W3///bd2797tWK+wsFDjx49XZGRkjYaBrE/Lli3TbbfdppycHKf5YWFhOvHEE9WkSRNFRUUpJydHW7du1c6dO11i2htvvvmm/ve//zmm27RpozZt2igmJkb79+/X77//rqKiIsfy+fPn66WXXtK4ceMqLTcYPru6+j5OnjzZpQexsLAwtW/fXs2aNVN0dLSKioqUlZWlLVu2OO2jOnr06OE0/dNPP1W7ZzwAAGobyV0AAAAAAAAAAABwsmDBApfkiPI92lTmhBNO0MUXX6x+/fp57FGqoKBAc+bM0f/+9z9HD1/r1q3Tyy+/rHvvvbdadb333nuVmZmp5s2ba/z48Ro0aJDTEI+maerLL7/UI4884ki82rlzp6ZPn67bbrutWvvy5M0339R//vMfR/JNeHi4nnzySQ0ePLhWyi9v9erVTtPeDDdXUVRUlM4//3ydddZZ6tu3r2JjY92ut3HjRr3yyiv6+uuvHfP+7//+Tz179qzVnsj8YefOnbr99tudEruSkpJ0yy23aNiwYYqLi3PZJj09Xd99950+/fRTr/ezceNGrVixQpI0cOBA3X333Wrbtq3TOllZWXrmmWf02WefOeZNnz5dV155pVq0aFFp+YH+2dXF9zEnJ0evvfaaYzo0NFS33nqrrr32WpfhY8vs379fP/30k2bNmlWt5MoTTjhBhmE4kvoqft8AAKgPJHcBAAAAAAAAAADAYfPmzXrkkUec5jVr1kxnnHFGlds+/PDDVSanSFJ0dLQuu+wynXrqqbrqqqu0Z88eSdKMGTM0evRot4k2nmRkZKhdu3Z65513lJKS4rLcMAxdfPHFiomJcUoe+eSTT3TrrbfWqFetkpISTZgwQTNnznTMS0pK0qRJk9SzZ0+fy63MH3/84TSdmppare3btGmjRYsWKTExscp1U1NT9dJLL2nixImaNGmSJGuovw8++EC33357tfZb38aNG6esrCzH9HHHHac33nhDzZs397hNSkqKLr/8cl1++eU6cOCAV/sp67Fq1KhRHnviSkxM1L///W9lZWVpwYIFkqTS0lJ98sknuvPOOz2WHQyfXV18H3/66Senns5uueUWjRkzptJ6NG7cWEOHDtXQoUOdegmsSmxsrFq0aKGdO3dKspLkioqKFBkZ6XUZAADUtpD6rgAAAAAAAAAAAADqj91uV2ZmplasWKF///vfGjp0qA4ePOhYHhISoscee8yr4RK9Sewqr1mzZnrggQcc07m5ufr++++rVUZYWJheeuklt4kk5Q0cOFAdOnRwTO/evVvbt2+v1r7Ky87O1qhRo5wSu1q3bq2PP/64zhK7JGnr1q1O05UlJ7kTFxfnVXJQebfddpvat2/vmP7yyy+rtX19+/nnn7Vq1SrHdExMjCZPnlyt965Ro0Zer9u9e3fdc889Va531113OU0vXbq00vWD4bOri+9j+SEmJemcc86pVp2ioqKqtX6zZs0cr202myPRCwCA+kLPXQAAAAAAAAAAAEeJa6+9tlrrR0VF6cknn1S/fv3qqEbSmWeeqfDwcJWUlEiSVq1apYsvvtjr7c8++2yXYe8q21f5nq/+/PNPtW7dulr1laQdO3bopptuckq06tWrlyZNmlTt5Jvq2rVrl9N0kyZN6nR/kpXgN2jQIG3YsEGStH37dqWnp1eZwBMoZsyY4TR9ww03qFWrVnW2v9GjRyskpOo+Ntq1a6fmzZs7PtP169fXel38/dn54/tYNpRrXWnatKnT9K5duzwOMQsAgD+Q3AUAAAAAAAAAAAAn8fHxuvDCC/Wvf/2r2j1DuWO325Wfn6+8vDxHEld5SUlJjmHvNm/eXK2yq5N4dtxxxzlNp6enV2tfkrRixQrddtttjuH3JGnIkCF6/PHHFR4eXu3yqqtinWszmay4uFi5ubkqKCiQaZpOyyoOS7d58+agSO6y2+1avny507zhw4fX2f6ioqLUp08fr9dv27atI7mroKBAeXl5io2NrfZ+A+Wzq4vvY8X1XnzxRXXq1Mmn98kbCQkJTtN1nUwGAEBVSO4CAAAAAAAAAACAk8LCQoWEhKhhw4Y+bZ+fn6+FCxdqwYIF+uuvv7R9+3bZbDavts3Ozq7WvqrTo07FRKicnJxq7WvWrFl66KGHHAlqhmHozjvv1OjRo6tVTk0UFBQ4XoeHhys0NNTnsjZu3Ki5c+fqt99+06ZNm5SRkeH1tllZWT7v1582b97sVNc2bdqocePGdba/Y4891qshTMtUTCTKzc31KmkpUD+7uvg+9u3bVw0aNHAkWa1evVrnnHOOhg4dqkGDBumkk07yqqc0b0VHRztNl//OAQBQH0juAgAAAAAAAAAAOEr897//VefOnZ3mFRQUaOfOnfrpp5/02WefqbCwUCUlJXr//fe1ceNGvfHGG4qKivJ6HzNnztR///tfn3rFkqqfcFWdnqvCwpxvjXmbcCZJX3zxhXbu3OmYjoqK0rPPPqtzzz3X6zJqQ2lpqeO1r4ldu3bt0tNPP63vvvvO53rk5ub6vK0/lfUIV6Zdu3Z1ur+KyVpVqdjbm7ue7coL9M+uLr6P0dHRmjBhgsaOHSu73S7J+lwnT56syZMnKyEhQV26dFGXLl3Uo0cPdenSxaW3suqo+L2q6jMBAKCukdwFAAAAAAAAAABwlGjYsKFatGjhMr9du3YaMGCARo4cqRtvvFH//POPJOnXX3/Vo48+qmeffdar8p9++mm9/fbbNapjxSHlqmIYRo32563yiV2SNfzcOeec45d9lxcZGan8/HxJUlFRUbW337x5s0aOHOmS9FRdZUk2ga788JlS9ZOvqqs2e5CqKBg+u7r6Pg4aNEhvvPGGJkyYoO3btzsty87O1qJFi7Ro0SJJUkxMjKM969SpU7X3VfF7FRMT43vFAQCoBSR3AQAAAAAAAAAAQJLUunVrTZkyRZdddpkjgWjWrFkaMGBAlYlM8+bNc0nsateunc4//3x16tRJzZs3V8OGDRUZGekybN2AAQO0a9eu2v1jalmfPn20Zs0ax/vyzTff6L777tPTTz/t0gNRXYqLi3PUwTRNFRQUuAwj54nNZtNdd93llBwUGRmpc889V3379lW7du3UpEkTxcbGKjIy0qkHo88++0wPPPBA7f4x9cBfyYC1jc9OOvXUUzV37lz98MMPmjdvnpYtW6aDBw+6rJefn685c+Zozpw5GjJkiB599NFq9T5Y9v0qExcXV+O6AwBQEyR3AQAAAAAAAAAAwOH444/X2LFj9cwzzzjm/fvf/1a/fv0qTZCYOHGi0/Qdd9yhW265xatkmmAY4q9Hjx668847dfPNNysrK0uSNVRjTk6OXnzxxRoNA1cdxxxzjPbv3++YPnDggI499livtv3222+1YcMGx3SrVq305ptvqmXLllVuGwyfkTvJyclO02WfXbA5Gj87d8LCwjRo0CANGjRIkrR9+3atWrVKK1eu1C+//OLSw95nn32mnJwcTZo0yet9lP9+SVLTpk1rXnEAAGqg7voFBQAAAAAAAAAAQFC65ppr1KpVK8f0nj179N5773lcf9u2bdq8ebNjumfPnrr11lu9SuwqLCxUdnZ2zSrsJ127dtW7776rRo0aOeZ9//33GjVqlN8SaCom8+zdu9frbRcsWOA0/fjjj3uVHCS5JrwEi/KflST9/fff9VSTmjkaPztvtGrVSoMHD9bjjz+u7777TrNmzdKFF17otM78+fP1yy+/eF3mvn37nKbdDWULAIA/kdwFAAAAAAAAAAAAJ+Hh4br99tud5k2dOtVjAtP27dudpvv37+/1vlatWiXTNKtdx/rSvn17zZgxwymxZvny5br22muVnp7ul/2Xt2XLFq+3Lf85xcTEqHfv3l5vu2rVKq/XDSRt27ZVUlKSY3rr1q1OQxsGi6Pxs/PFiSeeqBdeeEFXXXWV0/z58+d7tb1pmtq6datjukGDBmrcuHGt1hEAgOoiuQsAAAAAAAAAAAAuLrjgArVp08YxnZmZqXfffdftuhV73oqPj/d6P59//rlvFaxHLVu21AcffKDU1FTHvHXr1unqq6/Wnj176nTfHTt2dJpev36919vm5OQ4XsfGxnrVs5pkJRatXLnS6/0EEsMwnBKhTNPURx99VI818s3R+NnVxLBhw5ym//nnH6+227lzp/Lz8x3TnTp1qtV6AQDgC5K7AAAAAAAAAAAA4CIkJES33HKL07zp06c7JZmUSUhIcJr2tjeptWvXau7cub5Xsh41btxY7733nrp06eKYt2XLFl111VVOPf/Uti5duigiIsIxvWbNGq+3Lf85paenKysry6vtnn/+edntdu8rGWCuvvpqp+np06dr586d9VQb3xytn52vQkNDnabLf2cqU/H71KtXr1qrEwAAviK5CwAAAAAAAAAAAG5deOGFat26tWM6KytLb731lst6J5xwgtP0rFmzqhz6bufOnbrjjjtUUlJSG1WtF4mJiZo+fbpOO+00x7zdu3frqquu0p9//lkn+4yOjnZKOPnrr79cek7zpPznVFpaqjfffLPKbV5++WWvh7QLVL1791bPnj0d07m5ubrllluq1ctafQ/leLR+dpI0e/Zsbd68uVrbfPHFF07Tbdu29Wq7ZcuWOU3369evWvsFAKAukNwFAAAAAAAAAAAAt0JDQ11673rrrbdceg1q0qSJunfv7pjOzMzUtddeq9WrV7uUWVxcrJkzZ+ryyy/Xrl27FBkZqZiYmDqpvz/ExMTotdde0znnnOOYl56erhEjRujXX3+tk30OHDjQ8dput2vp0qVebXf++ec7TU+ZMkX/+9//lJeX57Luli1bNGbMGL3yyiuSpJSUlBrUuP49++yzSkpKckxv2rRJQ4YM0TvvvKPc3Fy326Snp2vmzJkaPny4XnjhBT/V1L2j+bP7+uuvdcEFF2jEiBF6//33Kx1iMT09Xc8++6ymT5/umBcSEqKLL77Yq3398ssvjtdt2rTxOikMAIC6FFbfFQAAAAAAAAAAAEDguuiii/Taa69p27Ztkqxej6ZNm6a77rrLab17771XI0aMkM1mk2QlmAwfPlxt2rRRamqqwsPDdfDgQa1Zs0b5+fmO7R5++GG99tprTvOCTUREhF588UU98sgjmjlzpiTrfRo1apRefPFFnXnmmbW6v/PPP19PP/20iouLJUnffPONzj777Cq369u3r8444wwtWrTIMW/y5Ml655131KlTJzVq1Ej5+fnatm2bU09Jbdu21RVXXKGnnnqqVv8Of2revLkmTZqkW2+91dHTWXp6up566ik9++yzOumkk9SkSRNFRkYqJydH27Zt044dO2SapiQr0ac+Hc2fnSSZpqnly5dr+fLlkqSkpCS1a9dOSUlJio6OVmFhoXbu3KmNGzeqtLTUadubb75Zxx9/fJX7WLdunVPi2KWXXlq7fwQAAD6i5y4AAAAAAAAAAAB4FBoaqtGjRzvNe+edd5Senu40r1u3bnriiScUHh7uNH/r1q365ptvNGfOHC1dutSRxBUaGqoHH3xQl112Wd3+AX4SEhKiJ598UqNGjXLMKyws1JgxYzR79uxa3VdiYqJT710LFy5UUVGRV9u+8MIL6tChg9O8/Px8LV26VF9++aUWLFjglBx04oknavr06YqLi6udytejnj176qOPPlK7du2c5ttsNq1Zs0bz58/XnDlz9OOPP2r79u2OxK5AcTR/dhVlZmbq119/1fz58zV79mx9++23+uuvv5wSu8LCwnT77bfrzjvv9KrMefPmOW07ePDgWq41AAC+IbkLAAAAAAAAAAAAlbr44ovVqlUrx3R+fr7eeOMNl/WGDBmi999/X7169fJYVmRkpM455xzNnDlT1157bZ3Utz6NGzdO99xzj2PaZrNp/Pjxev/992t1P9ddd53jdW5urlNiSmUSEhI0Y8YM3XbbbU7DFFbUpk0b3Xvvvfr444/VpEmTGtY2cBx33HH64osv9Oyzz6pDhw4yDKPS9du2batbb71VY8eO9VMNPTtaP7sHH3xQDz30kPr166fExMQq14+Li9Oll16q2bNna8yYMV7tw2azadasWY7pc88994h47wAARwbDDLSUcwAAAAAAAAAAAAS93bt3a+XKldq/f79sNptSUlLUuHFjdevW7YjsSag+XH311VqxYoUkqWvXrvrwww+rtX1xcbF+//13bdq0SdnZ2YqJiVHDhg3Vtm1btW/fvi6qHHDS09O1evVqHThwQJmZmTIMQ3FxcWrRooVOOOEENW7cuL6r6NbR+tmZpqnt27dr+/bt2r17t3JycmSz2RQTE+MYqrFdu3aKiIioVrnffPONUwLfp59+6tJLGgAA9YXkLgAAAAAAAAAAACAILV26VCNHjnRMf/zxx+rcuXM91ggITldccYVWrVolSTrzzDM1efLkeq4RAACHMSwjAAAAAAAAAAAAEIT69Omj0047zTH92muv1WNtgOC0ZMkSR2JXSEiI7r777nquEQAAzkjuAgAAAAAAAAAAAILU+PHjFRYWJkn64YcftHbt2nquERBcJk2a5Hg9bNgwpaam1mNtAABwRXIXAAAAAAAAAAAAEKTat2+vESNGOKafe+65eqwNEFzmz5+vFStWSJKSkpLotQsAEJDC6rsCAAAAAAAAAAAAAHx3++23Ky4uTqZpSpLS0tLUoEGDeq4VEPjy8vI0ZswYSVK3bt2UnJxczzUCAMCVYZYd5QEAAAAAAAAAAAAAAAAAAgbDMgIAAAAAAAAAAAAAAABAACK5CwAAAAAAAAAAAAAAAAACEMldAAAAAAAAAAAAAAAAABCASO4CAAAAAAAAAAAAAAAAgABEchcAAAAAAAAAAAAAAAAABCCSuwAAAAAAAAAAAAAAAAAgAJHcBQAAAAAAAAAAAAAAAAABiOQuAAAAAAAAAAAAAAAAAAhAJHcBAAAAAAAAAAAAAAAAQAAiuQsAAAAAAAAAAAAAAAAAAhDJXQAAAAAAAAAAAAAAAAAQgEjuAgAAAAAAAAAAAAAAAIAARHIXAAAAAAAAAAAAAAAAAAQgkrsAAAAAAAAAAAAAAAAAIACR3AUAAAAAAAAAAAAAAAAAAYjkLgAAAAAAAAAAAAAAAAAIQCR3AQAAAAAAAAAAAAAAAEAAIrkLAAAAAAAAAAAAAAAAAAIQyV0AAAAAAAAAAAAAAAAAEIBI7gIAAAAAAAAAAAAAAACAAERyFwAAAAAAAAAAAAAAAAAEIJK7AAAAAAAAAAAAAAAAACAAkdwFAAAAAAAAAAAAAAAAAAGI5C4AAAAAAAAAAAAAAAAACEBh9V0BAACAQLR27Vp9+umnWrlypXbt2qXCwkLFx8erQYMGatKkiXr27KlTTz1VHTt2lGEY9V1dAAAAAAAAIChw3Q0AAKB6DNM0zfquBAAAQKAwTVPPPPOM3n77bXlzmLR48WI1atTIDzUDAAAAAAAAghfX3QAAAHxDz10AAADlvPXWW3rrrbcc0927d1fnzp2VnJyskpISpaena+PGjVq1apVKSkrqr6IAAAAAAABAEOG6GwAAgG9I7gIAACin7AJTeHi4pkyZolNPPdXtenl5efryyy8VFRXlx9oBAAAAAAAAwYnrbgAAAL5hWEYAAIBD0tPT1bdvX0lS//79NWXKlHquEQAAAAAAABD8uO4GAADgu5D6rgAAAECgKJ/zXlxcXI81AQAAAAAAAI4cXHcDAADwHcldAAAAhzRo0ECNGjWSJC1ZskTvvvuubDZbPdcKAAAAAAAACG5cdwMAAPAdwzICAACU89Zbb+nf//63YzolJUVnnHGGevTooW7duqlt27b1WDsAAAAAAAAgOHHdDQAAwDckdwEAAFTw2muvafLkySosLHRZ1qhRIw0cOFBXX3212rVrVw+1AwAAAAAAAIIT190AAACqj+QuAAAANw4ePKg5c+bo559/1sqVK5Wbm+u0PCQkRDfddJPuuuuueqohAAAAAAAAEHy47gYAAFA9JHcBAABUwW63a/369Vq6dKnmzZunNWvWOJY9+eSTuuyyy+qxdgAAAAAAAEBw4robAABA1UjuAgAAqKY333xTzz33nCTpxBNP1KxZs+q3QgAAAAAAAMARgOtuAAAArkjuAgAAqCa73a7u3bsrPz9fkZGRTk8UAgAAAAAAAPAN190AAABchdR3BQAAAIKN3W6XYRiSpKioqHquDQAAAAAAAHBk4LobAACAK5K7AAAADvn111/1r3/9SwsXLlRxcbHbdWw2m1544QXl5eVJkrp16+bPKgIAAAAAAABBh+tuAAAAvgur7woAAAAECrvdrkWLFmnRokWKj49X586ddfzxxys5OVnFxcXat2+ffvzxRx04cECSFB4errFjx9ZzrQEAAAAAAIDAxnU3AAAA35HcBQAAcEhY2OFDo5ycHC1evFiLFy92u26jRo303HPP6aSTTvJX9QAAAAAAAICgxHU3AAAA3xmmaZr1XQkAAIBAsXv3bi1atEi//fabNm7cqD179ig3N1dhYWFKTk5Wamqq+vfvr0suuURxcXH1XV0AAAAAAAAgKHDdDQAAwDckdwEAAAAAAAAAAAAAAABAAAqp7woAAAAAAAAAAAAAAAAAAFyR3AUAAAAAAAAAAAAAAAAAAYjkLgAAAAAAAAAAAAAAAAAIQCR3AQAAAAAAAAAAAAAAAEAAIrkLAAAAAAAAAAAAAAAAAAIQyV0AAAAAAAAAAAAAAAAAEIBI7gIAAAAAAAAAAAAAAACAAERyFwAAAAAAAAAAAAAAAAAEIJK7AAAAAAAAAAAAAAAAACAAkdwFAAAAAAAAAAAAAAAAAAGI5C4AAAAAAAAAAAAAAAAACEAkdwEAAAAAAAAAAAAAAABAACK5CwAAAAAAAAAAAAAAAAACEMldAAAAAAAAAAAAAAAAABCASO4CAAAAAAAAAAAAAAAAgABEchcAAAAAAAAAAAAAAAAABKCw2i4wIyOjtovEUcYwDCUlJUmSMjMzZZpm/VYIOErxXQQCB99HIHDwfQQCB9/HmktOTq7vKqCajpTrbnx/EUyIVwQbYhbBhHhFMCFeEUyIVwSbIzFma/u6Gz13AQAAAAAAAAAAAAAAAEAAIrkLAAAAAAAAAAAAAAAAAAIQyV0AAAAAAAAAAAAAAAAAEIBI7gIAAAAAAAAAAAAAAACAAERyFwAAAAAAAAAAAAAAAAAEoLD6rgAAAFXJzja1YaO08x8pKlJq0UI68QQpPNyo76oBAAAAAAAAAAAAAFBnSO4CAASsDRtNzfjI1MIfJZvNedngi6V77ya5CwAAAAAAAAAAAABw5CK5CwAQcAoKTE1909TMTyXTdF0eFiZdOZzELgAAAAAAAAAAAOBIVZpfInu+reoV61FITJhCY8Lruxo4wpHcBQAIKDt2mnrgQVPbdzjPP+lE6fjjpaJCqWVLQ82bk9wFAAAAAAAAAAAAHKns+TaVZhRJbjqDCAiHbleS3IW6RnIXACBgrPjN1EOPmMrNOzzvtFOlm0YZOq5N5clcO3aYatJEiowk6QsAAAAAAADwF3rUAAAAdcqUzMLS+q6FW0ZUaH1XAUcJkrsAAAEjPFyyHTo2i46Sxt1raNBZkmFUnrC1bLmpRyaY6t1LeuxhKSSEBC8AAAAAAAAcfUzTlM1mc7z2B3rUAICqkQgLf6qP4wGgJojZqpHcBQAIGJ07GXr2ael/L5l67BFDx7etOklr+3ZT4+83VWqXvv9B6nCydPkwP1QWAAAAAHDEC4abcBI34oAjWXXbIcMwVFJk3fqx5RbW/c2xUEP2Ihs9agBAFQI9EdaICJFCDY4pa0l9n0d4czzAOcTRpb5jsiplMRsSQwqTJ7wzAICA0r2bobenSaGh3vW+1aqVocuGmfrwY2t6ylRTfXpLx7ak9y4AAAAAR5aDBw/6vG1sbKyio6PdLktLS/P55n90dLRiY2PdLsvIyFBpqeuNfsMwVFJSIknKyspyu+/IyEjFx8e7LTcrK8uxfXVFREQoISHB7bLs7GwVFxc7zStJL5Q9s+qbcGFh4UqMd19ubl6uioqLfKpvSEiokhOT3C7LL8hXQWGBZEghSZEKT4nyulzDMNSgQQO3ywoKCpSXl+dLdSVJDRs2dDu/qKhIOTk5PpebkpKikJAQl/nFxcXKzs72udykpCSFhbleJrfZbMrMzPQqXt1JSEhQRESEy3y73a709HSf6xsfH6/IyEi3y46UNsIbgdJGeCs8PFyJiYlul+Xk5KioyHMbUVk75LaNMAyVFIYqLz9PaRnpki+fnWGoQVKK20UFhYXKLyjXRkSEyDRNGSWmzKKqP88GSe7bnqLiIuXm51a/rockJyS7byNKipVbkK8QRSpc3reTZapqI3xFG2GJiYlRUlKS22W0EZaq2ojKhIaGKjk52e2yvLw8FRQUVFlGaUGJ7AXOn4MhQw1SPLURBcrLz69+ZQ9pmOK5jcjJ9dxGhESHKjTac5JKbRxHuDsmqE4bUZJeKHtGkVdtZXxsvCLC3bcRGdkZXtXXnbiYOEVGuG8j0vIypLwQhRyofkJsbEyMoqM8tBHp6TJ9zGiLjopWbEyMy/yQmDBlF+UGdBtRMZkvOzfb53J9OtcwDOUcarfzCwpcjwcMKTwlWo2Pb+a2XG/bCHdq+1yj/HenPo4jcvIqP4cx4sMVEhKhcLl+twLpOMKbc9u42EraiIw0n+oqSTHRsYqOcn8clpZ56HjVMJQTE62w5GgVRXqXhBbo5xqefoN9ZZi1/NhGRobvPyiAZDX4ZQfzmZmZdLsH1BN/fBf37DEVEio1aVyzRCybzdTNt5rasNGa7nCy9MrLhtcJYkCg47cRCBx8H4HAwfex5mr7IhPqXlVD1lfmueee06hRo9wua9eundLSfLtQO378eN1///1ul/Xt21cbNmzwqdwbb7xRzz//vNtlF110kX7++Wefyr344ov11ltvuV123XXXafbs2T6V27dzL33y0vtul/3fi4/p7Vnul1UltfXx+uGteW6XvTD9Zf337Yk+ldugQQNt2rTJ7bI33nhD48eP96lcSR5vJsyaNUs33HCDz+Vu3LjRbeLY4sWLdfHFF/tc7s8//6wTTzzRZf5ff/2lU0891edyZ8+erdNOO81l/sGDB5WamupzudOmTdPgwYPdLkvxcKPdG7QRlrpqI0499VR9+eWXbpeNGzdOb775pk/lum0jDEPx8XF6evLzeub1F3wqNyUxWWu/WO522Vufv6cHX5rgU7mStGuh+7bny4XzNPqxsT6Xu2bWUrc3fH9ZtUyX3XWNz+XSRljqqo2477779Mwzz0hyPaanjbDUpI1o3769lixZ4nbZM888o+eee86nclOSUvTH1yvcLpv+yTt68D+P+VSuJO1eusXt/C8XzNXND47xudxgO46Y+b/3dErX3i7z0zLT1GlwH5/LnfzYy7qo/3lulzXv387ncp+69zFdP+xat8s6nNtD6Zm+Ja3efeNY3fuvO51nGlJocqTOuGhAQLcRJQcLVJpe5OjV8qZHb9dXP37tU7l1da7R/vhULVm+1O2ymrQRdXmuEWzHET9+9b1OaNfeZf76TRvU74IBPpf72bszdWrvU1zmH0xP08l9Ovlcbp21EXc8qusudf8+drykl9KzfMsxCvRzjdq+VknPXQCAepGVZeqe8abyC6Tnn5HaHe/7TYqwMEMPPiDdeJOpkhLpj3XSN99K57s//gAAAAAAAHBRfqgSW6ZvvaSUsWUVqeSga28HJemFNSq3NK9EpQUllfZOEkjs+Ta374MkqdT3mx32As/lmiV2n8sFcGSw2+x10kaYxaWeyy0OzGFJ64Rpeh6GtaRmN7I9lUvbHuBKKomJmiQ32FzLZajdWkT/CHXOnlWs0nTX8wp7lm89PTq2zy5xX25Gzc5hENhI7gIA+J3NZur/Hja1Y6c1fc84Ux/PkKKifD+SPK6NoZEjpDemWScKr79p6sz+UnQ0R6cAAAAAEGzqKnGDm7KoTPnhcwL1hotZYJMts0j2PO+GKvFWaW6J5yQse82SsNy9D5Jk1iS5q6jUc7kkAABBwzRN2Ww2x+taU2J3Gg7NaZ81Oo6we257iml7AllJeqFK5Po7Z8uqYTJ3pvtk7pomiQP+YNpNj8d/ZQ88+KSScktzfRuaMliZRXa3iY9mUc1+M8xiT+VyTnskI7kLAOB3r79h6vc11uuQEGncPUaNErvKXDlcmj1H2r9fOnhQmvGRdMN1NS4WAAAAAOBndZW4wU1ZVMm0eg0J2BsupmQvLJWZa3ObtOAre777ZDSpZh1uuOtxo1YKLq2k3BokowGoWvleDiXVOAG0LAHAllvonOBVgwRQs9TuaM9dd1qTcj23PTVJWEXds2cUqVRukq6za5ZoUle98sAzIyJECuWh/lphymMirL3A9+Qu05TH40p7/tGV3AXUJsOs5YEeMzJ8Gw8TKGMYhpKSkiS5jrEOwH/q6ru4ZJmpcfcdLuv22wwNv6z2DsS/+dbUE09b5UdHSR9/aCg5iQN9BDd+G4HAwfcRCBx8H2suOTm5vquAatq0aZPP28bGxio6OtrtsrS0NJ+/Q9HR0YqNjXW7LCMjQ6WlrjdADcNQbGysStIKlb0rXWah642DyIhIxcXEuS03KydbtlLfbgqEh0UoIS7e7bLs3ByV2A7fiDPiw2WapowSs8qEnLDQcCXGJ7hdlpufq6Ji33pvCAkJVXJCkttl+QX5KigqkBEfLkWEKCTc+yFqDBlqkJLidllBYYHy8vN9qa4kqWFKA7fzS0JLlV/q+5CEKSkpCgkJcZlfXFys7Oxsn8tNSkpSWJj1DHTJwQKVphfJLCyVzWZTVm6WZBiKi7NiPDc3z+uEpPjYeEWER7jMt9vtysj2/Rp6QtNkhYdHWHFZIcEgLTPN53JjomMVHRnldll6ZrrMamSSlf/uRClCMdExbtfLyM6U3e5bsltN2wgjMlQhyZEKT3H+myMiIpSQ4P67nJ2dreJi327Wh4eHKzEx0e2ynJwcFRV5biNK0gtlzyhy2w65bSMMQ/HxccoryNOBgwd9SqIzZCglyUMbUVSo/IK8w+tWo62UpAZJ7tuIouIi5ebnVruuZZITkt23ESXFyrXlu/28vVG+jSjPZrMpMzPTl6pKkhISEhQR4b6NSE9P97nc+Ph4RUZGul128OBBn8stfxxRcrDAKRkgLTPd52TN6OgYNWrQUJKs355y5WRk+dhGRIQoIjxC8RGxbhOx/HUcUZXy7VBN2ojKhIaGejzmz8vLU0GBhx4by3HXBlWnjaguX9oIb9qhytqInLwc7yrn5pggMS7RYxuRlZtVrTqWV1fHEXExcYqMcN9GpJdmV6uO5dXmcUR50ZHRLscRIQnhUmSIsvKyVWr3LRk/KiJScXEejiOys1Ri8y2xKSI8XAnxCVKoIXt+icy8Ukc7VN02ojyfzjWqOIY14sNlGCFKiUl021aWnWv4ojbbiIrfnfo4jqiqjajs++1tG1Fd1W0jvG2DKmsj6vxcwzAUmxSnsJRoFUV69x305XqENyIjIxUf7/73PisrSyUl3h1HtGvXzqf9e0JyFwIOF+iBwFAX38UDB0xdP8pU5qHjldNPlZ5+0pBh1F7yld1uatRoUxs3WtNXXC6NudX1gAwIJvw2AoGD7yMQOPg+1hzJXcHnSLnuZhiG4uLiVHKwQJk70mTW4KnwuhSSEC572QVwTz0EBQBHPW1mrfbkVKsMKTQ5UuEN3ScYBoryyV0OhxJlJCknJ7eG3VjVXDDEZTDU0YgKVWhK4Mek5CEuK+PnmOXzPvpUOyYrUwfxGgwxKQVPXNbq511H/PaZ1yBegyEug6GOUnAc+xqRIbLb6/m9rCJeg+7zDuB6UsdaYhiKS4lXeMNoFXqZ3BXoavu6G8MyAgD8orTU1IQnDyd2NWkiPXBf7SZ2/T979x3eVPXHcfx9uvegTBFQ9lCGsnFvHDhxgAtBRUEEJ25FQRHBPX6oiBMVB4qKOHEwFAeCgyGo7FW6d5vz++PSpqEptGlKE/i8noeH5N6bc79J7z29TT45ByAkxHDlULj5VkvTA6BDe43aJSIiIiIiIvuByqafCgAhCeGaPkdE6oym8BIR2QcF8LWvidCAAyLifwp3iYjIXjH9FcuS35zboSFw712GhITaeVOld08YP87Qry+EhemNGxEREREREZG65sovpmi7b1O77BWhBlfBvvENcRGpKOD7oJ1CYsIIjQmv6zJEREREJMAo3CUiIrXul18t019x379ymOHQQ2ovdGWM4eijaq15EREREREREakmV34JNrs48KfPqetCRKRWBHofBFDaASnctX/QiHIiIiJSHQp3iYhIrft1iS2bzrtnDxh0Yd3WIyIiIiIiIiJ1QNPnSIBQqGI/FcB9EICJCq3rEmQvC/gR5TSqpYiISMBQuEtERGrd0CEhtDzY8sI0y123G0JC9u6bZ9ZavvseDj4Ymh2oN+5ERERERERERPZ3AR+qAAUrRPZxgT6inEa1FBERCRwKd4mIyF5x7DGGo46E0L38rci/llsemWJZsRJOOB7uvUt/ioqIiIiIiIiI7O8CPVQBClaI7BcCeEQ5jWopIiISOBTuEhGRvWZvB7ucfcKKlc7tL7+CSwZbWrXUW2IiIiIiIiIiIvu9AA5VgIIV+xtNFyoiIiIilVG4S0RE/C4zy/LMs5arrzIkJ9XtGxJt2xiOOdoy7xuwFl6YZnnwAb1JIiIiIiIiIiIiIoEl4KcL1VShIiIiInVC4S4REfEray0PTrR89z0s+tFy393QpXPdhqmGXWH49juLywXffQ/Ll1vat1fAS0RERERERERERAJHoE8XqqlCRUREROqGwl0iIuJX777vBKgAtm+H3AD4otlBLQwnnmCZ+5lzf+qLlimT/P8WhLXOuy7G6O0NERERERERERER8UEATxeqqUJFRERE6oauwkRExG+Wr7A8/az7a2WDLoQ+vQIj6HTFZYbQUOf2j4vht6X++/rb/15wcea5Lo490dL/dEteXoB+tU5ERERERERERERERERERIKKRu4SERG/yMyy3H2fpajIud+pI1w1LDCCXQBNmxpOO9Xy4Wzn/vMvWp58zD+jbB3cwpCa6gS62neB6OjAed4iIiIiIrJ3ZGdn880337Bs2TJ+//13tmzZwo4dOygoKCA+Pp7WrVtz1FFHcd5555GcnFzX5YqIiIiIiIiISJDQyF0iIlJjLpflgfGWjRud+3FxcO9dhrCwwAo5XXaJITzcub3kN/jiK/+0e+wx0KC+c/uYowPrOYuIiIiIyN6xdOlSbrjhBl566SUWL17M2rVryc7OpqioiB07dvDjjz/yyCOP0L9/f7777ru6LldERERERERERIKERu4SEZEae+U1WLDIff+u2w1NmgReyKlRQ8PA8yxvzHDuP/GUpVdPSIivWq0ul+Xtd2DA6RAT435MeLjh5WkQE0PZ1I/l/bbU0qkjARd2ExERERER/2rSpAm9evWiU6dONGnShAYNGuByudi8eTNz587l888/Jy0tjWuuuYZ33nmH9u3b13XJIiIiIiIiIiIS4BTuEhGRGvlxseXFl2zZ/csugX59AzfENORSw1dfWTIy4dKLDbExVXtcQYHl/gmWed/A4p9g4gTPsFZCQsXnXFxseWGa5bU3YNCFcO3wwH1dRERERESkZnr16sW8efMqXX/qqafyxRdfMGLECIqKinj66ad58skn916BIiIiIiIiIiISlDQto4iI+GzbNsu991vszmxXzx5wxeWBHWCKjjaMu9fw2suGgecaQkOrVu8vv8K8b5zbP/wIcz7d82PmfQOvveHcfuNNWPyT3f0DREREREQkaIV6G8Z3FyeccAItW7YEYPHixbVdkoiIiIiIiIiI7AMU7hIREZ8lJ8Pppzm3GzWCu++oeliqLnXsYGjUsHp19ultuGqY85jBF8Fpp+75MccfB0ce4dzu0R1S6lW3UhERERER2ddER0cDUFBQUMeViIiIiIiIiIhIMNC0jCIi4rPCQuh/suHggywtmkNSkn+DXcXFlrXrICwMmjer3dDYmjWWyEho2rTy/VwyGA7pZDisW9VqMcYw9mY48wzo3SvwQ28iIiIiIlK7Vq9ezfLlywHKRvASERERERERERHZHYW7RESkWnJyLLM/ho8/sfzzr3t540ZwztmWswZATEzNg0z/e97FW29DYRGceALcc6dnmytXWeZ+ZunWzXBY15rtc80ay6gxlogIGH8/tG8Hcz+Ho490pnEsZYzhsG7Vazsx0dC7l8+liYiIiIhIkMvLy2PLli18/fXXvPDCC5SUlABw6aWXVrstY/aNL42Ufx4GsIH6vIzBWAALgVojBEedQVxj+XKNAUsd1x/Er2VACYYawac69/oxGwyvZTDUCMFRp59rrJXjNRheRwiOOoOhRthrddboeA2G1zIYaoTgqDMAatzj8RoANVZJMNSpGv3C85gNzBrrmsJdIiJSZb8ttdxzn2V7asV1m7fAM89ZPvjQCUi1blWzX7ytWxkKiywARUUV1y9dBm/NhLdmWrofDo9N9m1/RUWWW2+3pGc494ePsDQ9ANaug8UnwZ236SJCRERERESq57333uO2226rdP0VV1zBgAEDqt1uUlJSDaoKLMXFxQDExMZATB0XUwkbDrYEbFgJobGhdV1OpYKhzmCv0e78PzY5fu8Xtotgfy0DRTDUCL7XuTeP2WB4LYOhRgiOOmujRn8fr8HwOkJw1BkMNcLerdPX4zUYXstgqBGCo85AqXF3x2ug1LgnwVCnavSjnR/HxsXFERamKNOu9IqIiEiVzPnU8uDDFpfLvSwiHBo3hu2pkJvrLNuwEa6+1jJxAnQ/fM+hqC1bLUuWwMkneW7bpzdER0FKCrRoXvFxq1fbsttHH1VxPxs2WpKT9jyiV3i44Y7bYOwdluxsKClxgl0Acz+DTZssnTpakpMNyclwzFGeo3lVl7WW3/+Adm0hIkKhMRERERGR/UmHDh2477776NKlS12XEhBCYsIIJ7quy6iUy1isywUuCA0N3DfAg6FO1eg/wVCnavSfYKhTNfpPMNSpGv0nGOoMhhohOOpUjf4TDHWqRv8JhjpVo3+FxCjCVBljrbV73qzq0tLS/Nmc7IeMMWXfRE1PT8fPh6iIVFH5c/GVV3cw8RHPczElBWa8CjExIRQVWeZ+Dk89bcnOcdZHR8MTjxo6tPceYHK5LB/MhmeetRQWwksvGFq29Ny2oMASGen98X/8aZm/wLL4Z3h4giE52XO760a7+G0pHHwwTLjf0PQA93prLSUlsGWrEyCrV8+wZavl/vGWJb9V/pqEhMDnc0ylNe3J/AWW6a9Y/loOd95uOOUkhbukavS7USRw6HwUCRw6H2suOTm5rkvwWWFhIStWrGDHjh1kZWWVjQJVHWeddZb/C9spMzOTzZs3A5Cfn8+6deuYM2cOn3/+Oc2bN+f222/n2GOPrXa76enpfq60bhhjiIuLw1pLdna2zl8JaKXHK6DjVYKCjlkJJjpeJZjoeJVgouNVgs2ux+y+wN+jryv2JiIiu/Xd/EImTal40XfrTaZsVKzwcMPpp0LXzjDmJsumzVBYAH8thw7tvbdrLXz2uSUv37n/2JOWJx71DDvtLkTVqaOhU0fDVcMqrtue6oS0rIX//oP6KZ7rt2yB8y50ntMFA+G6EYZGDQ1PPArfzYd337P8usR5fHkHHFCxpq1bLU8+Yxl+lWeAzJt1653XBODtmZaTT9SUjyIiIiIi1fHhhx/y9ttvs2TJEkpKSmrUVm2GuxISEkhISCi737lzZ0477TRmzZrF2LFjufbaaxk/fjznnHNOtdrdl96QD/RvC4uUpylBJNjomJVgouNVgomOVwkmOl4l2JQ/Zvel9z/8RWe0iMh+orjY8s57sOQ3Z1rAl180pKR4BosefdxFRAT06W3o0hnW/FPCTbdke0zFCHD5pdC3T8VQ0oEHGqY8AuMesIwaaTj0kMqDS6GhhtvHwuVDLc0OhKuv9F/Iafs2aN8OVq6CNq0rBrLS0t23F/0A141wboeEGI4+Eo4+0pCba/nnX1i/3tl+R5qlfr2KNb75tuXrebDoB8uYUdD/lMoDW6f1hxenOfOcd+wIhYUQGemPZywiIiIism/bsmULo0ePZsmSJYDvb/IZY7DW1tmXLM466yzmzZvHnDlzuP/++zn++ONJTEysk1pERERERERERCQ4KNwlIrKfCA2Ft962bNvu3M/IcKZWLGWt5cuvID0DZrxlGXcPvPJaFtnZnh+a9OwBQy6r/IOQZgcapj5bMeBUWGiJiDAVtn18CrRr64z+5S/t2xuef85QUGBJ3VFxfVaW83rUr+/8y821ZaOQlYqJMXTqCJ06li6pWF9enmX2x6W3YcJEy4qVMGqkE17bVXy8YcID0K4dJMRrxC4RERERkarIzMxkyJAh/PPPP2XBrNKQVnUFwjc/jz/+eObMmUNubi7ffvstZ5xxRl2XJCIiIiIiIiIiAUzhLhGRfYi1lt+WwtzPLKf29xw5yxhDt66Wz75w7qdneD42Lc29rMHO0NPGTZ7TnDRqBPfcabwGl8rbNdj1y6+WiZMsI66Bo470XHdIp9oLOUVGGg5oUnF5zx6Gb76s+X6jow3PPAHjxjujfAG8+z5s3mK59y5n/a56dFeoS0RERESkOp566inWrFnjEeqqX78+Rx55JK1atSIxMTGoppuoV69e2e2NGzfWYSUiIiIiIiIiIhIMguedLxER2aMZb8EzzznfRI+OthWmRTzjdEP3w6FrV2jS2POxcXEwZZJh0Q+WAw80dOkcwpFHhDD3syIAwsLgkI6QXwDVmTTky68t99zn1DRxkqVjB6hff98JOLVpY3jhf/DwZMvcz5xl8xfAdaMtEydQYepLERERERGpuoKCAt56662yUFdoaCi33HILF198MaGhoXVdnk+2bNlSdjsmJqYOKxERERERERERkWAQUtcFiIhI9WRkWL751jLrw4rTiXTs4L793fyKU45062o4tb/hgCamwuhaERGGnj0Mo0aGcM5ZhrmfucqCXQAd2sOXX8PACy3vzaraVCbWWtautZTuqrgY1q2v4hMNIpGRhjtvMwy5zL1s+Qq45jrL5i27f61crrqfFkZEREREJFD9/PPPFBQUAM4IwbfeeiuXXXZZ0Aa7AD799NOy223btq3DSkREREREREREJBho5C4RkSCwPdXyzTfwx1+Wzz53loWGwIoVljZtDEf0hYYNDR07QMOGcPSRcPKJvo8YZa3li6/coaPjjoF53zq3XS44pJPn9unplnfft+TmQcuDDaf1d/ZtjOHf/yylGbPGjaFrF5/LCmjGGIYOMTRpbJn4iKWkBDZudEbwevJRaNzY8+excZNlzqeWTz6Fhx+EVi01wpeIiIiIyK7Wrl0LOH+jJCcnc/HFF9dxRZV77733OO2004iMjKx0m+nTp/PNN98A0LRpUw4//PC9VZ6IiIiIiIiIiAQphbtERAKUtZZ//oHnX7QsWAglLs/1JS6Y/TGA5dHHoVtXy2WXGN550xAS4ltQaPkKS0SEE9B6aLzhzbcj+eKrQm4f6+KM0+GtmZa8PGjbxrP9HTvgpZed27162rJwF8DIawwLFlpaNIcbRlccMWxfc2p/Q0oK3HanpbAQNm2CJ562TLjf83lPm275dK5z++NPLKNG7tuvi4iIiIiILzIzMwHnyxRdunQhJCRwB6F/6qmnmDhxIieddBKHH344zZo1IzY2luzsbFauXMns2bP55ZdfAAgPD+eBBx4gLExvzYmIiIiIiIiIyO7pHSQRkQBjreXzLyyPPQnZWVCVWfushV9+hV9+tfToDjeMhmYHVi8sVFRkeeBBy7p1cNEFliGXhTDimhiuHBpNbm4GPbpbenQ3FBZWLKig0H17xQrnOZSGuBo0MDz7FBx8EISG7h8Bpl49DQ8/CLfebmneDMbeXPF5n9bf8Olc57X86WfP10xERERERByJiYllt+Pj4+uwkqpJT0/n7bff5u233650m8aNGzNhwgT69u27FysTEREREREREZFgpXCXiEiAeeBBy9zPPJcZA90PhyP6GZodaImONuTnw7//weLFlh8WQ0mJs+3in+CyKyxXXwnnn0eVA0Nvvg3//uvcnvUBDDzPuR0RYcjNdW8XEVGxvfopcNUwgzHQurUTNiu/29at9r/QUvfDDY9NhubNICGh4vPv2gUGnAF9ext696r6z0lEREREZH/SuHHjstulo3gFqunTp7NgwQJ++OEHVq9eTWpqKunp6URERFC/fn06dOjAMcccQ//+/YmOjq7rckVEREREREREJEgo3CUiEkB++dXyzbeey7p3hzHXGVq0KA3/uENAPbrDwHMN27dbXnnN8sFsJ+RVWAhPPm1ZtgxuHwsxMXsODnXtYmnaFDZsgKuvMtRPqXrYqEEDw6UXV3nz/cahh1R8Da21bN0GjRoabrlRgS4RERERkd3p3r070dHR5Ofn88cff9R1ObvVvHlzmjdvzoUXXljXpYiIiIiIiIiIyD4kpK4LEBERxzffWW68xZKf79wPC4Ubx8Bjj4SUC3Z5V7++4YbRIbz0vKFDB/fyed/CVddY1q7d/dyO1lpmvOUEuw5sCl06V2EuSB8VFVnem2V5/4Pa20cge2smXHyp5fv5++fzFxERERGpjtjYWE466SSstaSmprJo0aK6LklERERERERERGSv0shdIiJ1yOVywlzLV8A991mKi53ljRrBIxMNBx9UvZGdWrY0PPskTH3B8sabzrJ//4Mrr7HcdQcc0dd7e59/Ad9+59xevwHS02tnRKkNGy3Xj7Fs3gJxcXDCcRAfv/+MXrVgoeXpZy3Wwtg7LBddYLlqmCE8fP95DUREREREquuGG27gm2++ISMjg4kTJzJjxgyioqLquiwREREJInlFueQX59Z1GXsUFRZDdHhMXZchIiIiIgFG4S4RkTriclkeetjy13LYupWyYNdBB8GjkwwNGvgW+AkLM1w73NCuneWhiZa8fMjJgdvusFw5FC4ZDMY4bTvffocpj7tHkTrvXDisW+2EjRo3gqho53Z2Nrz5tuXKoftPsOnAA6FpU1i/3rk/4y1YuMgy/CpLSj1YsAiuuNyU/XxERERERAQaNWrExIkTue6661i+fDnXXHMNkydPpl69enVdmoiIiASJ/OJcMvN3YAnc0fTDQyIJNaEKd4mIiIhIBcZa69cr2bS0NH82J/shYwxJSUkApKen4+dDVCRgPPm0i7dmei5r2BCmPmOoX98/4Z41ayy332VZv8G97Phj4bZbDVFRhkmTXSz+CTZuctYdeCBMf8FZV1vn4rxvLHfe47QVHQ0zZxiSkvb8fK21rFgJS36Df/61bNkCmVnOuqREaNwYDmph6NoF2rQmYANSmVlOqK90pLRdPTIRevfSrMniSb8bRQKHzkeRwKHzseaSk5PruoRq+eWXXxgxYgTp6ekkJCRw4YUXctRRR9G6dWsSExPrury9Yl95303nrwSb+Ph4ALKysuq4EpE9Ux/rXVredjLyUyksya/rUioVG5FIREgkYaHhdV3KbvlzdDEdrxJMdLxKMNHxKsFmXzxm/f2+m0buEhGpRV98aSkohBOPh4gIz7DRrp89xMY4UzH6K9gFzjSNU59zpnxc/JOz7MuvYd0Gy6ALLR/Mdm9rDNwx1gl21aajjoS2bWDlKsjLgzfetFw7vPJ9pqU5dX48x7Jp055ad37RN24Ep5xsOfMM30dAqy0J8Ybx4+CDD+G55y3Z2Z7rb7oVWrdyMWWSoV49d+3Fxc50jprCUURERET2Nx06dPC4b60lIyODqVOnMnXqVJ/aNMbw559/+qM8EdmHeJu2zWAoDnPCINl5OQEx6o+mbRPZd+UX5+EqygqIvsYbg4Eo1AeJiIiI7GUKd4mI1KL3P7D8thRemg7XXA3HH+cEc4qLLUt+c28XGgoPjje0PNj/wZ2EeMOkh+DZ/9mykcJWroRxD3hud9EFcOghtR8cCgkxDLsCbrnNeYPi3ffh/IGW+ime+05Ls7zymuWDD6GwqHr72LwFpr8Cr75mOeooy7lnG7p0DpzRvIwxnHUmHHcsvPq65b1ZUFDgXv/fWkhI8HzMst/hutGWhg0tLQ+GzocajugHBx8UOM9LRERERKQ2lP+2pjHGY5p5ERF/8jZtmzGG4rA8AHIKcuu871GwQmTfZ7EBO8JYRGhUXZcgIiIisl9SuEtExA/enmlp1gz69HaHbKy1rF7t3N68Be4ZZ/n3P8uQy+DhyfDjYvfj77jNcFi32gvohIUZrhthaNnS8sgUS1ERuFzu9Q0bwtAhey8g1Kc3dOoIf/zphJpee90yepQ7+DbzXZg23ZKX5/m4xATo1w86tjc0a7YzAGUhLR3WrYPlKywLFkJGprN9iQu+ngdfz7Mc1g2GXwUdOwROECohwTDiGsOlF7uY/TEsWAjLlsGBTZ2fWXnbtjv/b93q/Fv0g2XqC862Rx5hOWuAoWnTwHluIiIiIiL+ZIzBWlvjUEVpOyL7Gm8jTgWaYBltatdQhTGGSOtMkVZYkl/nfYiCFSIisjcFwzUGBM91hoiIiK8U7hIRqaF337M88bQlJQVefckJ7ACUlMDgQYZ33rWk7nC2fell+OlnZxSmUldfaTjphL0TyjmtvyEvz/LYE57LE+IhMxMaNNgrZWCMM3rXmJucN0Q/mA0XXWjZtg0mTXGH4kodeghcMNAZqWrX0FOpnj0ADMXFlh9+hHfftx4Bul9+hauusRxzlOXKoYYWLQInCBUfH8KgC2HQhZCba0lLr7hNbg6EhUFxsefy9Rtgxlvw1kzLccdarhpmOKBJ4Dw3EREREZGa6tGjR12XIBLwvI04FUg02pSIiEhwCvRrDNB1hoiI7B8U7hIRqYEvv7I8+oTzR01qqjPF4JDLnHVhYYZLBsO5Z8O48Zbv5zvLywe7zjwDLh609+pNT7e89kbF5X+vhsuHWm66AY45eu9M89f9cOjaBZb8BkVFcMNNlrXroPwXYFu3gmuuNvTsUfWawsIM/fpCv76GtWstM9+zzP7IHYqa9y18+73ltP6WKy43NGgQWEGomBhDjJe/Qc860zDgDNi0CZavgPkLLAsWQXa2s97lgi++hG+/tQy/Gs4/r/aeV2amZes2Z5+JiVA/BUJDA+t1FBEREZF9x6uvvlrXJYgEBU3jJSIitS08JIJQE+q39qy1FO9847auR0aUygXyNQZAbHiCX4/Lyuh4FRGRuqRwl4iIj9auszw0yX0B37ULXHRBxe1iYgy33GhZtAiKS9zLu3SGMdebvRKkAuePjYmTLNu3l9blBKkK8sFlnakM77rX0rcPXDcCmjer3bqMMVx2iWXJb879/9a610VHw5VDDeecVflIXVXRvLnhxtGGiy6wvPiS5bPPnefscsHsj+HzLy0XD3J+bpGRgRNOKimxbNsOjRt51hQSYmjaFJo2heOPc0Yp+3UJvPOeZf4CZ5vCIjiohf9r+uNPy2efO4GyTZs810VHw9FHOVNDHtIpcF5HEREREZF9zfbSP+h8EBsbS3R0tNd1qampPn9AFR0dTWxsrNd1aWlplJSUVFhujCE/35neLrv0Gyu7iIyMJD4+3uu6jIwMioqKfKo3IiKChIQEr+syMzMpLCz0qd3w8HASExO9rsvKyqKgoMCndkNDQ0lOTva6Licnh7y8PADS83eQlZ9Goatq+zEYkup5rzc/v4C83Dyf6gVIrpfkdXlBQSHbc3w/huvVq0dISEiF5YWFhWRmZvrcblJSEmFhFd8mLy4uISszC4OhqMD5IDc7O7vKI5fExcUSHhFeYbnL5SIj3fd6kxPqQSVZuX2lj6gKf/QR+UV55Jd4HusR4eHEJ3hvNyszi0If+57wsDASEr33PdnZ2RQUeO97QkwIkSFRRIZ7/6F76yNKwwc5OTls27bNp3qNMaSkpHhdl5eXR05Ojk/tAtSvX9/r8oKCArKysnxud099RHX7yVLxCfGEhVUMjZT2Eb7aXR+RtqP6dZaKjYshIiLC67q0Hek+tQkQHRNNVFQkGENBcT5pee7+ZseOHfiac4mJjqZhmDOdRHZejkcfm56WTonLVe02Q00I4RERxMZ5H8UpMyOTol2nR6gif/cRUaHRRIVH1/l1xO54O3fq4jqisLCQnGzv00MWhLvIDslla2jlfV5yclKlfURWlvfr0V0ZIDbO+Z2Wk52DBRITEyq5jigmI8P9+35P/fmuEhISvJ7LLpeLHTt2VKkNb+Lj44mMjPS6TtcRjn3pb43Sc7yyv7n80Ud4sy9eR+yJt+tKqHofUV3x8XGV9hFp3qYHwv07Z/ft1l0fYYwpO/cyMjKq1G8Eeh9R2fnlK2P9HC1OS0vzZ3OyHzLGkJSUBEB6errS7xKQCgosw0dYVv3t3D+oBUx91hAT4z3Y8sTTLt6e6bms2YEw/UWz10JF782yTHnMfT49+oihaxdYsRLuu9+yabN729AQ6H+KYdTIRJo2DfX7uWit5etv4Nn/2QpBoaOPgutHGho29P/r8vdqy9QXLAsWei5v3AiuvcZw7F4atawymVmW19+wzP0cEhOc46Oq9axYaXnsCUv7dnD9dRUvQH21fbvl/gmWn3+p2vZ9+8D11xmaHrD7ujMzLX/8BX//DdnZFmOgYUND+3bQtk3NQn37Iv1uFAkcOh9FAofOx5rz95tMUvtq8vfKww8/zLBhw7yua9OmDampqT61e8sttzB27Fiv6/r06cOKFSt8avfiywZx34R7va4bdN7F/LDwR5/a7X/aKTw19Qmv60ZeNYo5H3/qU7u9+vTkjXde87runtvv5bWXvQyjXQVt2rbm068/8bru8clP8MSUp3xqNyk5kU9/mOV13Tuvvc8j47y/RlWxaOXXFZZFhEYx//MfuW749T63u3LlSq8f5nz//fcMGDDA53bnz59Phw4dAEjL205GfiqFJfmsWfUPg067wud2n371UQ7v1bXC8rQd6fTvfbbP7U588gHOO+d8kqMrvhb16tXzud1g6yOGDh3KpEmTvK4744wzmD9/vk/tntD/WB5+aoLXdbeMvJ0v5lQ8vqvi8F7deP6NZ7yue/CeScx87T2f2vXWRxgMcfGxPDzhER55aIpP7darl8ziZT94Xffq9Ne4945xPrULVBpKmDVrFldc4fs5V1t9xBsfT6Nlm4MrLK+NPiI2IpHt21I5tseJPrc7/vF7OL7/MV7X9W57rM/t3nT3KM67+GxiIxJxuVy4bHFZEOu4Hv1J9zE4dvWoodx4h/O7IScn1+Oa/rxTBrFm1T8+tXvBxQMZe9+NXgO5Vw66lp9/+NWndmurj+jXrx+zZ8/2uu7mm2/mxRdf9Knddu3asXDhQq/rHnroIR5++GGf2t3b1xEAX86Zxx3X3+dzu1/++AnJKRX//vlp0S9cNXiEz+3OnPM6rdq2rLB89co1DOw/2Od2X5/5Kr379qqwPDV1Bz079/a53Sefe5xTz+jvdV2rpm19blfXEY4BAwYwffp0APKKcskvdgcSA/Fvjbbt2rJo4SKv62rSR6SkpLBq1Sqv61544QVuueUWn9qF4LuOqK0+YurrT9O992EVlqelpnF8z1N9bnfatGmcddZZXtfpbw1HdfoIf79XqZG7RER88Orr7mBXZCSMu6fyYNeGDZYvvnTfN8YZPWrdepj+quXqYbUfYvl1ieWJp9y/QAZdCD26O/s9pBO8PA2ef9Hy7vvOqFYlLvjoE8unn6Vz5oBIjjvGcughlpCQmtVqreWnn2HadOsxPWUpY+CSQbUT7AJo3crw8IOG35ZannrG8tdyZ/nmLXD3vZauXeD6kdCmTd0Ei8LD4L1ZkJcH27fDqr+doFNVtGtreOZJ8BZCLyqyhIf79pySkmDX3HZUFBzYFMLCYHsqlA/rL1gIS35zpvg86YSK+/xxseX9Wc4IYBVrdY7RlBQ4/VTLuWcb6tVTyEtEREREZH9UUJJPRr73N3iLXb59kx6gyFVQabtFPo6SAk5NlbVbUINpjEpsSaXt5hf7PiqGiHjnsq5Kpx5z2eqPIFSldl2+jSgA3vsIYwzFYXkeHyhXlwtbad+TV+T7aBuy7/CYpq8GH1yW2GKKrfN7vbAk3+NDUFuDc65CjeXU2rlcw3qldhW6Crz+7Ipcvo2k5H58Ze36fl0JkFOY6bUfzsqv2SAruUVZlfbv4l/5xblk5u8oC5kG4t8aNe1nZc9qq48ochV6bdfXkT8lOCjcJSJSTWv+sbxWLgR/3QhDy5beAyhbt1quv8FSGiSPj4eLzoepO79os2AhXHGZ78Gbqli7znLn3ZbSkaY7tHemPCwvJsZw/XWG/qdYnn/RUhrULy6Gd98r4N33nMDNscdYjuhrOPSQqk9jaK3l3//gu+/hq68tf6/2XJ+cDA0bOCOIWQtTHrc89zQ1DpLtTpfOhrE3W159Hb79HkpHwl3yG1xxleWM0y3dukB6hqFdW2jfDiIiaj9kFB1tOPYYyydzoFEjqO7oysYYdh3ddccOy5ibLeeeDQNOr/5zCAsz3HITjBptOfkkOOVkwyGdIDTU3dbfqy1vv2P5dK4TDszNhXEPWDZuhMsucepau87y+JOWH6rw5frUVHj5VZj5ruXyS2HgudTqOSIiIiIiIoHH5SrZ+wGLAAxu2N20W+LybUopCW6hJoxQU3GKONk/eesjjDFE2vCaBU2s91AMQEkNArYiIlI1tRXcKHYVVdq/i/+VD5kG4t8aIhJcFO4SEakGl8syabI7KNWtK5x5hvdtN2xwQjWbtzj3o6Ng0kOGTh1h2R+Wdm3h0otNrYZWNm+xjL7RUjptc1gYDL6o8qBM2zaGSQ8Zlv1ueWGa51R8qanwzrvwzruWiHBo2dLSqpUzGtaBTSE21hl5q6AAtm2DjZucqR7/+BPWrau4r4hwuOB8uHiQISsLBl1qKSyEP/+Cjz+BM073/+tRXOxMefjue5aV5UaE7dQRVq6CoiInYPbhbPhkjrM9wKiRhvPP83893lx4vuHoI6F3L88AlS+2b7dcN8aybh1MmmyJiYYTjq+8zZISy/wFcOQRntO9HNLJMOtdSEhwlpW+LqVatzLcfqth4DmW+x5wwnwAL0yz5OVB06bw+JOWXad9P6ST89rXr28oKYH//nOOua3bnPW5ufDMc5Z538C4e6BxYwW8REREREREglF4SAQhJqSuy9g3GENBcT5pedv3vG015BZlV9qmRnUQEaldxa6iSvvgghqM1OmyJZW2W5PR/URERGTvM9bPEz2m7Tp3k0g1GWNISkoCID093e9zkYrUxGdfWMY94ByTEeEwfZqhebOKgZPlyy0332bLprOLCIeHHzJ0P9zZ1uWq+RSHe7J2reWGcuGyUmFh8M6bhvr1d79/Ywz/rY3lkzmFzJmbj4/THVcQHQUDzoDzBxoalZt+cdp0y7TpzmsbFwuvvWKon+Kf16i42PLpZ/Dyq5ZNmyquP+kEGDrE8NSzlu++r7h+yiTo2cP9JrS1lrF3WFq2hG5dDB3aQ3x85bVa64ScMjIgMwuysiA/H0JDITEROnaonWMhN9dy4y3uKTDDw2HKJEO3rhX3t2Wr5YEJll+XwI1jDGefWXGb35Zannza0v1wGH6V55vyxcWWxT9Bl86We8ZBJdO0ExoCZw6Aiy4wNGlScR8lJZaFPzjThK4uN8pbXBw8+ID32vcH+t0oEjh0PooEDp2PNZecnFzXJUg1rVq1as8bVSI2Npbo6Giv61JTU30+h6Kjo4mNjfW6Li0tjRIvc8cbY4iNjSU9P5VNqeu9fgs9IiKC2LgYr+1mZWZTXOzbqFXh4WHExcd5XZedlU1RkbvdmPAEXC4XLlu0x1ESwsLCiE/w3m5Odi6Fhb5N+RMSEkJiUoLXdXm5eeTnF1SrzlIGQ1K9RK/r8vMLyMv1/YPk5HpJFZbFRiRCkSEvz/fRJpKTkwgJqRgQKywsJCsr2+d2ExMTCAtzRsPKK8olrzibwpJ8iotLyMrMwmCIi3N+ttnZ2WVT6+xJXFws4RHhFZa7XC4y0jN9rrdhchPCwsNw2eIKtaSl+v7efHRsNFFRUV7Xpe1Ir+a0a4b4qGSSour51EdURWRkJPHx8V7XZWRkUFS059Gl0vN3kJW/w+O8qU4fUR2+9hF7Or+99RHGGOLj48nNyWP7tu1VPmY92qhGHxEREkl8VD2SoupVqe369et7XV5QUEBWVla1ay1Vr169SvuIzMxMrz/vqohPiCcsrOJoeaV9hK+89RGxEYkUFxezY8d2n0fniY2LISIiwuu6tB3pPrUJEB0TTVRUJLERibhcLkqse/Sf9B0ZPh1nANHRUTRs1BCArKwsj+uRjPRMXK7qh0tjwhMIDw8jKjbC6zXG3rqOqEqdzvldTFh4KPEJ3vu0nOwcCgt8vI4IDSExyfu5nJebR37e7kdwCg+NpMRLH7S3ryPAOZdzsr0H0qpyLZSYlOC1jygqLCI7u2rTzXq7JqhqH1Hd67Xauo7YXR+Rk55Xrf7co90A+lujKvxxHeFNREQECQnO7+W0vO1k5KeW9UN7+zpiT9ewESGRJMXU5+ADWntvNyeHvDzfzmVjDCkpKV7X5eXlkZPj+xTPdXUdsSeVXWfszesIqLyPqOr1Wnx8PJGRkV7Xbd/u+5dLqtJHGGNITHR+t2RkZFSp3wj0PqJNmzY+7b8yCndJwNEb9LK3paVZMjOhxAX160PCbkI6kx9z8f4s5/bll8KwKyr+op/zqTO6V+HOfj0yAh4cb+jZY++FUhb+YLl/vPO8dnXBQLhuxJ6/LVv+XNyxI42lyyzffmf56WdYvaZ69cTFQp8+cOQRht49nWkgd1VQYLniSst/a537R/aDCQ8YjxGkfLF8uWX8Q5Z//vVcHhXljFB1eDdDu3bQprWzn59+tkx+zHqMNhYXB2NGGU46cWfo7T/L4Ms8+6aEBIiOdn7ekZHOv7x8J9CVkeGMCuZN1y7w1OOeP4+v5lk++tjSoT307mU49BDfX4PsbMvI693TYcbFwdRnK4YSy4frwsPhxf95Tjf66uuW/z3vrG/bFqZN9az5g9nOcX/BQBh+Ndw3DuZ961lL61Zw9x2VT2NaXkmJ5d334dn/2bLXLiICxt1rOKLv/hfw0u9GkcCh81EkcOh8rLlACHfddtttHveNMUyYMGG32/iDt/0Eg33lfTdjnA8a0vK2sWH72hqNSFGbvH2AHYiCoc7SGr0FkgJFxM4PsHd9HUuDMlAxeFAXguHnHREaRWJUCsnR3j98CxS7fugaiHz5ee/tYzY2PIH4yCQSour+umJ39tWf997m7xpr43gNhtcRgqPOYKgR9l6dNTleg+G1DJbf38Girn/v7Ol4DZbf38Girn/eexIM5/e++D6fv99307SMIrJfWrHS8v4sJ6i068hWDeo7IzK1agmHH2bo2gUiI50wyY2jQzj2aMuMtyyDL/IMmGzdann8Kcs3uwRaCqsQ3rXWCd+UBox8VVzsjKz07vvuZeHh7mBRYgJcdmn19xESYujSGbp0dh6bnW1ZvcYJef292rJ9uzOFXun+6tWDA5pAk8aGpk2hY4fKp4IsFRlpuPVmGDHKYi18Nx+W/Q6dD612uQAUFVmmv2J57XUnuFcqORkGX2QYcLr3kFn3ww3TX3BGjnprpvPF1OxsuH+C5etv4JYbYcnSivvLzMRrmG5PQisG9lm92vLjYvhxMRQWWjp28H2Kxrg4w6SH4OprLVu3Oc/lrnstU59xH9cAl14MCxbCqr/h8ksNLVp4tnPi8fDW25Ce4UyzmZdniY52Hp+fb3npZeci662ZkJxEhbfqDz0EHptsPPa5O6GhzlSYnQ+F2++ybN0KhYVwx52WhyZAn977X8BLREREZF/0/vvvl32ho/SbmruGrspv4w+V7UdEap/FBuwHHuGh3r+hLiJ7UEtThfpTqAmlsNj3kQNFRET2OUHw+7tUVFgM0eHeR3UW2Z8o3CUi+5V16y2TH3VCXZXZtt3598OP8MablqgoOPwwS8/uhg4doF1bePhBZ0SpzEzL0mXwxVdOqMvb6Ez1U5zRmSqz6m/LY09Y/vgTXpkGzZv7/qFFWJhhy1Z3rKZBA8jOctc19Aqz25HJqiourjTsBeC/D1k6H2q4YKBlzqdw+1hD50N9a3vlKme0rvLT+sXEwJDLDGefCVFRew6ajbzWcNSRlgkPWdZvcJZ/Px/++NNy0xh4aIJhyRLLb8vg339hT6PTxsU54br4eOdfdDRYF7RqVXHb8lNHLvsD7rzH8uAD7prfm2U5oAn06F610FeDBoaHdwa8Cgpg9Wp4aJLlnjvdjw0LM9x9J+TkQIf2Fdts3Ngw7l74eI7lmqtMWbALwOVyQlhffQ0HHwS/LoUffnA/tncvmPSQb6OwtW9nePYpGHOjZe06J6h3972WJx931omIiIiIiIiISN3KL87DVZQV8CPziYiIiFug//4GCA+JJNSEKtwlgsJdIrKfsNYZzeqZ5yy7Tj0dEwNNGgMGNm5wptIrLz8f5i+A+QvcFzeRkeByWa9hLmPgzAFw0gnwxpvQo7shIqLyEMozz1l+2zkS1ONPWR6ZyB5DMNZatmyFP/6EY492RtYqNXqU4eefLT16OCGijz9xlh90EAw4fbfNBoSrrzRcMNAJJFVXYaHl5Vctr70B5adR7n44jL3F0LhR9drsfKhh+osw9QXLzHedUbzS0uCOu+HySy3XDjeEhBistWRlQ0E+FBQ4I0wVFDpTNCYmOv/Cwqq+72uHGw47zDLxYfj9d2fZmjWWli0N2dmWp591QloNG8DJJ1uOPtLQru3uj5vWrQyjr7NMfMS5//kX0Kuni1NOck+vWH6qxuJiW6Hmw7oZDutWcR8xMYZ77oRmBzrTas77xr1u0IVwzdU1m16zUUPD00/ANSOdoF1ePtx6m+XFqVC/vgJeIiIiIsGuKkPt7wvD8YuIiOzLNDKfiIhI8Ank39/g/A4P9BHGNEKo7C0Kd4nIPq+w0PLIo5ZP5riXhYbCySfB2Wca2rZxj37kclk2bYZ//oGlv1sWLYI1/1Rss6CS39FduzhBlk4dnfY6H+p8CJGfb1m33pm6sLDQeXxBIRQWwCEd4aefneDQDz/CSy9bDj0EikuguMiZ4rC0vVLX32D55VfndrPnnedQqnEjw/RpkJNjGXa1e/moEaZaAaO6Eh5uaNCg4vKCArvbKf2WLrNMnOSEi0pFR8GIaw1nnrHnwFxloqIMo0YajjzCcv94Z2pDgOmvwMqVlrvugPh4Q0I8EO/TLiqoX99w+qmGxT+5+PIrZ9mPP0HLlvDl1+7jb+s2ePU1ePU1S/360LunpW1bQ/0UJ7QYHe1su2EDLFlqWbDQcz8TJ0HHDtYj1AWw+CfLlMctkx+GA5pUfRpFY6xHsGvIZXDF5RWDXSUlttrTTCYnGx6ZCMNHWNIzIHUH3H2f5YlHqxecExEREZHA8uWXX/plGxERCRzhIRGEmtC6LkNERERE9gGBPsKYRgiVvUXhLhHZpxUUWG670/LjYveyDu2dUZxatawYCAkJMTQ9AJoeAEf0M1x7Ndx2p4uffoaDW0B+AWzdCtk5zvbRUdC2rTM94YknGA4+yGkzN9fy/Xz4foFl1d+wfr0T3qqKadOBchcoRx0JE+73rPWAJpSFuxb/hEe4C5wRna6625kuD6Bvb+jZI3gDMH+vtoy5yXLmGZbzB3pOLbl0meX1GZb5Czwfc/hhcOvNpsrhpD3p1tUZxeuBB90hqQWL4MprLA8+QNnP3p8uvsgQFmoZdJH7eO1+GFw8CObMhdRU97bbt8NHnwCfVP3itqgIpr9subvc9IzfL7DcdY8zKt31N1ieeaJqo6jNmWuZ/or7/nnneg92bd1quWec5Zyz4cTjq/eaHXigYfz9MGqMpaQEli6DZ6darrs2eI9tERERkf1d06ZN/bKNiIgEEGM0woKIiIjUmryiXPKLc+u6jErpOsP/AnmEMY0QKnuLwl0iss8qLrbcfZ9nsOvMM2DM9VUfwWrlKst33zu3/1wOL/zP0L6dobDQEhpKpaMPvfq65dXXa/oMHMVepn7s0MHw7feW9u2gcaOK6195zQmVAURFwfXXBW/4Zds2y823WtLSnNGyDjwQTjnJvf77+Z7BrrhYGHmt4bRTfR+tqzIJCYaHxjujq730srNs/Xq46hrLXbfDUUf6d39t2hjuusOzzaZNDcOvMgy7wrL4J5j3rWXhQtiRVrU2D2wK/frCRx/DBecbLhnsuT4+DkLcMzVSVLznNpf9bnn4EXeo7Mh+MPIaZ0S6t2a6uO9uQ2ysYdUqJ6SXngGr11g6tneeT3V06WwYMRyeeNrZ31tvOyOW9egevMe4iIiIiIiIyL5GIyyIiIgEl2AaeTO/OJfM/B26zhCR/YrCXSKyT7LWCZuUD/1cfaXh4kHVC/w8N9V9YXjcsdC+nfPYiAjvbTzxlIsuXQzHHo1HuCssDJo3g6QkiIyEiAiIjHD+D4+AkhL4ezX8+aezfUiIM/JUbAy0a1dxX6f1hwGnVxwVqVSL5ob4eEtWljNNZHUDNIGkqBgaNIBt253XsV8fz/UnHG94401LSAgcfxyMGG6oX7/2nm9IiGHoEEOb1pYHHrTk5kJeHtx+l+XySy1XXG4ICan91zsszNCnN/TpbXC5LMtXwO+/wz//WbIyITfPqSsyEuolO8dut27QupVzDlxxuSU2tmKdXTo7AbZnnrM8/KDZ46hdmzc7o+MV7Qwhtm0Dd99peGSK5aOdo4i9/Y4zReOBB0JiIqRnONNF/v4H+DIIw8DznFG75n3r3B//kOWVaU74TkREREREREQCg0ZYEBERCSJBMPImuEfF0nWGiOxvFO4SkX3SWzPhk0/d94cOMVwyuHrBj59+do/6FRoKVw6t+HhrnSn6evdywllvvwNvv2M5+CAnDNahvaFHd2jRHMLDd7//khLLlcMtK1c50ykmJ8Hdd4Z43XZPI4+dcLyhW1eY9aHl7DOr8GQD2AFNDM89DV9+DX//bYmP93zubVo7wb1jjoZmB+69cM9RRxqmNofb7rSsW+csm/4KrFxpuesOKtTpL4WFlvBwz5BiSIihYwfo2AGgavv1Fuwq1aO74YX/VT4yXancXMutt1vS0537KfXgofGG6GhD98MpC3fN+tBy8SCIjjbcdw/ce7/ltlsMnTr69hoZY7j5Rlj2hyU11ZmScvJjlvvuVrhLRERERERERERERMQXgT7yJmhULBHZf3lPDYiIBLGffrY885z7wvOsAXD5pdVro6TE8uQz7jbOOL1icKigwBm56dbbLa+8Bu+8696+Q3sYd08IF11gaN3K7DHYBU6QZvQo93affQFLl/l+AZ2SYhg6JGSvjCJV20JCDCceb7jm6oq/toxxgnt7M9hV6qAWhuefNfQtN5rYgkUw7GrLipX+/ePH5bJ8/qVl8KWWDz70X5vvf2DJzLSUlFiWr3DXvKdgV3Gx5d77LavXOPcjIuDB8YaGDZ3HOeFGOO8cmDbVfQ60bmV4ZZrvwa5SiYmG2291t/HlV7Doh8D9g1NEREREREREREREJNCVjogVqP/0KYBI9QXDtKvWWoqLiykuLsZaneneaOQuEdmnZGRY7p9gKQ3td+sKo0dVPn1hZT6eA6tXO7djYmDo5RUf/857MPcz5/ZLL1sefAAaN4b3P4CB5/kWXOl8qOGkEyyffeHcnzDR8vKLEBm55/ZKSuweAznif3FxzjSGL71seellZ9mGjTB8hOWaq+C8c/FLwO79WfDoE87FzBNPWw49FFq19L3dtHTL+Acti35wjtmoSPj7b3jpBWjRYvftWmuZNMUZta7UbbcaOnbwHE3suae9h8T8FTjs1dNw+qmWjz5x7k9+zPLqSxAVpfNAREREREREREREREREJBimXTUYisPyiQqLretSApbCXSKyz7DWMvERZ5o2gPr14f57zR6nMNxVdrZl6gvuRPDllxqSkyu2ccFA+HUJLPoBBpwO3Q839OtruPRiW6WRuipzzdWG7xdYiorg4kGmSsGuzZstY262jBoJfXop2LK3hYQYhg4xtGvrjOaWnQ1FRU4I69vv4YbR0PLgmv1czjgdPv4UVq6Ehg3AVVKzmnfsgF9+dW6vWeNePvERy1OP7z6A9fyLlo8/cd8fOsQZWW1XVQ0brl1nmfWBZeS1ptrBr2uHO+dLejps2gSvvGa5apjOAREREZH9xebNm8nIyCArK6va3+zs0aNHLVUlIiIiIiIiIhI4An3aVWOccFdSNIQRVdflBCSFu0Rkn/H5l/Dtd+77d4w1JCVVP+TxyutOUATggAOcaeW8CQsz3H8vfL8Aj2BLTYJdAA0aGO67GxIT8RgJqTIbN1lG32jZuBFuGesEvAaeq3BLXTiin2Ha83DPfZa/ljvLlvwGQ4ZazjjDcslgQ6OGvv1sIiKc4+KNGZbrRhhiYmr2M27V0nD9dfDIFMtZA+CjT5xA2tJlMOtDOOcs74979z1nGtJSZ55R/WlPy5sz1zLlUUtevhPIHHRh9R6fkGC47lq4f4JzMfrm23DmAOvz6ywiIiIiga24uJiPPvqI2bNn89tvv5GTk+NTO8YY/vzzTz9XB3/88QffffcdP/30E6tWrSI1NZXw8HAaNmxIt27dOO+88+jevbvf9ysiIiIiIiIisjul064GImMMscTUdRkBTeEuEdknZGRYnnjKnTQeeC706F79cMeGDZaZ77jvj7jGEBHhtONy2QqjCkVHG0483read6dPb++15+Zaj1DPTz87U+tt2zmKZlgYHNLJ//VI1R3QxPDsU/DaGzD9FUtxMZS4YNYH8NHHluOPs5xykqFbV6o9qlyzAw233lz947q42PLnX860n+UNOB06dTS0bmVISbG8MM05h579n6VvH2jcyHP7uZ9ZHnvSfZ4ddSTcMLpq057m5VnmzIVWLaFLZ/f2Gzc6wS6A/z1v6dYVOrSv3nM86UR4bxb88ScUFjoji915m8JdIiIiIvua3377jTFjxrBp0yaAao/UVdsuvvhiFi9eXGF5UVER//77L//++y/vv/8+Z555Jg888AARERF1UKWIiIiIiIiIiAQbhbtEZJ/w9HPu0baaNMHnadmysqFpU/j3X+jaBY46wr1u8qOWxETLlUPdYRZrLR9+BMcdA/HxtRsmWfyT5e77LCefaGnY0PDLr5ZFP7jXR0bCgw+YagdjxP/CwgyXXwrHHg1PP2tZsMhZXlwMcz9zQlIxMdCls6VtGziwqSEsHEJDnX8FBZCTA9nZTqAvOwdysiEn1728pARCQiAlBXJzIToKjjsWTjrRcyrPt9+xzHzHsnUbvPU6NG7sXmeMoXUr5/bgi+DrebB6DeTlOcf7ww9Sdqx/9Ill4iRL6ednXTrDPXeaKk29uPAHy7gHLFlZTiCsfLjrsksMP/9iWbrMeU73jrNMex5iY6t+HBtjGHktXDPSKW7uZzDwXEu7tjoXRERERPYVCxYs4Oqrr6a4uBhrrccXDMrfLh/42vVLCLUdBtuyZQsADRs25JRTTqF79+40adIEl8vFkiVLmDZtGlu2bOGDDz6gpKSEyZMn12o9IiIiIiIiIiKyb1C4S0SC3i+/Wj6Z475/0xhDdLRvoY727QzTX4DZH8MhHd0fBnz2heWD2c422dmW0aMgJMTw42KYNNny1NMw8DzLVcNCavp0vCoqsjz2hBOOeec9YJf5kBMTYMIDxiM0I3WvRQvDww85QbyXX7X8/It7XW4uLFzk/Nv151kdq9e4by/+GZ542tK7l+XIIwx9esE//1g2bXbWv/Gm5YbR3o+R8HDD2Fvg6mstLpdT1+dfwonHW15+lbJRvQDatoEHx3uGyHan+YGQleXcnr8AUlMtKSnOY8PCDHffCUOGOcf3ho3wyKOWu++o+GHc7hx6iOGYoy3zvgFrnVDd41Oq14aIiIiIBKbt27dzww03UFRUVHZ9V69ePY466ihiY2N57TVn3nBjDCNHjiQ7O5utW7eyZMkSNm7cWLYuJSWF888/n9DQ0Fqps2XLlowZM4aTTz65wj66du3KgAEDuOiii/j333/56KOPuOiiizRFo4iIiIiIiIiI7JHCXSIS1AoKLA9PdodOTjoBevWsWZgjLMxw9pnu+2vXWSaV20deHpTmRd6a6SzPy3dGZaot27ZDZV8y738yXHuNITlJIZZAdVg3w2HdDKvXWOZ+Zpn3Lez8jMnv8vKcEbi+nmcJDYWDDnKWJydD8+a7P0Y6tDecf57lzbed+489bvniS1iw0L1Nxw4w+WFTrZHqmjY1HH6YJS0NzjjdEB3tub5xIydYdsddzkH++RfQoR2cP7DKuwDgmqsM3893psL85VcnoNa3T/XaEBEREZHA8/LLL5Oenl4W7DrnnHO4++67iYqKYsOGDWXhLoCRI0d6PHbhwoVMmTKFZcuWsWPHDn7++WeeffZZYmNj/V7n//73v92ur1evHmPHjmX48OEAfPrppwp3iYiIiIiIiIjIHincJSJB7dXXLevXO7cTEuC6Ef4NOBUUWO6+15KX59w/6CC4YbR7WsZTTjKkZ1hW/w3nnlN74aoDmhhengY//QKrVsH27ZbWrQ09DocmTRTqChatWhquHW64djhs3mz5409YvcaSusOZkrC42PkXGQGxsRAbB3GxhthYiIvduWzn7bBwZ9uNGy3fzYdlyyA9AzIz3fsrKYHVq53bGRnw44+WhATo16fyaQ+HXWH49jvLxk2QmeUZ7OrVE8bdY6o1ZWKp8eOc51HZSFpHH2k45yzLe7Oc+089a2nRonphzaZNDeeebXlrpnP/mecsPXs4gU0RERERCV4zZ84su47s1asXEyZMqPJj+/Tpw4wZM7jrrrt4//33Wbx4MaNGjeLFF1+srXJ3q2fPnmW3161bVyc1iIiIiIiIiIhIcFG4S0SC1vr1ltdnuO+PuMaQnFz9EMeXX1v+/ddy2SWmQgjkyactf+8Mx0RGOsGW8lM+nnSi4cQT4L+10Khh7QZIwsOdafb69AJQWCXYNW5saNwYjj+uZj/Llgcbjujnvr9uveW77+G77y2//+Ee8c3lggWLYMEiZ0SvTh0tHdrDwQcZ6tVztkvdAStWWHLzKu7nwvPhmqsNoaG+1RsXt+fHjRppWPOPZclvTr333GeZ+hw0b1b1fV52ieHjOZbsbPj3P/h0Lpx+mk8li4iIiEgAWL16Nenp6YDzRYExY8ZUu42wsDDGjx/PunXr+Omnn1iwYAEzZ85k4MBqDhXrB0VFRWW3NYW4iIiIiIiIiIhUhcJdIhK0nnzGUvq+eNcucOop1W9j0ybLpEcs2Tnw08+W+++D+inOG+xffm2Z9aF72zHXG1oeXPHNd2MMB7Xw5RmI+F+zAw2DLoRBFxp27LB8+z188aUTmCpVUgJLlzn/oJL5PneKiYG774Aj+oXUat3gjLD1wH1w5XDLps2QnQO33GZ5+nFISanaB18JCYZLL3ZG7QKY9rLlpBMhIkIfnImIiIgEo7/++qvsdv369enSpYtP7YSEhHDLLbdw/vnnAzBjxow6CXctXry47HbLli2r/fh9JRBW/nkYYwL2eRnA7PxyVaDWCMFRZzDXWNntuhLMr2UgCYYawbc69/YxGwyvZTDUCMFRp79rrI3jNRheRwiOOoOhRth7ddbkeA2G1zIYaoTgqDMQatzT8RoINVZFMNSpGv0j0P7uCkQKd4lIUPrhR8v8Bc7tkBAYPar6bwbn5Vluu9MJdoEzpV1sjHN7/XrLxEnu0MvJJ8Jp/f1RucjeU6+e4awBcNYAw5atli+/gnnfWJavcEbG2p3kJDj+OLjickNCgv8votLSLNHREBXl2XZSkuGhCTB8hDMd6vr1MPpGy5OPOeuq4tyz4e13YPt22LoVPpgNA8/1+1MQERERkb2g/Khdbdu2rbB+178DCwoKiIyM9NpW586dadq0KRs2bOCvv/5i3bp1NGvWzO81V8blcjF16tSy+/37V/+PzKSkJD9WVLeKi4sBiImJIYboOq7Gu1DCcVkXxSVhxIXF1nU5lQqGOveVGpPik/dyVRXtK69lXQuGGqHmde6NYzYYXstgqBGCo87arNFfx2swvI4QHHUGQ41QN3VW93gNhtcyGGqE4Kgz0Gr0drwGWo2VCYY6VaM/Oe/xxMXFERamKNOu9IqISNApKrI8/qQ7eDXgDGjdqnrhE5fLMv5B95SLEeFw713OlIuFhZa7x1lyc511zZvBjWPc4bHCQst/a6FNa6WGJXg0auge0Ssjw/LHn7Dqb9i4ybLz8zKSk6BZM8MhnaBjB2cqUH/7+RfL2+9YFi2CsbcY+nsZca9VS8O4e+C2Oy3FxfDPvzDmJsvjU6hS0Cwy0nDZJTD5UaefeOU1y+mn4jGlqoiIiIgEh+zs7LLb3oJNUVFRHvdzcnIqDXcBtGnThg0bNgCwfPnyvRrumj59OkuXLgXgxBNP5NBDD91r+w5UUWGxJAVmrsthDdZlcVkXoWG1P5qxz4KhTtXoP8FQp2r0n2CoUzX6TzDUqRr9JxjqDIYaITjqVI3+Ewx1qkb/CYY6VaNfRQV0+KxuKdwlIkHn3fdh7Trndnw8XHlF9QIb1lomP2qZ96172a03G9q1ddp5+lnLypXO8ogIGHevISbGvY/PPoeHJll697JcfqnhkE4KjEhwSUw09O0DfftAaQq+KgoKLCUleJwP1bV6DWWj7n3yqaX/Kd7b6tPbcN/dcPe9lhKXE0QbfaNl4gRo0GDP+z/9VHhjBmzaDGlp8M57cMlgn8sWERERkTqyu6AWON/mLG/r1q3Uq1ev0u3j4+PLbm/btq1mxVXDjz/+yOTJkwFISUnh3nvv9amd0pHMgp0xhri4OKLDYygpcGHt7qeLDwjFdV1AFQVDnUFWY+nxCk7gNKCO1yB7LQNWMNQIVa6zTo/ZYHgtg6FGCI46/VBjrR+vwfA6QnDUGQw1Qq3W6bfjNRhey2CoEYKjzjqqsVrHazC8jhAcdapGn+16zO4L/D36emDH8kREdrFjh+Wll90XIMOGGBITqx40KSmxTHnc8sFs97JBF8HJJzltzPvG8u777nWjRxmPUcFKSiyvv+nsf9EP8OdfPj4RkSCzeo3lyuHO+VMTJ54AoaFgjPN/UVHl7R19lOGuOwwhO69WVq6CYcMtf/615xrCww1XDHGfu2+8acnKCqA34EVERESkShITE8tue3tzLyIiwiOwtWbNmt22Vz4ctbfeLFy1ahUjR46kuLiYiIgIHnvsMerXr+9TW9bafeZfaGioplmQoBEWFqbjVYKKjlkJJjpeJZjoeJVgouNVgk35Y7au37Pwxz9/U7hLRILK8y9acnKc2y0PhjMHVP2x2dmWsXdY3p/lXnb6qTD8SicAsmGj5aGH3R3tCcfDGad5tpGbCx3bQ2gIJCZUXC+yL9q0yXLl1ZY1/8Cnc+GLL32/IElOMtx9h2HmDMNjk0P2OPXjCccb7rzNUPr3R2oqjBxl+ezzPddw0glwUAvndlYWvDVT4S4RERGRYNOiRYuy2+vXr/e6TevWrctu//jjj5W2VVRUVDYtIkBsbO0P9b9u3TquuOIKMjIyCA0NZcqUKfTs2bPW9ysiIiIiIiIiIvsOhbtEJGisXGX56BP3/VEjDWFhVRu1Ky3NMmSYZeEi97JTToabbzSEhBgKCy333GfJ3hkcO/BAuOVGgzGe7cfHG+66I4QZrxvuvMMQHa0pGWXf16SJ4eST3fcfmWLZvNn3oNTxxxkaN676uXPSiYbHpxhKRy8tLIKqzEYTGmoYWm70rrdmQlq6Al4iIiIiwaR169YYY7DW8t9//1FYWFhhm65duwLOtzo/+eSTSqcufPPNN8nIyCi737Jly9ooucyWLVsYMmQIW7duxRjDhAkTOPHEE2t1nyIiIiIiIiIisu9RuEtEgoK1lieespSOYHjkEdD98KqHQ5KSoE0b9/0rLjfcfqshNNRp47mpluUrnHUR4XD/PYaYmMrbP6CJoU8vBbtk/zFqhKFZM+d2dg7cP8FSUrL3glJdOhteeM7QqhX06A7nnVu1xx19FLTdee7n5cFrbyjcJSIiIhJMEhMTabPzj7mSkhJ++umnCtv0798fAGMMWVlZDB8+nA0bNnhsM3PmTCZOnFj2BZ6oqCi6detWa3Xv2LGDK664gnXr1gFw1113cdZZZ9Xa/kREREREREREZN+lcJeIBIVvvoUlvzm3w8Nh5DWVB6sKCiyLf/IMcBhjuGmM4aAW8OADhisud0bsAvh+geXtd9zbXjfS0KaNglsi5UVHG+65wxAa6tz/bSlMf2XvBqUaNzY895Th7jvd52+pzZsthYUV6wkJMVw5zL3t++/Dtm0KeImIiIgEk379+pXd/vrrryus79y5M927dy+7v2TJEk488UTOOOMMLrroIvr27cvdd99NcXEx1lqMMQwcOJCoqKhaqTcrK4thw4bx999/A3DjjTcyePDgWtmXiIiIiIiIiIjs+xTuEpGAV1Bgefo5dxhj4HnQtKlnsMNay59/WR551MWZ51rG3GRZv94zwFGvnuGVlwxHHuF+7NatlgkPubc75mg4a0DFGjIyLMXFCoTI/q19e8OVQ93nz/RX4OdffD8vsrMtH8y2jL7RRV5e1dqJjjYkJ3me/wUFlpvGWoZdbVn1d8V2eveEQw9xbhcWwcuv6lwWERERCSalI3NZa/nwww8pKCiosM3dd99NTEwM4Hy5x+VysWrVKpYsWcKOHTvKQl0AzZs35/rrr6+VWvPy8rjqqqv4448/ABg+fDhXXXVVrexLRERERERERET2Dwp3iUjAe/sd2LTJuZ2cDJdd7A52ZGVZ3njTcskQy1XXWGZ9ANnZzrpPP/M+ik95K1dBfr5zu0ljuPUmU/aGf3mTJlsGXWqZ9YGloEDBENl/DboQevZwblsL991v2bzFt3NizE2WSZMtP/0M337ne01TX7D8+y+s+cdpc9dz1BjDVeVG75r9MWzYqPNYREREJFh07tyZJ598kscff5xx48aRm5tbYZu2bdvyv//9j5SUFKx1rvVK/7Yr/d9aS7t27Zg+fTqxsbF+r7OwsJCRI0fyyy+/AHDppZcyZswYv+9HRERERERERET2L2F1XYCIyO5sT7W88po7hHHVUENsrCEt3TLjLSfM5eV9fZo3g0YN9zy14hH9DM8/B/ePt9x8oyE+vuJjlq+wzPvWuT35MUvXrs70jiL7o5AQw123w+XDLKmpsCMNxt5ueeZJiImp3nSmxx1r+Gu5c35/9oXl5JN8mw714IMM0VGWvHy49mpDZGTFdrp1NfTobln8E5SUwLTplrtu1/SrIiIiIsHixBNP3OM23bt359NPP2XGjBl89dVX/Pfff2RmZpKYmEj79u3p378/Z599NqGlc4372Y033sj3338PQO/evTnvvPNYuXJlpduHh4dz8MEH10otIiIiIiIiIiKy71C4S0QC2vMvWvLynNutW8GRR1imvmCZ+Q7k5XtuGxcLxx8H/U8xdOqI1xG4vGnV0jDt+YqjepVKT4f69WH7djjuGDiohQIhsn9LTjaMHwfXjbYUFcHfq+Gb76D/ydVr56QTnBG7Tj7RcNxxvtdz+mmGbt3g408s/U+pfLurhhkW/7QzTPY5XDzIcvBBOp9FRERE9iVxcXFceeWVXHnllXt935999lnZ7UWLFjFgwIDdbt+0aVO++uqr2i5LRERERAJVUZ7zL5CFRzv/REREpE4p3CUiAWvFSssnc9z3R400bNiIx0heAG1aw4XnG445Gq8j9lRFZcEugN69DG++BjPfdcJdIgKHdDKMvRkefNhy0w2G/idX/9xLSTE8+5R/wlVND/CcerHUv/9Z0tOhaxdDh/aGI4+wfPe9M6Xks89ZHn5I4S4RERERERERERGpA0V5mLw0wO5x07phnMoU7hIREalzCneJSECy1vLEUxa782+ao4+Cw7o5IYx+fS3zF0DbtjBsiKFP76qP0lVUZLl/guXC8w0dO1Q91BEVZbhkcLWfhsg+7eSTDF06Q+PGgRmQysiw3HqbZXsqPPgA9OxhuHKoYf4Ci8sFCxbBoh8svXsFZv0iIiIiElxWrFhR1yWIiIiISNCxmOKCui7CKxsWWdcliIiIyE4hdV2AiIg3X38Dvy11boeHw7XD3eGLq4cZxt9vePF/hr59TJWDXQCPPWH56msYOcry6WeB+m0YkeDhLdhlbWCcW48/admwEQoK4NbbLd/Pt7Q82HBmudlxnnzaUlwcGPWKiIiIiIiIiIiIiIiIiOxK4S4RCTgFBZann3GHLc4+05lyrVTLloajj6xeqAtge6rlm2+d24VFkJ1d+bZbt1pWrlLgQ6S60tMto2+0/PlX9c+fzZstX83z33l31TDDAQc4t4uK4I67nYDXsCGG+Hhn+X9r4b1ZftuliIiIiIiIiIiIiIiIiIhfKdwlIgHn9RmWLVvd9zdv9s9IQPVTDC/8z9CmNZzaH8492/t21loemWIZdrXliadc5OYq5CVSFZs3W669zvLzL3DLWMvadVU7dwoKLLeMdTHwIssD4y0ZGf455xo3Njz9uKFFc+d+SQncfZ9l3Xq44nJ3OHTadEt6us5zERERERERERERERERkb3NWktxcTHFxcUBM0NQoAmr6wJERMr7+28XL73suSw0DIqLnekZa6pxY8OzT4ExVDry1/sfwIJFzu2Z78IJx0PHDjXft8i+rsQFWTtHxEvPgBtvtjz1BDRquPtR9iIjDVnZFmudUfU++RQuusA/NTVoYHjqcRgxyrJ2HRQWwq23WaY+Cx98CP/+54zi98JLlpvGVG80QBERERHZ+/Lz8/n4449ZtGgRf/31F6mpqWRlZVFSUlKtdowx/Pnnn7VUpYiIiIiIiIhIACnKc/4FKGPAhhRCRExdlxKwFO4SkYCxdq3lmuugfBh38EVw9ZWGkBDfQhfW2gohrqio3bd1wnGw6AdYsBAGXQgdOyjwIVIVTQ8wPDIRRl5vycuDTZvh+hssTz0G9evv/jw6a4Dh9z8sfXpD+3b+rSs52TD5YRg+wpK6AzIy4b4H4Jqr4dbbnW0+nA2n9bd0aK/zXURERCRQvfnmm0yePJnsbOcbBfomp4iIiIiIiIiPAjzsUyY82vknNVOUh8lLAwLzvRTn07mCnfci6q6QAKZwl4gEhN//sNx0ixMIKTXoQrjmat9nj83MtNw81nLJYDiiX9UDGwkJhofGw+dfwPHH+bx7kf1Su7aGBx9wpmUsLIL1652A15OPQb16lZ+HxxwNXTobGjeunXBVkyaGCQ84I3gVF8Off8GPi6FfX5i/AFwuGP+g5cWpzkhivsrPtyz73QmpRkfDoYcoLCYiIiLiDw888ACvv/56WaDLGFP2RZ7qhLyMMQqFiYiIiIiIiAR42MdhnOoU7vITiyku2PNmdcAYMMQG9NFY1xTuEpE69/18yz3jLAXlfpd0PhSuHV6DYFeWZfRNlpUr4fa7LDeMdkYGqqqQEMPJJ/m8e5H9WvfDnSDVbXdaiorgv7VOwOuJxyA5yft5GBlpaNy4duvq1NEwaiRMecy5NHz3fRg9Cpb8Bjk5zhSNU1+0XHft7vuKggLLb0shMxNOON5z223bYcxNTvsHHQSvTfdcv3KVZcyNlvh4p5+7faxnP5eba8nOhgYNKp86VkRERGR/M3v2bF577TXAHc6y1hIeHk7z5s1JSEggLExvcYmISDVptAoRERFP+t24HwrcsA+ADYus6xJEAobe+RKROjXrQ8uUxywul3tZWBjcebvvoYbsbMuNNzvBrlLx8ZVvv3y55ZclMOhCBSlE/KV3L8P998Edd1lKSuCff2HMjZYnHnVGx6srZ58Jv/8On33h3P/fVBhyOTzznHP/rbeh++GWPr2817hmjeXqEc4ogykpzuh+5UNYHo/y8vWCjAxnWsiMTDjggIrrf/7FCcWlpED/ky3Dr/I95CoiIiKyr3jiiScAd7CrU6dOjBo1in79+inUJSIivtNoFSJ1zlpLcXFx2W0RqWP63SgiErD0DpiI1BlrLUt+8wx2AVx2ieGAJr6FPzIynKkY/1ru3DcG7hhrOP5Y7+19PMcJlxUUQL16cMpJCniJ+MsRfQ3j7oG777WUuODv1c6oVo9Pgbi43Z9r1lr+/MsZbcufjDHcfCOs+tvyz7+Ql+9My3hEP/h+vrPNA+MtL70ADRtW3Hfz5hAZCXl5kJoKq9dA61bu9VHR0LuX0/c0bFBx/9nZ7tvxcRXXr1vv/J+aCllZvj9PERERkX3FypUrWbduXVmg/phjjuHpp58mNDS0jisTEZF9g0arEKk2P47sYwzYkELndl42fst3aVQfkRrQ70YRkUCkcJeI1BljDLffCr8usaSmOssObAqDLvStvQ0bLDfealm/vrR9uP1Ww8m7CWyt+cc9HeT/plqOPdqZHk5E/OPoowx33QHjxjtBzgObQlTU7h/zxZeWV16zrPkHXnoB2rT27zmZlweXXgwPPAglJfDbUhg6BFb9DVu2OKNq3X6X5dRTLEf0Mx4hr7Aww/HHWn75Ffr0hpgYz7brpxgemVh5vUcfBXNmG7KyobLPIxMTnBp69qj589682ZKXDwcfVLEtl8sSEqL+TkRERALbH3/8ATjh/7CwMMaNG7dfB7u2b9/u82NjY2OJjvb+IWdqaqrPo2VER0cTGxvrdV1aWholJSUVlhtjKCoqAiAjI8PrviMjI4mvZBjujIyMssdXV0REBAkJCV7XZWZmUlhY6FO74eHhJCYmel2XlZVFQYFvH5CFhoaSnJzsdV1OTg55eb59uG6MISUlxeu6vLw8cnJyfGoXoH79+l6XFxQUkFWDb7HUq1ePkJCKoxsXFhaSmZnpc7tJSUleRwEsLi4mPT29SserNwkJCURERFRY7nK52LFjh8/1xsfHExnp/UPNfaWPqAq/9BF5aZi8dEyJ+/wMDw8n0du3sYCMrGyf+56wsDCSErzXm5WTW2kfYUMjsdEWcl1e1++pj9i+fbtPPzv1EW576iN8FdR9xC4j+6TuSPe5j4iJjiIO55gwuZ7HVVp6BiUl3o/93TNEJDUkvmFzr2sD6jpiZz8Ubkp86iP2JDQklOQk7/Xm5OaRl5+/28dX1gftr32Et2uCfa6P8PK7sSpiY2KIjvLebmqa731EdFQUsTHer0/q/DrCi0D6W6Mq17ChBZnUq+Tzmqr0EZUxxpCSnOR1XV5+ATm5uVVua9d+KJD7CG8Cqo+owvkdHxdLpJd2AbbvSPOpVqhaH2EMRBeCzbPkuLzXsKuA/lsDKr1O95XCXSJSp1b9TVmwC2DM9cancNXvf1jG3m5Jz3Duh4TALTcZ+p/itFVcbPl7NbRpDaGh7vaHDTF8+60lOhoeHO/bvkVk90443lBcAj/9bBl7syEsbPfn2XffO8EugP89b3cblqqqggLLhx/BZ19Y/vqr4vpp02HIZfDyq07ga/kK599/6yxjRnnuf+S1hvBw32oKCTHEx1c+VeygCw0Xnu+MCNZ0l2kbrbWMfzCHTh0txxxd+T7S0y2zP4bPv3BexyP6wUPjPevdsNFy/RjLmQNg4LkQFaW+T0RERAJT6ZuSxhgOPfRQGjZsWMcV1a22bdv6/NiHH36YYcOGeV3Xu3dvUsv/cV4Nt9xyC2PHjvW67tRTT2XFihU+tTt06FAmTZrkdd3FBkCdXgAApnVJREFUF1/M/PnzfWp3wIABTJ8+3eu6UaNG8eGHH/rUbr9+/Zg9e7bXdePGjePFF1/0qd127dqxcOFCr+uefPJJHn74YZ/aTUlJYdWqVV7Xvf7669xyyy0+tQtU+mHCnDlzuOKKK3xud+XKlV4/zPnxxx8ZMGCAz+3Onz+fDh06VFi+atUq+vXr53O7H374IUcccUSF5Tt27KjRuTxt2jTOOussr+sCso8Ycx1jb7ze67pT+5/CipV/+9Tu0MsGM2n8fV7XXXzRIOYv+tGnds88+Rhefux+r+tG3TWRD+bO86ndfj268vErT3pdd9/k53hhxvs+tbu7PmLSpEncd5/312hP1Ee4qY9wVOwj3CP79DplIKlpGT61O3bEECbc5vQRpqTAYya4Uy+8kuWr//Wp3aGXDWbSo97PuYC8jqilPqJ9q4NY9NGrXtc9MW0GE59+yad21Ue4qY9wTLpzDFcOPsfrup6nXexzH3HriCHcNtL7z11/azhq9LdG29Ys+vgNr+tq1EckJ7J6wUde17327sfc/MCjPrUL6iNK1VYfMf3RcZx1yrFe17Xu5/vrUFt9RKC/H+HvKacV7hKRvcLlsnwyBxb+YBl3jyE01FBSYpn8qLtTO+Zo6NWzegEDa50Qw2OPWwp3hmSjouC+uw39+jptTXnMxZy5zmg9zz1tOKST+/HR0YbJD0OjRhqxS6Q2nXKSqfK0p0OHGOZ944Quu3Q2NR5hqqDAcvHllk2bKt/GWifg1bED/Fku/DXrA7h0sIuUFPc3NnwNdlVVSIihTeuKy19+JZ8Zbzlvml19peGSwZ51bNxkeetty0efQPkv6ixZAiUl1iPYOvsjy+YtTnju51/gscnq/0RERCQwlR+l64ADDtjNliIiEohMcR4mz/uHcMbl2zfpASguqLRdXMW+tyu1L7eSn1thds3azUuD3IojbpDv+2gbdaLIt1FSyhRmV/4a16jdHKddEwoBPF2biIiIyL5K4S4RqXXLl1sef8qy7Hfn/vRXLEOHGN55D1bu/HJHdBSMGlG9cEF+vhMOmzPXvSwxESY/bGjfzt1WSIgT7AJY9IPlkE6e+2neXKEGkbrgclnemwWnngIxMe7zsHlzw713w2HdIDGx5udnZKShV0/LrA+c++Hh0LqVM6Xi+g3OVIyl/vzLGenq+52h+5ISmPWhM21jXSoqssz60P3G2W9LLRdd4EwTuXWr5aWXnQDtriPVR0dDly6QlQVJSc4yay0/lPsC8wUD1QeKiIhI4GrcuHHZbV+nxpAgVZxf+YfTJTU4FkoKd9Oub9OkiOx1RXnOP38qDW54Y32ZFm0nV0nZ6D4V2/X9m+xmt+3WoF6pdZWG/WoY7jJ56Zi8iu9xmELfp2iqE8U1O7dNYXblwceaKMrF5O3AhkaCrUEwU0REpCYUEpf9mMJdIlJr/vzL8sYMy7xvPZd/+z0ce7SLqS+4lw253NCwYdUDBr/8apnyuOXffz2XH34YHsEugEM6Gd55z3LAARARoRCDSCBwuSyTplhmfwSffAqPPAT16rnPz2OP8e+5OuRSwy+/WC4433DCcRAba8jMtEybbsnPh48+cbaLjoZ77oT7xsP33zvLXnoZIiIsFw9ypgOqC+HhhlenJ3DjLdlERRVz522QngEz3nLx/vuUjVxYqkMHuPB8wxF9K45KaIzh+efg8y9gyVJLn97qF0VERCRwtW/fvuz2unXr6rAS2etqaVQeU1JYebBA4S4pH5rK921qkDL5md4/fMpLq1m7hbmQl44pysVj/rKa2hnc8MrP04lI7bLWUlxcjMsVmCG3ykJ5pqRmI66ZkgLvbdckEAxOX+DtXK6NPsKEQnHNfheZkuLKg49+aNeGRvi97dqh97skyNXadUQtje4nspcoJC77M2P9PNFjWloNf6nIfs8YQ9LO4UXS09P9Phep1K4dOyxfzYO5n1v++stzXUQ4DB4Egy6Em8fCkt+c5e3bOdMlhoXt+Q+urVstTz9n+fIr7+ubNIGZMzyT1bm5lrw8SEnRH3TVoXNRatOPiy033Ow+pg44AKY8bDjwwJqdp0VFltdnwLlnQ3y8Z1vlp3dc9IPl/vGWjEzofChERoLLwp1joUGDEIqKLLffZVm4yP34C86HEcNNjaaI9FXp+VhYaFmxIo0Zb1nmfFox1NWzB1x6saFLZ9+DaGlplvh4qtQni+yP9PtRJHDofKy55OTkui6hSi688EKWLFlCSEgIX3/9NY0aNarrkurMqlWrfH5sbGws0dHRXtelpqb6fA5FR0cTGxvrdV1aWholJRVH9zDGEBsbi83dQd72DVBS8UPoyMhI4mNjvLabnplFcbFvIYDw8HAS4+O8rsvIyvYYIc4VEQuRiRCVULV2ExO9rsvKyqKgwLcP2kNDQys9V3NycsgrHaq8KL9ao70YY0ipV8/rury8fHJyc6pda6n6KSlelxe4QsjK9z28Ua9ePUJCKn6bvrCwkMxM379Rn5SURFjYzu9A5+7A5KUBTjgmPSMLA8TEOMdibm5uleNUCfFxRESEV1jucrnYkeZ7KCQusR6REaEYV8UAx/Ydvr83HxsTQ3RUpNd1qWnV+z3riogDazGuYmLCDbEx3vuetPRMSnycmrGmfUT5Gk25Pqg6fUR1hIWFkZQQ73VdVk5upX2EKyIOQiMgtOKxBBAaEkpycpLHMmMgNjaOnJwctqdu9ymbV60+woRCUR6mKNfjtaxM/Xre+7SCwkKysn3ve+olJVbSRxSRXsjOn3cJ1Q1FJiXGu/uIckr7CF956yNsaCSukiLSUlOr9Fp6Ex8XS2SE9wCWP/oIV2Q8WJdHH1TdPqK8mOgoGjdsCEBWdpbH8eprH+GKiCMyJp74RO/HWkZGJkXFvp3LEeERJFRyLmdmZlFYVI1wXrlzJ9yU+NRH7EloSCjJSd6vY3Jy88jL3/00oDY0EhudBNGer6UxhpRKft/n5eWRk1OD64j69b0uLygoICtrN+fcHq6F6iUnV34dsbt2yzEGYmKc697c3ByshaTExN30EeV+35f9vPOoSj9UW9cR8XGxREZ67yO2pee4z+9q9kH+vI4oLzoqqsJ1hA2LxEbXI63AeP1boyoiIyOJj/d+zmVkZPj8+z4iIoKEhJ3n3C4jrVa7jygnPCycxETv53JWdrbXPsLb8eq5QSihrgLqxYZ7DQVXpY+ojDGGlF2uT0rl5ReQk5tb5bZ2vWari+uIzOzdB8cq6ythl781yikuLiY9Pd3XcklISCDCy+97l8vFjh2VBDjz0pwQ227O79q+jvCmtI8wBqLjkrExyeS4qhYm9+X9iKrwVx/Rpk0bn/ZfGYW7JODoDfrgVFRkufV2y08/w65fCjMGTjwehl5haHqA4b1ZlimPOT/XsDCYNtXQsuXuQwT//WeZ8ZZl7udQvr+MjYXR18GbM2HrVmc/140whIcrlFBTOheltn36meXBiZbSa6ukJHjgPkPXLhXP342bLK+8ahk10nhM4bjrNveMc4KlxxwN999rKg04rVtvuXSILetPJk+CXj08L9zz852A14+L3cv69Ia77jAkxO/dPsYYw4aNcUx/JY9P5xZW6Gc7HwpXX2no0rlmdW3darlutKV9e7j7DkNoqPpSkV3p96NI4ND5WHPBEu76+uuvueaaazDGMHDgQMaNG1fXJdWZfeV9N2MMcXFx2JxUcrethVoYYcQfXJHxO0MVAT5KiQl1Rl3y90hOfmWw0ckQ4z0sEjByd2Dydnh8wGUMxMc5b+zvGjyoC96CFYFGNfqPu86qh5IMELvzw9yc3Jxa7xVKp+kL5Ncy+H7egVunv2usjT7Wl/OmLgTDuVMaogn439/gEdCuLTXpX4Ph5x0MfRAE0XG5F47J3dnT8RoMxyQEx3EZXMfkjoB9HY2BmPh62NgUsqsY7gp0/n7fTdMyiohfhIcb8vKsR+AgIgJOPhEGnmdoebATENi0yfLsc+5LiMsv3XOwC+C55y3ffe+57NRTYPhVhnr1DJ07W+qnVJx+TEQC1yknGZKT4M67LXn5kJ4O1422XDzIMuQyUzaN6mefWx551JKbC5s2WyY9VHGK1a/nWSZOspR+MWPeN7DoByeM5U2zAw2DL7J88SVcf52hV4+KfUdoKCQkQHwcZO38YsbCRTD0Ssudt1PjIFVV5OU5NX4w28XyFRW/kdW1Cxx6KCxfDp061mxfWVmWUTdYNmyEDRuhUSPLtVerTxUREZG6d+yxxzJ48GBef/11Zs6cSadOnbjgggvquizZXxTnYwpzCIYPh8EG7Bv1Nsz7t7RFpKqqfn4bA6HW+UDMlBTUevcVPNP0yf4ncH8vQnCcOzY03AmRB43a/ZnXpH8Nhp+31Ia664f2dLzqmBQJPgp3iUi1bNtmmf0x1EuGs850f+ifn29p3w5+/wMaN4b6KZCcDLm58PIrlogIS1QULFgEeTtH8WzdCi4e5G77t6WWdevgn38t1w73HDFmwOmUhbvi4uDhB6Hzoe5RdpoeoACCSDDq1dPw5GNwy22WHWlgLbz6Onz9jeX666B3T2dZ6Si9K1fB+g3Q8mDn/rr1lieftixY6G4zPNwZwa93LydQ+uoblubNDBee79lPXDLYcMlg76FQl8vFsKth9RrnfsuDYc0/zu1Nm2Hk9ZZzz7FccXntjeJVUGAZeKEl3cso2337OPUvXGR55TVn2Yy34JLBvu8vLg769YW33nbuvzED2rW1HH+s+lcRERGpe3fccQcAr7/+Ovfeey8///wz11xzDQcffHAdVyb7B304LCIiIvsj40x1mOvbtFZ7jQkN2JFgRURE/EXhLhGpkg0bLS9Os3z5FZS4oHEj6NTJ8s238PMv8NdyKC52tt20yfm3Owa47VZDWJg7NPDUM5a/lju3zxwAzZvt+ggnVp6dDRs3GTof6q9nJyJ1qX17w/QXYcJEy6IfnGXr18PNt1oOPwwem2xI3WF4a6bl0UmGJo1h4SLL3M8tX33tORXsgU1h3L2Gtm0Ma9dZLrncmfYxKdFy5hkQHe3ucyob6S8z0zJpijvYBU6w69RTYMFCSM9wAmfvvAtffGEZNhTOOA2/T2EYGWk4/DDLl18796Oj4NT+kQw4o4hWLZ1ly36H0r7xo48tFwysOKpZVRljGHkNbN7s9O0AD060HNQCWlVhhEURERERX9x2223V2j45OZm0tDRmz57N7NmzadasGa1atSIxMbHSKbm9McYwYcKE6pYrIj4KvpE/REREBAiyUUxFRET2XQp3ichuFRRYpr9imfGWO7wFsHkLDBnme7vdukG7tp5vvMfFuW//849nuKtPb8O1w+G5qZbLLoETjvN93yISeOrVM0x6CD76GJ6dasnMdJa3b+d88DboQjj9VGco4RP7e38j4dhjYOzNhthYp29pdiAccACsW+cEsuYvgBOO33Mta/6hLNxU3qefwV23wxdfOW2B0+4jUyyzPoCrhjnTQFbnQ0WA1FTLhx9BSYll2BUhHuvOHGD451/LWWcazj8vifj4ENLT07HWeQ0uGOjUckATGDXS+BzsKmWM4Y6x8N9/ln//g/x8uP1Oywv/g/haGqFMRERE9m/vv/9+ta+fjDFl10Nr165l3bp11Xq8tVbhLpG9LghG/tCoHyIiIpXQKKYSOPSlARHZXyncJSKVWrHSct/9lrVVeJ/cGGeaxTZtoEljQ+NGEBPjrMvPtzz9LOxIc+43agiXX1qxjcMPM9RPsRx0kMHbzBoXXQA9exhat1LAQGRfZIzhjNPhyCPg1Tcsc+fCBQPd53tCgvMhXkQ4FBZVfPyhh7iDXaXtnXoK/LrEMuQyw6GHVK3v6NrFMPwqeOY5y7lnO2GvX5c4I4RNfgyefw7OON3w5FOWDRudx/y92plasm1bGHguHHdM5SODlbd6jWXY1ZaiIoiKggsGWo8QVbeu8PI0Q0hICPHxIRUeHxpqmDKpavuqqpgYw4QH4Mrhlpwc2LARHnvCctcd6ntFREQkcFQ3ECYiASDAR/7QqB8iIiIiwUBfGhCR/ZPCXSLi1YcfWR573HoEKFq2hDXlpimLioKjj4JjjzZ07gwJlYzq8sCDtizYFRcHTz9paNyo4rYXDzI40y/Cst8txU2sx7SNxhhat6rxUxORAJeUZLjuWsNVQ22F0JIxhiZNLJFR0KsnLFoEq/521m3daintQ0oNvgguGVwxFLUnF10A7dsZDutmSE+3XDncsmmzMy3sbXfC1Gfg1emGme/C9FcseXnO41auhPEPWh5/Ao48wnLcsYbuh0N4uPf+seXBcFAL5znk58PnX8I5Z3k+3z3xZ7CrVPNmhrtuh7F3OB+6zP0c+vWzHHeMPkQVERER/ysdhUtE9geBO/KHRv0QERERCRL60oAEEI0mJ3uLwl0i4qGkxPLk05Z33nMvi4uF60Ya+p9sGXMT/LUcBl1oOOcsZySd3Zkz1/LpXPf9W2/yHuwqb+5nlgkPWU44Hu64DUJCFCYQ2R9VFlp67WVTFno65ijLxo2wPRXatqm4ra/9hzGGw7o5t5OSnJGsrhlpyc+Hf/+F+8dbxt9vGHyR4dT+MOMty3vvOwEtgOwcmDPX6QPj4+GoIy2HdYMG9eGwbiEe+7nicufxFww09OvrU7kVbN1qadCgZiNaHNHPcMbpltkfOfcfmWLpfAjUr68+WURERPznyy+/rOsSREREREREJOjoSwMSKDSanOwdCneJiIetW+HTz9z327aFB+4zHNDEGVXrlpssMTGQnLTnD/f/+NMy6RF3av6M0+HYPYz68tdyy/0T3CPFNGvmfQpHEdl/lQ8stWtraNe29vfZprXhphssD0xw7n83H1562TJ0iCE5yXDt1YaLB1nmfAofzrb8t9b92Kws+PgT5x9AixYuGjeChg2hYQNDXJyl/8lQVASLfoDQUEtICISGUvZ/WCgkJhWTmGgIC7VER3uvs7DQ8sab8MqrzjSKxx5Ts+d93bWGn39xAnSZmTBhomXyw5oGSURERPynadOmdV2CiIiIiIiIiIjvNJqc7AUKd4mIh8aNYcDp8MabzrSLjzwE9eq5P8RvekDVPtDfvMVy+53uaR1bt4JRI/b82PbtYOC5MPNdJ1h25gCfnoaIiF9Za1m40HPZl1/DxYPcU0cmxBsuGAjnnwer18AHH1o+/8IZxau8//5z/u1sufxedlcBkFF2L6UeHHQQdOoI3boaunZxpn6c8Ra8MM1p57EnLT26Q1yc70GsmBhnesYRoywuF/y4GGZ9CGef6XOTIiIiIiIiIiIiIiIi+xiNJie1S+EuEfGQnQ2ffOrczs+H56fBrTdVr420dMsNN1lSdzj3k5PhofGG6Og9BwyMMVw3Aho0cEJmNQkliIj4S0YG/L3ac1lmJrz2hqVXT2h2IISHQ+oOZ+raT+daflxce/Wk7nD+/fwLvPKaJTYWjuhnOflEaNgAtm6DJo2dUcPi4mq2r0MPMQy+yPLq6879p5+1HH4YNG+m/llERERERERERERERESktincJbKfKy62bE+Fxo2cD+nj4w233Ai332U5qAWceXr1PrzPzLLcdItl7TrnfkQ4jB9naNzYezuFhZawMAgJca8PCTEMutC35yMiUhuSkgzPPQ0PPmz59jtnWXo6vPSyMz3jnnTqCEOHGA7pZNm82bB1mxPA2rbNkpsLefmQnwf5BeBygasESlxQUrLzvgusDSM93cWWrS7y8z3bz8mBuZ85/xo3hhOPhxvH+C8ge8XlhkU/WFb97QR/H5hgeeZJCAtTwEtERERERERERERERESkNincJbIfKymx3Hu/ZdkyeGwKHHyQ8yH9UUca7rkLjjqCsunGqiI11XLDLZbVO0e3CQ2BcfcZOh/qvY3MLGfqxvbtYOS1CgiISGCLjzeMHwdffAVTX7Bs2rT77UNDoF8/OOcsw+GHOSMTgqFlS2jZsnSrqvV9xhiSkhIBSEtLY8tWy4oV8Nsyy4KFsG6de9vNm51/i392po08+8zq9eXehIcb7roDhl3lTLf751/O9L2XXlyjZkVERETKpKWlMXjwYAoKnCkMoqKieO6552jWrFmN2l23bh1XX311WbsxMTHMmDGDuJoOb1qJ1NRUli5dytKlS1m2bBnLli0jPT0dgLPPPpuHHnqoVvYrIiIiIiIiIiL7LoW7RPZTxcUurr8Bflvq3L9utGX6i1A/xQkAnHh89YIA//1nueU2y4aNzn1j4LaxhiP6em8nJ8dy7UjLv//Bkt+gYQPL+QMV8BKRwGaM4cTj4dijYf5CWPSD5c8/Yf0GKCiAqCjo0B56dDf0PxkaNNhzv/b2TMviny0bNjgjcGGgfoozPW2DBtCuraHH4ZCU5K6hUUNo1NAJ4153LaxeY/ngQ8unn0FurrNdejo89YzlzbedENYZpzkhLV+1PNhw5TBnWkaAadMtfXpDm9bqu0VERKTmnnvuOdasWQM41zvjx4+vcbALoFmzZgwdOpQ77rijrO3nn3+eMWPG1Lhtb/r27Vsr7YqIiIiIiIiIyP4rpK4LEJG9b8sWFxcOdge7AI49BlLq+dbe/AWWq691B7tCQ+HeuwynnFT5B/6xsYZDOjm3jYGQUN/2LSJSF8LCDEcfabj1phCuHW7YORAE+flOYHXxT5bPvoDv51t++tmyYKHl/Q8sPy6uOIXjkqWWhYtg7TpI3QGpqbBiJXw/H96fBQ89bDn3AheDLsng63mFXutp1dJww+gQZr1juGmMoekB7nXbt8OUxyyDLrV8853F2j1PI1mZ88+DLp2d28XFzvSMhYW+tyciIiICkJ6ezowZMzDGYIyhf//+nHPOOX5r/9xzz+WUU04BwFrLK6+8QnZ2tt/ar0yTJk044ogjan0/IiIiIiIiIiKyb9PIXSL7kcJCy1szLS9Mg5IS9/LYWDjzjNIpw6ouI8PyxNOWuZ+5l0VHw7h7DX167bmtMdcb/ltruWCg4ZijNfKLiASnrl3grAHwwWyw1vn36xL4dUnF0NOxx0DPHp79XZvWhm+/23NA6relxWzcVEK3rpVvExNjOOtMOP00mPMpvPCSJTXVWbdpE9xxl6VrFxhxDXRoX/1+NzTUcPtYuPwKS14+xMVBdjbU8zEcLCIiIgLwySefUFjohNjDwsIYPXq03/dxww038MUXX1BSUkJ+fj5z5sxh4MCBft/PiBEjOPTQQzn00EOpX78+69ev5/jjj/f7fkREREREREREZP+hcJfIfqCkxPL1PHhhmmX9Bs91LVvCc09BTEzVB/Kz1vLVPHj0cUt6unt540Yw8UFDq5aegYG0NMsbb1oGXWhITnavi4w0PPNk9UNlIiKBJDLScNMNhrPOtLwwzbJwIZS4vG+76u+Ky449Bg4+yNDyYEhIcMK327bDtm2wYaMTElv8E4SGwIDTIykpKfB4fF6eJTrasx8NCzOccTqkpFhuuc1zf0t+gyuHW048wXLVUEOTJtXrg5seYBh9PWRmOiN5hYaqDxcREZGa+fjjjwHnb8MzzjiD5s2b+30fzZs35/TTT2fWrFkYY/joo49qJdw1atQov7cpIiIiIiIiIiL7N4W7RPZhxcWWb76Dl162/PtvxfVH9IUJDxhCQqr2wby1ll+XwPMvWpb97rnu1FNg5LWGhATPtmZ9aHnqGUt+vvP4kdd6rlewS0T2Fa1bGR4ab0hLt8xfAGvWONPVFhc709U2bABNmxqstR5930EtDAe18GwrJQXat3NuX3i+ISsL1m+IJT4+xCNUu3yFZfSNlksGO0Gr8HDPPrVvnxCOPcbFvG+gdWv45x+nHoDPv4CvvrKccIJl8IWGli2r3h+f1l99t4iIiPhHUVERS5cuLbtfOn1ibejfvz+zZs3CWsuSJUsoKSkhNDS01vYnIiIiIiIiIiLiDwp3ieyDtm+3zP4YZn9k2brN+zannAS3j61asCs72/Ld9/Du+5blKzzXNW4Et9xkKkwzVqpRQ8jPd26/NwsGX2Q9Ru8SEdnXJCcZTj8VwH99XUKCoW/ziArLn3/Rkp0Nz/7PMudTuGE0HNbNc7+jRhgGXwTt2xk2bbI897zly6+cdSUumPsZzP3M0re35awzDT17OCN/iYiIiOwNK1eupKioCICoqCj69OlTa/vq3bs3UVFR5OfnU1hYyMqVK+nQoUOt7U9ERERERERERMQfFO4S2UdkZVl+/gU+/9Ly/feVTwkGcNIJcNutuw92ZWVZFi6Cr+ZZfvgRdr7XXiYiHM49B4ZcZsjPhzmfWhYsstx1uyEiwt1u715wSCdnpJhhVxiSkmr4REVEBHCCt9vKBXj//Q9GjXGmWxxxjaF+itMXN2hgaNDA2aZJE8N9dxvOP8/y4kuWHxe7H79gESxYZElKhMMOsxzW1XBYN2jWbM+jLBYVWf73vKVePcOgCxUMExERkar7559/AOd6o0WLFkREVAy0+0tkZCQHHXQQy5cvL9t3sIW79pXRrz2fhyFQn5ZHlQFaIwRHncFd467Hq907BVUiuF/LwBEMNYKvde7dYzYYXstgqBGCo07/1+j/4zUYXkcIjjqDoUbYm3X6frwGw2sZDDVCcNQZGDXu/ngNjBr3LBjqVI3+4i5sX3nvw98U7hIJcm/PtHz9jeXPP70HuhrUhzMHGHJzLW+8CeecBddfZwgN9ewUrbX8txYWLIQFCy3LlnlvLyoKTusPFw8yNGjgtDH6Rhd//uWsP/UU6NPbvb0xhokTICFBHbGIiD/FxRleegE+/Aj+97wzghc40y0uWGgZOsTp872NwtWpo2Hyw7Dqb3h9huXreeDa2eenZ8BXX8NXXzt/7EVHQaNGlkaNoGFDiI2B6GiIijKEh0FunuXDj2DrVjDGsmGjpUUzg8s6bbpcYC2UlDj/u1zWWW7Bujy3AQgNg7BQp+64WEhMdP4lJ0PTA5znLSIiIvuOzMzMstv169ev9f2V30d6+fmug0TSPvSNqeKd84XHxMRgiKnjarwrNmE7L1qLCQuJretyKhUMdQZ7jSU7/4+JT977he0i2F/LQBEMNYLvde7NYzYYXstgqBGCo87aqNHfx2swvI4QHHUGQ42wd+v09XgNhtcyGGqE4KgzUGrc3fEaKDXuSTDUqRr9pzSCGBcXR1iYoky70isiEuAKCixr18J/a51g1RH9PD/U/uMvy7LfKz6uZw8n1NWvj/MBubXQpTP07eMOWblczmPnfWP5fgFs2lR5HQcfBA0bwMknwUknhnis6344ZeGub7619OntWWNioj6IFxGpDaGhhrPPhGOOgmees8yZ6yzPyYEnnrJ8/AmMuR66dnH3wwUFluemWkJC4LoRIdx3t+HqKy2fzLF8Ohc2b/HcR16+MyrYv//tuveK30yzFj740Pu66vPeRv36lo4doGtnw1FHQuPG+h0jIiISzLKysspuJyfX/gfQ5cNR5fctdSTCCXXV7ThIu2GN8wY4LmxIaF1XU7lgqFM1+k8w1Kka/ScY6lSN/hMMdapG/wmGOoOhRgiOOlWj/wRDnarRf4KhTtXoXxGB+eWvQKBwl0iAcLksGzZCswM9P6T+/Q+4/gbnbc4unSuGu3r2MHz5lSU0BDp2hB7dnQ/XTzrReLRljKFfXygpsSz73fL1PMu8byE11Xs9ISHQqSMceYShqMjy/Ivwz78QHQMnnei5ba+ehj/+tPTr63zQLiIie1dysuGO2wynn2aZ/KhljTO7EavXwMjrLaNGwPkDDZlZluuut6xe46zv0d3Su5fhgCaGYVcYhg5xAsU//wq//Gr5bSmkpdXd8/Jm+3b49jv49jvLE0/DoYdYzhpgOPYYPKYFFhERkeBQfoTnvRG2yi4d7pTgHF06GEcb88YYQ1xcHIRHk11QgrUBG+9y8zK6eUAKhjqDrMay4xWnDwmo4zXIXsuAFQw1QpXrrNNjNhhey2CoEYKjTj/UWOvHazC8jhAcdQZDjVCrdfrteA2G1zIYaoTgqLOOaqzW8RoMryMER52q0We7HrP7An+Pvq5wl0gd2rDRMu8b+O03y+9/QmYmfPIhJCS432Bu0dy9/X9rK7bRtw+Mv99wWFdnKq1HH7f8uBh++NHyzJPu6bjWrrN89LFl7meQusN7PaGhEBsLo0cZevVwj7i1bj08/6LzS/+XX52AWPlpHbt0Njw+JfjeFBcR2dd06WyY9jy8+z5Mm27JyYGIcOjXz1kfHwfNDqQs3PXTz064q5QxhhYtoEULOOcsZ3lurmXzFtiyFbZvc0byys+HvHxLcZHzuNJpF0NDnVEXQkOcedtDQtz/jDHlbjvbemxjnMcWF7v/ZWVbMjIgI8MJda1f7+y/vGW/w7LfLc9NhcsuhdNP9T4VpYiIiASm2Fj3dABpeyFVXn4f5fcdLAIqVFJDoaEB/m1hkXI0JYgEGx2zEkx0vEow0fEqwUTHqwSb8sfsvvT+h7/ojBbZy3JynGmyPvvCsnxFxfWr10C3ru77KSnQsYMzJWLz5hWDVclJhkM7Waa/annvfSja+UH7n3/B+7MsiYnw4UeWJb95r6d+fTjqCPjwI+eD9MxM6Nsb4uLc+ziwKRx+mLP/7oc7UzyKiEhgCgszXDAQTjgOnptqadwYmh7g9OnGGG65CVausgwcCAPPCdlDaxATY2h5MLQ8eNc1ew5QZWRYoqIgMtLXsJXn46y1rFsPS5fB9/MtP/zo/r23bTs8MsUy8x0YPQp6dFfAS0REJBg0adIEcH7Pr169mpKSkloL/RQXF/P333+X3W/cuHGt7EdERERERERERMSfFO4S2UvS0y3vvGd55z2obCTBlBTIy/NcZoxh6rMVP6C21rLsd/joY8uXX0NBgXtdSAi0bQsvTofs7IpJrOQkOOF4OPYYwyGdICTE8OdfrrKw2eo1zhSQ5WvQyFwiIsElJcWZqnHXbzckJBi6H255+RUoKbYMON0JcPlbbq7lplstERHw0HiIj6/5PowxNG8GzZvB6acaMjIsn3wKM9+xbN3mbPPfWhhzk+WkEyyjrzck+GG/IiIiUnvatGlTdjsnJ4dffvmFHj161Mq+lixZQk5Ojtd9i4iIiIiIiIiIBCqFu0RqWXGx5e134KXptsJUUhER0Kc3HHWEoUtnaNTI+eB6dzZvtnz2BXw617J2XcX1MTGQmwvLl3suN4ayEbcuuRjOP89ztJahQ5z9tmnthMxERGTfsOvvlXXrnREkS1zw1DOW6S/DgDMs555jaNTQP0Eol8ty5z2Wv3b+Lhp5vWXyw1D//+3dd3gUVdvH8e+kV5JQQu/SFJFeREWQJorSFAuIIg+iIvb22Ht/LPAqioii2BBEVBQRxQZIF0SalNBrei973j+GbLLJprcN/D7XlStTz5zdPVN255771C7fQKuwMIurR8OIYfDVQpg125CQYM/74UdYt8Hw+CPQ8RwFeImIiHiqxo0bU6tWLaKjowGYP39+hQV3zZs3zzlcs2ZNmjRpUiHbERERERERERERKU9F98UjIqX210bDDRMMb053Dexq1gz+e7/FNwssnnnSi0EDLerVs4oM7AI7q9Y77+YP7PI6uTcnJ7tOb9IYbr3Z4v57wdvL7uIxrEb+7fTqadGrp0Xt2sWrh4iIVE/R0VA3Vw9EiUnw8acwarRhzDgHPy41pKaWrf9dLy+L3udaZJ9Odu6CibcY/tpYMf36+vtbXHmFxax37e4osx0/DrffZZg336h/dhEREQ/Wt29fjLHP1wsXLmTHjh3lvo0dO3bw1VdfYVn2d95+/foVvZKIiIiIiIiIiIgHUOYukQqQmWl4Z6bh409cp7c6A8Zfb9H7XPvGd0EyMgyr18CyXw133W4REJCzbNcu4O9vd8Po5QUOhz09+z/YWboG9IfLh1p0ONvO2pKeDn37QHCwArdERE5n53SwmPMBLF4Cn31u2L3Hnm4M7ImCx58yBAZA796GiwdZ9OheuvPGyOEWERHw1DOGjAw4ehRuu8MwaoRh/PUWISGlKzctze6WeOWfhoAAOHoM/t0Je/dCaq5A6uxzZFYWvPqGnUXsztsNwcF6tkFERMTTXHnllXzxxRdYlkVWVhZ33nknc+bMISwsrFzKj4+P56677sJx8ouzZVmMGjWqXMoWERERERGRypWSYlx+C/ZEAQEQGKh7siJSfhTcJVLOjhw1PP6kfeM5W3AwTLzRYtjl4O1d8Il8T5Rh/peGH3+C+Hh7Wq8e0PdCe/jAQcOXC3Iyj+QO6IKcrheNye7qMWdbfn4Wfn5lfHEiInJK8PW1uHQIXHIxLF9heOY5iE/ImZ+SCj8uhYYNTL7grqQkU+xA4X4XWoSHwSOPGeLi7fPW51/A4h8Mo0bC0EuK31Wjw2HYth1e/p/9v+jlXce//8EOaOt7oYMrR1mcdWbRXSGLiIhI5ejQoQO9evVixYoVWJbFzp07mThxIlOnTiUyMrJMZR87dozbbruNHTt2OM/9PXr04JxzzimPqouIiIiIiEglS02F2LiqrkXhwoHAwKquhYicShTcJVKONvxl+O8jxhmYBXBeb7jnLovatdzfQHY4DCtWwhfz7WxdeS39yVC/Hnz8mWHZL/lvVgcGQP+LYOilFuvWG2a8CyOGg36nFhGRoliW3X3il18Y7nvQftopNdXuRhHsLnvzunacwTgM9epBvbrY/+tZ1I2EmjUhIgIiwu2gYoDOnSw+mAUvvmRYvtIuIy4eZs4yvPc+tG1raNsGIutY+PtBlgMyM+HAAUNyCjz5mJ1p68QJ+M+kwrtWDAqC9HR7fXeMgZ9+hp9+Npx1Jlw3Bs7tVfYgr7Q0w+Z/ICHRHm9/JtQq4LwvIiIi7j300EOMHDmS9PR0AP766y+GDh3Kgw8+yNChQ/H29i5ReVlZWXz99dc899xzxMfHY1kWxhj8/f15+OGHK+IlALBmzRr27t3rHI+JiXEOR0VFMX/+fJflR4wYUWF1EREREREROZWlpVV1Ddzz96/qGojIqcgyxhR+l6yEcv9oJVIalmURHh4OQGxsLOXcRCvMxk2G2++yu54C8PGBWyZZXDHS/U1jYwwrV8E7Mww7/s1fXsMG0LYtHDwIW7bmn1+/Hlx1pcXgQTldLWZkGPbtgxYtdENZyq667osip6LK2B8zMw1eXna3wbv3GP5cBVeMdM04efSoYcSVxdt2rVrw1bycLhCNMcxfYHhvlh3cVRzeXvDDdxb+/nYdrr/Rwb877XmWBS2aw8ABdhfELVtAUJB90zYlBXbvgbXrYPUaw/oNBW+jZUsYN9aib5/SB3kdOGgYfU3O+/LeDIvWrXQuPlXp/CjiObQ/ll1ERERVV8HF3LlzeeSRR5yBWGB/zrVq1WLkyJH07NmT9u3bExoa6nb9xMRENm3axMqVK5k/fz7Hjx/HGONyjn/88ccZPXp0hb2GBx54gC+//LLYy2/btq1E5Z8qv7tp/z09Vdfuc9RepbpRm5XqRO1VqhO1V88RE2OIjfPs4K7wMIiIqLrfiNVepbo5Fdtsef/upsxdIuWkTWs460zY8BdE1oGnn7Q4s537k/aBg4bnXjBs+Mt1urcX9OkDrVvBD0tg6U/51z27PRw5Cqlp0K8fLl1j+fpatGhRnq9KREROFz4+OeeT5s0smjezs0s+/ZyDwQMtunaxOHjIzo6VnFx0eX6+ruOWZREaAnHxxb8gz3JA1F77vAgwaKBFu72Gnj0sunbBbfeQlmURFGSfk+3sXBb79xvemWn46ef829i5Ex593NCuLdx6M3Q8p/Av3A6HwcvLdZkG9aF2bTh+3H5/WjTPv156unFmMxMRERH3rrjiCmJiYnj11VedAVnGGI4fP84777zDO++84wz2qlGjhjPIKzExkfj4eGcwV/Z6gEs5t99+e4UGdolI4dR9joiIiIiIiEjpKLhLpJz4+1s89zS8/D/DrTdbREYWfAM3rAbs2p0zHhgIo0ZA+/bwyacw/R3X5X18YOAAuHIUPPwoHD1qT3/pFcMzT5a9OykRERF3Pv4Uvl8Mi38wTBhvZ7j6/huIjobDR+DQYTh8GI4cMRw9CjGxEBMD0TEQ7uaBhOJm7AJo0hjuv9eiaZOcaVePtoCSn/MaNbJ48jGLG29wcPtddhBWXlu2wuTbDef1Ntx/j5XvqSpjDL/+DtPfMTz7lB0Al82yLC652BC1F5o3cw2UA7uLyVtvN9w80Q5QExERkYJNnDiRli1b8uCDDzq7UwRcgraOHTvGsWPH8s3LLfe8kJAQnnvuOQYMGFDh9X/++ed5/vnnK3w7ItWZJ2dYEBEREREREfFECu4SKaXMTIO3t2tgVWioxROPFX3TNiTEYsw1MGOmYfjlduDWJ5/Bh3NclwsOhmGXwRUjLWrXtsu97x7DlDsNIcFw3rm6QSwiIhUjLc2w4Kvsm6g5T697eVnUrm1nqmp/VvbS+QOh0tPzl9m2DYwdA3FxEB8HGZk587wsCAqG8HA4o4VF27auAVTloWkTLz7/2PD0s4aflrlfZvsOCA425H1NM2YaZn9kD0/9P8MrL7peA/znRi/cycoyPP2c4fhxeOpZw5GjdjYxERERKdhFF13EvHnzeOmll/jxxx9xOByFPtTkbp4xBi8vLwYMGMA999xDkyZN3KwpIiIiIiIiIiLi+RTcJVIKycmGhx8ztGkDN00o/AZtRobhr43QtYvrciOHQ/dudkaUmydDRkbOPF9fO5PXJZdAsyauN4s7d7K4927o3QtnwJeIiEh58/e3mPE2PPu8ITraPm8Vl2VZbp96P7u9xdntq/bc5edn8cRjcE4HeH2qwZEn0cfRo3D/f+GZJw1BQTl1HTjAYs4nhqws2PEvHDsGkZFFby8mBhIS7WFfX7t7ZRERESla48aNeeONN4iKiuL999/n999/Z9++fcVat1GjRpx//vmMGzeOZs2aVWxFRUREREREREREKpiCu0RKKD7BcMfdhu3bYdVqqFPbMGKY+xvV+/YbnnjKsH0HTHsdOpxtL5eebvjyK/jgQ0hIcF1nQH8YOQyW/gzXj4fX/2c4p4Nr+ZcPVVCXiIhUvIhwixeehdhY8PZ2Pffs2mX4c7WdYTIwsHqdlyzLYuQIOOMMePwpw7FjrvOPHgNfXzt7lzGGn3+BPufD6CvBOOzuKUNCiveaa9e2mPk2PPmMoW8fi04dq9d7JSIiUtWaNm3KY489BsCRI0dYu3YtR48eJTY2ltjYWADCwsKIiIggMjKSzp07U69evSqssYiIiIiIiIiISPlScJdICQUHQf16sH27PZ6Skn8ZYwyLvofXXjekpNrTnnza8MF7hhUrLd5+13DokOs6nTrCrZMs2ra1ePtdB3Pn2dNfe8Pw7tv5b6qLiIhUBi8vi5o180+fNdvw8zKY8zE8cH/17Cr4nA4WH7wHL75kWPZrzvSoKJhyJzz7tOGXX+Hl/xkaNYSrroTe5xYd2GWMITnZDoqLiYXYODj/PEhNw+7q0oKgQAgKsv+Cg6FeXQgLq5r38M3pDrbvgEYNoUd3i/PPq36fpYiInB7q1q3LkCFDqroaIiIiIiIiIiIilUrBXSIl5O1t8ehDcONeg48PbPrb8N1iuHiQfSM0PsHw0iv2De9svr5w/vlw+12wdZtr/08R4XD3XdDnfAvLssu4YoTFZ58Z0jOgRg07u1d4eOW8PhERkaLs3mNY9os9HBsHDepXbX3KokaoxVNPwMJv7IDq7G6SN/0NV15tSE+3x/cfgJdfhWlvGX783jX46ZdfDZ/NNSQmQlw8xMe7drecw7ib6BQeZujbF+6+w6vQ5UojK8uwZCl07QK1a7nW/9BhWLPW/qtXD84v962LiIiIiIiIiIiIiIhIaSm4S6QQBw8Zlv4E7c/CpRslf3+Li/oaZs6Cf/+F5s3srps2/GV48hnD0aOu5URGwtwvXKf5eENmlp3Ro0mjnMAugJo1LW69GZo0sW/C5p4nIiJS1Ro3ggfvs/jgQ0OrVtCiuet5KibWsOg76NwJWp0BPj6ecx5LSjLs2g07d8HFg+xzumVZXD4UunQxjB2XE5jlLjtnairM+sAwbqyd1QzgRDRs3FT2usXGQUZ6/um//GY4fNjO8tmyRcmzef65yjDtTcPuPTBxgsV1Y1znB/jnDJ/fO//6h48Y6kbqekREREREREREREREJK+UFENqalXXonABARAYqN/4qzMFd4kUYMFCw8v/szNsNGwIn37kelMzItwiOwOHZcHb7zqY8zE4HPnLOnAgZzggAK4eDVu3wYqV9rTde6BFC9d1Ro7QwVVERDyTj4/FkIth4ABISso//+dl8Nbb9jny0iHwwH2Vf05LSDAY7MxcuT38mGH1Gnu4SWOLzp1y5jVq4MXkWwx7ogxr18Lefe7LnjnLsHwFPP6IoWFDL7zcvLyQEDvrZkQ4hIdBaKidydPX175W2LLV/ssWGAApqdCkSf7Cvv7GsPJPe/jRhy0G9i/22wDA5n/sa43sssZckxOYBjD+eosB/eHIETuwPLeUFMPNtxrq1YMpk6FdW12fiIiIiIhI0XSDS0REREROF6mp9sPbniwcCAys6lpIWSi4S6QAHc7O6TrpwAF4e4Zh0sScL/s9e8JLL1gcPWb49DPYl+sGcIA/pGe4Bnp5ecElF8ONN1jUrm0xc5aD9HRo3NjuAklERKS68fGxCAvLP33pTznn0LPPzv9D+RvTHGzfYWcAu/oqiyaNy+/H9AVfGWZ9YDgR7T5LVYsWOIO7Vq81dO7kuu2Rwy3AIjPT7sZwzseGPVH5t7NlK4y+FurWddC8GQzsD40a2eWf0QLq17cKzbBljOGV1wwLvoI7b7cYMQxiYsDb23W5zEzDXxtzxjt2cJ2flWX46GPo3g3atHYN2sp23Rj4fTkcPACXDbXIyrKvS7LVr29Rv4CuNT/+1HDsOBw7bgfGfTbHszKxiYiIiIiIZ9INLhERERE53aSlVXUN3PP3L3oZ8XwK7pLT3pGjhm++NVx/Xc5N2LQ0w/uzXZdbvRbGpxv8/Oxl6tW1qFcXoqPhnXdybmJ7e0NqngN3zx5wy00WLVrk3Ay98QYvRERETkXDLrdo1MiwfoPdlWBea9fZ3SJu+AtGDM8/f/LtDnx8ILIO/PcB1/Plrl2G16YaomPgnLPh3rtd5/v62d0kAkRF2d0m59a2jUWb1oaWLaDVGQUHKfn4WFw8CAYNgPUbYOHXht+X5/9yduSI/Zd/fUO9uoYGDaBBfWjWzKJNazijpf1kuGVZ3H0H9LsQZ4BZzZr5y3E44I4pFus3GI4cgchI1zr/swVmzDTMmAm1akK3roYe3aH3uRZBQZbztTz9BAQHQVhYyQKzfHws/PwM6elw038sBXaJiIiIiEiJ6AaXiIiIiIhI2Sm4S05rb89w8MlnkJkJTZtA/4vg2DHDfx81bNmSs9x5veGxhy1nYFe2jAzDps1QNxLi4u1pWVk589ufZWcNyZsVRERE5FQ24CKLARe5P/elpblmwmrYwHV+dqYqY+yuCv/7gOt8A6xbbw/7urmSbXqyW8HAAPLGdRVZN3e8vCy6dIYunS1SU+0uHRd9b/hjufuumHNeB+w/YP/l1NzuyrlpE0PHc6BrF9duIbPFJxgcWRAebl97XHIxXHKx+zqvWJkTYH4iGr7/wf7z8zV06mQ4t5dF717QoH7prkXGjbUYNAC+/tYw4KL8848eNfkCzkRERKTiHD9+vNTrBgcHE1hAipoTJ05gjHE7ryiBgYEEBwe7nRcTE0NW7h9KTrIsi4yMDADi4uLcbtvf35/Q0FC35cbFxTnXLyk/Pz9q1Kjhdl58fDzp6emlKtfX15cwd2ltgYSEBNJKGeHi7e1NRESE23lJSUmkpKSUqlzLsqhVq5bbeSkpKSS563+9mGrXru12elpaGjExCaUO9gkLq4mXV/6HJTMy0klMjC9doUBoaDg+Pvm/XGRmZhIbG1us9upOjRo18PPzyzfd4XAQHR1dhvqG4l9AZJInHSNiYw3xCWBZgQQGuj9GxMfFkOXIf4woDj8/f4KD3R8jEhLiyMws/Bjh7w9ZmZCV5fp95lQ7Rhw/frxUx/eqOkYkJCSUutyaNd0fI9LT04mPL/0xIjy88GNEaZ3ux4hsQUFBhIeHu51X0HVEceg6wnaqXUdU9THC3TWBjhG2qviuERcXQ0pK1VxHFMTX14+QEM84RhTnGlbHiBxlPUZkX/vm/SgK+66RkBBb2uoSElIDX1/3x4i4uPzHiIKuffOqymNEab53leb3iOIor+uIgvav0rJMaY+mBYiJiSnP4uQ0ZFmW82I+Nja21Cf84nh/tuHd9+zymzaBu++Ex560u0XKdvVomDTRwssL/lxl30Q9rzf8sQJ+XArurs1atoSJN1qc28t+PSLVUWXuiyJSuFNpfzTGcPQY7N9vZ7wakido6fhxw7BR9usLCYHvv3H9QhUdbbhshD3fzw+WfOfa/WF6up3VK7KO+y4Ky8vefYb/PmI4dAhumgBp6RYHDhj2H4BDh+HoUTtArSiWBe3aQv9+Fv36Qc0IuP+/hl274YlHLdqfVfhrWLfesORHw29/uL8mydayBZzbC87tZXFmOwrtMrK49u4zjBtvuKifnaG0Zs3T45rnVNofRao77Y9lV94/MknFK8tvDC+++CITJkxwO69Vq1acOHGiVOXed999PPDAA27n9erVi23btpWq3BtvvJGXXnrJ7byhQ4fyxx9/lKrcyy67jPfff9/tvOuvv56FCxeWqtzevXvz9ddfu5137733MnPmzFKV26ZNG1asWOF23vPPP8+LL75YqnJr1arFjh073M579913ue+++0pVLlDgDcc5cxZw223jS13ut4u2ERGR/2bOunW/M/nWy0td7kdz/qBFi7b4+0N4GERE2PvZli1b6N27d6nLXbhwIeedd16+6cePH6d169alLve9995j0KDLSU3NP69lS/c30Yrj8cdfYOxY98eIbt1aEx1dumPE+BvvY8KE+93Ou/aac9m9u3THiBEjxnPPve6PEbfechnr15++x4jsa6THH3+cJ554olTlVsUxYsGCBYwfX/pjxPbt293e8P3999+57LLLSl3uH3/8Qbt27fJNr6hjxP79x+jQoU2py5069T2GDHF/TCyvY0RAgJ2VPFtZriPuv/9+nn/+eSD/Nb2uI2y6jrDpGGErj+uIYcOGuZ1X0123AsVUUdcRU6bcx+23u15HeHtDcorh0kt6s2uXZ11H9O17Gc88OyvfdSXoGJHtdDtGZH/XyGvXrq2Mubb0x4hp//cVnTvnP0bExBznkiGlv46oqGPE6fp7RHn/VqnMXXLaiI01hIe7/gh6xUj4bC60OgOaNoU774ask1k4vL3hnjst+lwAn801zP0Cjp0MSJ33Zf7yLQu6d4MrR1l061qxN5RFRESqK8uyqBtpZ710JzwcPnzf4sQJcPcAT1gYvPGqRc2adiBU3iAlPz+72+SK1qSxxTtv2t1Lnt0+uw6uQWZHjsLBg3Yg245/Ddt3wK7ddlavbMbYXSv+s8Uw9U2oV9cODgO4827DvLlQI7Tga4rOnewMoffebXjgv4blK8HLK39WsZ277L8P5xjCw6BnTzurV49uEBxc8msWYwyvvWHIyIDvF9vjj/xX1z4iIiIiIpUhNRVi48q3zJSUgsssLGvxqSYjA2Ji3N+EKWWiH8D+HlhQuWlpClCXHO4CN0siKbn8jw/geowIBwpIviEip6mKuo5wd83j6wvmNLo2EalMSUkFX7OWRXKyKbBcPatZfAruklPeqtWG+QsMa9bC3E8hIleAV3CwxTtvGt6ZCV8uyFknPBx6dIM5nxpefKXwg0r9enDJEIvBg6BeXd3UFBERKQsfH4vmzaB5M/fzvb3dd2VYFYKCLM5un3/6wm8MWVkw7DJo3MiiR3fIDvxKTzds3QZr18GatYa/N+d06WxMTmAXQJs2kJYK5Mr+++tvhi3bDKEhFtdclXPd4eVl8eAD8NZ0w8T/WGBgxUpYvsKweq3rj8OxcXZA1veLDd7e0PEcQ+9eFgMGuF4nFSY93Q60AzvAfcw1ugYSERERqU6MKfhH++Tksv267q5cb2/IyNSv9uWttF1cupOZWb7lVVfpGQXfnE4vY3BXQeXqfZfylJlRMW0q+xhRQE9NIh4vNtbg7Z3/WiQhoWzXJ/Hx7q99ytAbbLVUUdcRmVn5y/X1Lf/tiIitMoLE8zqdHiQpKwV3ySnv088Nq1bbw3O/MEyckHPzcdPfhmeeg/0Hcpb38rK7NVq8pOAy69eHC86H83tbdDhbWbpERETE9vdmw/9eM2RmwqrVcM+dUKtWznWCn5997dDhbLhhnEVSkuHX32HJj4a1a3MyiAJs+AtGXWW4sI9h9BUWZ7azmP6OYe8+CAkxXDnKDobLFhFu8d8HcsaHXgpDL7VISzOs22AHev2x3O4yMltWlh1otnadoVs3i4jw4r1Of3+Lxx62GHqJYcNf0LyZ67VQWprhjWmGIRfb3UCqm2oREREpqbS0gp/szZ0JtaQqKitPdeNwFPzjekpK2cp2V66vL2SV4XMTqSwONzeRc88rdbmOgsvNKkO5IiJSPPEJ4O3mrniim54DSiIh0f21T0Ji2coVEfcK+i7nrheQkqioANDqpqKDxKVsLFPOHT3GxMSUZ3FyGrIsi/DwcCB/H+sFMcbw7047KKtbV9ebh7/8ZnjoEYNlwZCL4fKhFps2GaJj4JPPih8N2rgRDBoI/S60aNJENyjl1FeafVFEKob2x+rjoUcd/PJrznhICIwfZzF8GPj6Fn79EB1tWLwE5i8wHDqUf377s2DL1pwf/l992cp33VMUYww7d8HyFfDHcsM/W+ysDfXrw+cfWy5BWHuiDB98eLL7xu6Fdw+Z16LvDM++YLfTvhfCU497laienkz7o4jn0P5YdhEREVVdBSmhHTt2lHrd4OBgAgvoQ+nEiROl3ocCAwMJDg52Oy8mJoYsN1ELlmURHBxMTIzh8OEkDPm37efnT3BwaL7pAAkJcWRmli4Sy8fHj9DQGgWUG09mZnquZcHPz+DjXfR1kK+vLzVqhLmdl5iYQFopf8n29vYmPNz9vpqcnERKSgre3pCSakhNtYr9g7l9DK3ldl5aagrJKaW/OxIRUTvftJAQSEtNJS4+sdQ/6oeF1cTLK/91ZUZGOomJpU+PERoajo+PD/7+EB4GERH2552ZmUlsbCyWZRF2Mm1tXFxcsfeVGjVq4Ofnl2+6w+EgOjq6DPUNJTnZj9i4/DdIYmKOl7rcoMBg/APcHyNiY0t2jAgOBuMwZDksLCuQwED3x4j4uBiyShkxVdZjRO465n4ffX39CAlxf4xITIwnIyPd7byi+Pj4Ehrq/hiRlJRAerr7HSM4GEJDILSA72Pe3t5uz+ehoaEkJSVxNPfTPSVgWRa1ark/RqSkpJBUhjuotWvnP0YApKWlkZCQUOpya9Z0f4xIT08nvgwpdMLD7WNEXtnHiNIq6Bhx4kQWUXujS32sDA4Oxc/PfXqt8jhG5D1WQtmuI4KCgmjYsCGQ/5q+oOuI4jDGDx8f98eI+Pg4MkoZ0e3nV/h1RHp6yY4RAQEQEGDh6+vrPNfkL7ds1xEFXfMnJdnXEaXhiceI2FhDfELBwQPlcR1hWRYhISEAJCYmYoxxXkfklZmZSUJCrHPc3x9qhEJ4MbPmV+R1hH8BKfiOHz9e5PtYkPK8jsgtICD/dURIiH0OPxEdS0pK1VxHFCT7OiIkxP68a9TI+bzj40t+jMgpt3THiNzt1Z30dC8CAwv/rlEalmVRs6b7Y0RqasmOEbm/64D77xoA6elpJCWV/jqiLMcIHx/315VAsY8RJRUSUgNfX/fHiLi4/MeIgq598y9XsdcR7mQfI+zvqIGE1fDC17d4baQ0v0cUh7+/P6Gh7o8RcXHFv45o1apVqbZfEAV3SYUwxhAbB/v3w6FDEBdvdwfk5WUfhL29ITAAQkOhbiQ0aWJ3bQQl/4H++AnD+Al2sFbjxvDJhzkH3tRUw7r1hjmf2E9f7txV/AsSH29o1QouHgT9L7JcTsAipwPdLBPxHNofq4/0dMP0dwxz57l269yoEdw6yeK83kVnscrKMqz4E+bNN6xek39+aAic2wsmjIf69csWNBUTY1j5JzgMXHKxa70++th+LQAD+8OjDxd/WxNvdvDPFnt4ymSLK0flz+zl71/+11ZpaYaEREhIgMRE++nLzAz7yaDMLPu/txf4+eX8tT/L/iG1uLQ/ingO7Y9lp+Cu6udU+d0t+8ZYdLThwIFEUtM8c//NvnGUmeXZvwn5+ubU01Ofhs79XnpqHd0FLIBnnm9iYozb4C5PUR0+7+pQR7Dr6edn8PUpwXHIsggJPnkzNynR9ctpBfD2BofDYIxnHysDAiAw0LPrCNVj/84bsFBW2TdPyxLcl1f2++jp3J13PE1KiiE1taprUThvb0hOMaSkVOwx3bIsl/ZakmuCgq4zPI2nH4OgepzDS3X+Lm9FXA/k3m88mb7rlI/qUEfLsoiICCIi3Atf31Mj/WF5/+6mbhmlzIwxHDwIm7fAP1sMW7fCnij7hlpJ1KplaNoEWra0OOfsVNq28aFWLYOvr53B4p8thr174eknLCIjc040NSMg/WRw5L59sHqtg717LVasNKxbDyUJgg6rAT162AFdnTpaLl0diYiIiBTFz89iymSLPhcYXnzZELXXnr5/Pzz4sKFdO7j2Kjj/PPAuIAOEt7fFeefCeeda7NptmPuFYfEPOdc7CYl299G//QFDL3EwaoRF/fqlu2aJiLC4eLD7eX8sz/nCf26vnPIzMgz79sMX8w2OLPuLYWoqJCXbWcV8faFBA3vZqL3Qvr0hK8v19d52hyEtzdCjB1w92iKimE8tZm//u8Vw8KCd4ezgYTh6xA7oSi/FQ3Wff2LRoH7OuDGG16camjSxOLs9tGyhLrhFRETEs29w+fpWdQ1EpCKlpUJSCZIOWEBGht1dRXISbnIjli/7pqv9QI2n8vU9+cC5+4QRUkKpaYas8oo3tywyMuxWmphEuQQjentDWroBPPcGNti/p3h7V3UtipaaWnBXzp4i+zjkybKPQ3L6KOn5u7wVdT2Qe7/x5GOlvuuI5FBwl5RYaqph6zb4ezP8vdnw99/lc2F34oT9t269Ye4Xdqo9b29o1gyioyH74dR/thiX4C4vL4t2bQ07/oUAf7jzbijJV9Z6deHCPnBhH4sz2+nmnYiIiJTdOR0sPngPvvoa3ptliDuZuXnLFnj4MUPzZjDrXYoMJG/R3OL+ey0m/sfw1UKY/6WdrRQgORk+mwtz5xm6djEMHGBxwXk52VDL6r57LP5Yblj2C8TGG154ybD5HztgqyTZjCdOAn9/Q4vmhk4doU0bu3tJY+wHAsaNcV0+K8uwarVh+w6LQ4cMV46yaNEi5zV5e8OrrxtK2YNCPnkz3B85Cl/MBzAEBMD331i4ycgtIiIiIqeYgm66GmPIzMx0DotUleJ3uwp+/nZjTkuv8MRdLjddPfXmsK9vOQckVZDcQUmerDwDFioiGLE6BPpk8/R2WV0C5apL8Ed1+ryl/FTVvlPU9UB12W9EJIeCu8QtYwwpKRATCwcPwq7dsGu34d9/4d+dxbuhFxJid5PYqKGdatQYO0DL1w/CwiA1BeLi4MDJ8t2VmZUFO3e6Tnv4MQgIcBAaamft8vK2L/r9/XDe7CxKjRowZDD072fRpk3R3SOJiIiIlJSPj8XI4XaXhrM/MsxfkPNl/swziw7syi0i3OL66+Caq+DHpfDZF8Z5jeRwwKrVsGq1wd8fzu1l6NrFonMn+zqsJNc5MbGGbdtg6zY7oP7vzRAfb4+XRVqaHdC1ZavrdD8/+HCO4ab/5NRzxw64/792tx4AnTtBixY563h5WdSrZ9i3L/92AgPtbitDQ+1r0eBg8PMFbx/wOflnHHZ90tPtHzYCA1zL2L07Z7jD2fk/p7//Nhw4mMqgQXmiwkRERESk2nN707UCssqUhW68ipROVWdQKY7qFJQE5ROwUBHBiNUpYMHT22V1a5OeTp+3iIiUhYK7TnGZmYbde2D7Dtizx3D8BBw/DsdP2MFVlhfM/zwnFcGi7wwz3zccOwqOElxER0TAme3gzHZ29qtWZ9gBXNk36T7/wvDGNLvAoZfAbbe4pj+YO8/B61Pt4TPbQdOmfmzbnsWePVk43FxIpKbaf8eOFa9+gQHQtav9v19fOK+30i+IiIhI5QgNtbj1Zosx1xi+/ArmfWm4enT+GzFPPesgJBj6Xmh3B+iu20Y/P4shF8PFg2HdevhsrmHlnzivl9LS4Odl8PMy+7qrTm1o08bQqCGEhVkEBdkBT74+kJpmZ009dMhw8BDs2w9Hjxb9eiwLIuvYgVLxCXZ3iKWVkgIffQxLlhp69TD07Gmxd69xuf47eMh1nQ1/Gc5oCZ3OgbPOhKZNLerXs689y6NL7WZNYcpki23bDGefnb+8rxcZvvk2iedeTOLcXjBogEWvnuDrq5trIiIiItWdu5uuld3FXVF041WkbJR9SDyRp7ZLtcmKoc9bRERKQ8Fdhfhro+GxJw0hIXYGgPAwaNYcWja3aNkSGjcqnxtIuW3+x7BuvR0s1bYNnNGy5OXHxhrmfGLYsBF2/gvphXRZk7uLGWMMb043xepiMSgI6kZCu7Yw7jqLwADDgoUWm/8x7NoFTzzmGjzV6oyc4T1R+cs7+yyLoZcaGjeCw4ctfHws6kV6ERubRXR00fVxp1EjGH2FxVlnQovm5f9ZiYiIiJREWJidfWvMNfmvS06cMCz50Q7SmvelITwczjvXcMH5Fl272EFduVmWRZfO0KWzxfHjhh9/gh9+NGzf7rrNY8ftP1vpbkPVqglnt4f27S3an2Vf1/n759Tn8GFzMiuX/X/rNjtoqySOHIEFC2HBQuNyfdr7XLjgPNesBD8uNfy8zB5u3tyi/Vn538saNUofbFW/vsWVo8BdJoTMTMPvv9vvY0YG/PIr/PKrIawG9OtnGDTAvvY8HbPCGmNISDz5IMlxiIu3HyZJTbMfyvD2tjPt+gfYD1zUrAm1a9sBiAEBp9/7JSIiIp4t903Xyu7irii68SoiIiIiInL6UXBXIWLjcm5OZPvtD8i+MRYUBB07GDp3tm+6lSYQK6916+HtGXb5wy6He+50LTMhwRAYmHNDMDPTXjb3DUI/P/h8LmQV4wmu3FkRLMti4ADD3HlF/0iRnAy799gZEho2sDhxAt57317J1xf6D3bg72fXxc/PLs/Ly87wsHMXXD7SQWoq3HW7xaCBFm3b2n8Al49wcCK68LD14GD7b8qtUK+enYUiKBCi9hpuv8te5sQJGDwQAgN1s0hEREQ8h7uA899+d70ui42FbxbBN4vsa79uXQ3dulp06wIN83S1WLu2xVVXwlVX2lmvVq+F9esN6zfYATYlERgAbdrYf23bWLQ/E+rVKzxYqV49i3r17IxjYHenGB1tZ9w6dMjuhjs5BZKTDVlZ9rViVpadSfbQIbsbxKTknPJyvw9/LIfNm+Gssxy0P8uibRvYkquLyJa5umvM9sjjhs3/QNMmhscftWjRvPyuBY2BiRMsliz1Zv2GTOf0uHj4cgF8ucDQqJF9DTpwADSof+pdh2ZmGg4ehN1RsGcP7IkyREXB3n12EFdphNUwNG4MTZpAk8YWTRpD0ybQoIEyoomIiIiIiIiIiIiIKLirEImJhc9PToblK2H5SkPXLvDaK2W/8RAblxNV1bJF/vJmfWD4aiHUrWeoEWoHSj3+iEXvc3OWCQqyaNPG8M8We7xRI2jT2g4+q1cPateyn5IPCbafPDPGOG/YTZnsxWVDHfy10Q5qO3rM7p7n6FG7q568XSTWjbT/16plEVnHcPSYncUgI8P9zZ30dPsv+eQNvKU/G6L2GtLScP5lZLquY1n2X+5tJyXZf02bWjRvlvM+1aoFPXsYzmxncfEgBXaJiIhI9XD5ZdCihcVPywy//W5nssqWkgK//ga//mZfJ15wPjz7lPtrnCZNLJo0gZHDLRwOw959EBUFBw5CUpIhKdm+DsvMsDMohdWwM1U1qA8N6tuBXO66gyyMMXY3isbg/B8SAme0tIOvjLG7+zYOC19f+1o1t6wsO+PXyj8NK1bCtjzZx2Lj7CCvP5bnXCf7+toPDXy10LBuvaFeXYu6dSEy0rBzlx08tms3RIRDfILh6FGIiYGuXeCuew316kLzZhZduhheeMnOwODtZT+U4O9v/9U6mVmqVi3Lef3cto3F5ZdZjLsujH37s5j7RRzfLzYcOJhT3/374d33DO++B+d0MAwaaNG7l11OWZw4Yfj6WzgRbfD3g8l5ujmPiTV8/IkhNNQiMhIGDyzb9uLj7fazbx/s3W/Ytxei9trfCTIzi16/JOLiIW4z/L0ZcmeY8/aC+g2M3T4b2MFyDRtA/fr2d5oaNao+O29amiE5GcLDT8+MbSIiIiIiIiIiIiJS8RTcVYhBA6BXD4vEREhIhCNHYdcu+4bRv//CocM5y3bpnP+H/DenO9i3D9q2tWjX1g6wqlGj8B/9u3e18PMzHD8G7doajhy1b8ht2QpbtxqWr7RvVu3dm7PO6rWG3ufaZe7eY4gIh/HX29s560wICXHd3uHDhpV/nrzJ5vwzxMbaT+EfO27fjKtTx6JRQ2jYANLTDYu+t4O8AJo1tbtWyZ0dbMJ4C39/mPm+calfYZavsP8Kk11Hd3bthubNcsYty+LlF3RTRURERKoXy7LocDZ0ONvi9smGbdvtYK5ff7ezI+WW+9on25tvO9i/3+7irnZti5o1cWZRDQiwsyClplmkp0H/i1yzIR0+Ypj5niEl1Q4kS0kxpKba2bZST07LyrIDt+rXgzmzXYOKFn0Pz71QvL5pBg2ARx5yvVabMdPwzbcQEmoHm3XtYgf8x8baDxukuHlgIPthgqU/Z09xv/3LRhiX68gB/WH1Gns4MNAQn4DzgYiC2QXUqglffGZPSUkx1IzwosPZdgayTll2UNe27a5dUv610e7qHezAs8aN7HJCQ8HbB9LT7NeXdvL93rfP/p+VCXXrgXFkB8bZD0hkf//w9ob1fznw9gLLy+5AMiXFfvAD7OCvv/82hIXldB0UFgb/bLYfhoiMtAMIl/1qv48Oh72N7Gv77EC9kgoJyXmQpGaEnenYPwAC/O3XkZZqf7ZJyXaW3WMnsyQXlPEry2G/r/v3u34WuQUF2Q+9+PqBj7cd9Gd5nXzvHDkBh1m5XqNzngFH1sn/J6cFBdmfT41Q+/WEhNivpVYti1o17fdv9keG7Tvsh00yMux6fP+NRUhIyd8zEREREREREREREZGiKLirED4+9o2xmjXt8bPOhH4Xut4IW78e1q439Oief/2ff7G7mvntj5ybEEFBUK+uoW5dO9DL39++8TZpooW/v0WP7vbf0p8Mt9xmSE8v+kbZgQP2f4fDMHmKIS4ewsNgwTzXJ9mPnzB8tdCwYwf8vrzwMjf8BQXdJAPYE2X/DwvLmTbkYntbUXsN771vT7v2ahh+uT3dywu8vOHhR83Jp/JLJiQYatexb1o2aWxnWzizbcnLEREREfFklmV3P9i2jcXECXDggN3V4po1hjXroGuX/IHsv/5WeABMbj17WkSE54ynpcJ3i4tXt/SM/NO8ShBX7y5gPy7ezs4VGwf788920aABJCTYf6XZ3pIfc4ZTUuD92cUrB+BENPQdYLDf3+jir3hSdjbc4krcWfC8rCzYtq3g+WnpsGBh8bdVEpZlZ86ywCVjGdiZjxMTc74rWJYdbHXzTRZDL4GYWDuQq0Vzi4cfc5CaBo0a2sFse6Ig82S3nRHhEB1tB84Vp7v45OTClymJxMSCPqfCK/LkM4YGDQy1atqZ3kJr2N2cBgSc/B9of++D3A/Y2KVmZtj7Vnq6HSyWne3YOexmXnq6cZmfkWGXl/390s5AZz98ExRkd2kfEpwzHBwEwSF21/YVnf0sM9PObpaQaAfEZbeTxEQ70C/7tWVkGGrXthjYH4KDq/6Bnd+X212OxsQYRo2wqFev6uskIiIiIiIiIiIipycFd5VBvboWFw+Giwfn/5H38GHDoUP510lOtrNN7drtOn3SRNfx8HD7R253QkLsLm4GDbTo1sXuSgfsrA5x8fYygUH5f6Q/cABmfVCMF1YC7p6yDwy08PExBAbaP8rn/RH8gvOheXNDYAAEBkJAgEXgyZsd9pP9FrVqBRMQYJGRkUhQkKFObXWxKCIiIqenhg0tGjaEYZdZZGXlDzBJSTHOYP/iSMtz/RYYWPx1jZtsTt7edoYwr5MZpCyvkwFf1sngfisnu1RQcP71k5OKv/0brrMYPMgOtNq7184+Ne1N47wGlopxRkvo3MkOVGrYAM4/32L6OyZfcFdexthBO/HxhgEX29Pq14O5n1rs3w//FhDAlje46uLB8N339nBEhJ1J6+AhO/NZVikyjFWEnGzExctiVzmKV5eAAGMHewXbfy7BYNmBYMEWlpWT4Sz7LyPDOAPskpLt4C3neBIkJrlmsytOnffvh9tuLft3v7g4w/4DdjBovXrQrKlrmR9/alj6kyEmFm692eKivq7z539pWLXaHu7R3S5DREREREREREREpCoouKuC1K0Ln3xksWULbN1m2LIVdu+xn052x8/PdbxRI/t/7dr20+ytzoB2bS3atrXHvdykSIiNg3bt7O5cGjfKv43cP6rXrg0X9nG92RYTA/9stW+W1K1r33ixLPvPz89+6jsgINeT4AEQEZZ/O6OvgKtHe+WfcdI1V52821cAy7IID7ffkNhYq8in9UVEREROF97e+a+hfH3hnbcsjh6D48fsbK2xcXbgS1qa/cCAt499/Rbgn/+6MywMHn3IOhl0bwd7BQXamYYCA+2sQz4+OdeFeQ0cYDFwQOkDMR55yOLuuyAh3n5QIS4e4uNODsfZgVvx8RAXZ2fusiw7M1LtWvb669Ybjh6zM9eGhUHduhZ1I+0uCYMC7WxQiYnWyS4n7b/kFEhOMfZwcs706Gic752vr93VX2amnVkqI9N+sCEry95uQIDdDWDWyW7/jMNepqDuDJs0toPSkk4Gs3XpDIcP589+VZB77oKX/5czHhBQcHeG2SzLfjAkOAiaN7e7QoxPgGbNoG4de5kaNezP+aefc4KtJt4IXbtCcrJFUpL93eHN6Ya/NtrzW7eC+vUszjrTkJRsv0cHDuRk2QoMtN+zzJPdeYaG5tQpNs7+n5lVvNcN0KZVTnBXty5wxxSLIZcV70tC7dpw3rk5mcxuGGd3ufj6tKLX9fKCtm3t4KDjx+3X0ryZ3TZjYop+/6uL1FT770ShCekq70tZ9jFqT5Rh4s32dlu2gLemuX7HXL3G8N9HHGBO0LevHw894FrOkqXw2hv2+tdebWeQy+1EtN0FLsCJ4/nrEZ7ru252uxUpqYMHD/Lhhx+ybNkyDh06hJ+fH02aNOHiiy/mmmuuIbAkEdYiIiIiIiIiInLaUnBXBbEsi8aN7CCr3De7kpIMR47AkaP2U8xpaXY3HFaeO2WRdWDJd1aJslV17mQx4y0LY4zbrF/168F/brQICba7Ujm3V8VkwnIXeCYiIiIiFcPHx6JdW2jn7K66ZNdi/v4WAweUe7WKzcfHokaoHXDTsGHeuUW/locedPdQQXHeg5Jfsx4+bDh4yCIjI4h2bX0IC0vA5HoSYf4Cw8ZNdnd5wy+H1q0tZ6Ba7dqwa5cdQBNWw9CuLXzymR1QFR9vPwRyIrrg7L2NG8HsWRZhNeyALF9fi1GjHRjshzPq1LGzajVsaJ38b3+nKG6Xe9HRDlJT7WCzc86xOLOd63opKTmv0wBjr7UYe23OMiOucHD0mD384ayc7L0Oh8EYO0tSgL+doTgz0/DyCxaxsfZrj442/LXJziqXlm5/Miei7WC7E9HQqZMdgBgXbz/oklSCbG8pKXbwWbbIOtbJdmbw8rKDBFNSc7r6vGIknNfbokF9+z318bG4YYLD+aDMfx+waNHcfm3JyYboaLjxJuOs05VX2IGKiUl2wFRyMmz+x55nWXaZlpWT3S4rKydTmb+/vR/7+toBTr6+kJgAa9bZ8+vVgwEX2Q/eZC+zfbvh+x/s+Z072d8903IFdq5abdi4yZ7fpAnUqmm/f0lJdqatuLiiu74sLw0b2vt5cLAddOjvB4uX5Lz266+z3/cLzrenORw5XW66C6TLysp5gCkpKf+L8M8VyBrvpivX8DCL7KC1mDhD3mNC73Mt6tQxRERYtDqjBC9U5KRly5Zxzz33kJCrL+GUlBQ2bdrEpk2bmDt3LjNmzKBx48ZVWEsREREREREREakOFNxVyYKDLVq0gBYtCl/OsqwSdZGTd11///zTmza1GDe2dGWKiIiIiJzu6tWzqF/fIjzcvtiOjXWdP2KYxYhhrgEiNUIhO6lu3cjsqfYyt92afxsOh93NXXZ3dg4HOLLswJigINey535q5XtIpLTumGIHyaWn20FPefW/yOKss+xsZ6Eh+eePHGGRmmoIDLQICMiZnv3gx1fzXOtZr679Z7O72yyIMYaWLXLWj4833HarRWJiznuVlmZ3AWlZdlAU2AFUwcH2e3f+eXagUL16cNaZ8MVndgY4Hx+L+x5wsHylvU7vcy26dC7eexoUZBEUBD7eOYFFN15vERycs35amuGiQebk8jD/c9c3d+8+wzVj7fkN6sO0113nr1lrWLPOnt+0Cdz0H9f5i76D73+w5zdsCJcOyV/3jZvs+QP7W1x/nev8F1528PU39vDNE6FrV8vZtWJiEnw0x7Anyp7fr68dQOjlZf95e1vM+9IQE2PPv/tOaNrEyunaMQiuHmNndwOY/Z6Fv7/rg0+Ll9h1C/DHJViwpNLS8k+rWRPan2VnjssOyMtt8EDo3s0iItwOOszron4WF/XTg0tSOlu3buWOO+4gJSWFoKAgbrrpJnr06EFqaiqLFi3i888/Z/fu3UycOJEvvviC4GA3/RaLiIiIiIiIiIicZBlTvs/pxmT/sitSSna3jOEAxMbGUs5NVESKSfuiiOfQ/ijiObQ/npqMMTgcJ7Nq5clEHBtrnN1xhoXlz4Z2/ITBnOyOs1Yt1/UdDuPMaGZZUDfSdd3MTMPxE/awjw/UruU6Py3NEB9vD/v6Qni46/zUVEPiyaxh/n4QGpo/41p21iu721XX+cnJOVmfAwNxCb7Knp+d+SwoKP9rT042zq5IAwPzdx2bnJyzfwQGumasNsa4BGUFBLiu63DYWfDAfu/8/PLPdzgswsLD8fGG+Pg47Y+lEBERUdVVOCWNHTuWVatW4ePjw0cffUSnTp1c5r/77ru89NJLANx2221Mnjy52GWfKr+7WZZFSEgI0dGGAwcSSU3zzP03JASMw5CZZbkNJPUU1aGe1bmOlmURerKf6YSEhCo/31Tn99KTVIc6QunqWdlttjq8l9WhjlA96lnedayI9lod3keoHvWsDnWEyqtnWdprdXgvq0MdoXrU0xPqWFR79YQ6Fkd1qKfqWD4syyIiIoiIcC98fROrujrlorx/d1PmLhERERERETmtWZaFt7f7eXkDqvLKG5CVm5eXlStDWX4+PoXP9/e3qFOn4PkBAa6Z0vIKDCw8I3R29rHC5hemLPMtq/C6e3m5z0ide763t4Wfr7JriWfZuHEjq1atAmDkyJH5ArsAxo8fz/z589m5cyezZ8/mpptuwjc77aCIiIiIiIiIiEgebjrcEBERERERERERkZJaunSpc3jkyJFul/Hy8mLYsGEAxMXFOYPBRERERERERERE3FFwl4iIiIiIiIiISDlYs2YNAEFBQZx11lkFLtetWzfn8Nq1ayu8XiIiIiIiIiIiUn0puEtERERERERERKQc7Ny5E4AmTZrg4+NT4HItWrTIt46IiIiIiIiIiIg7Bf/KJCIiIiIiIiIiIsWSlpZGTEwMAPXq1St02bCwMIKCgkhOTubw4cPF3oZlWWWqo6dweR2W574uCzAnq+apdYTqUc/qXMeChqtKdX4vPUl1qCOUrp6V3Warw3tZHeoI1aOe5V3Himiv1eF9hOpRz+pQR6i8epalvVaH97I61BGqRz09oY5FtVdPqGNxVId6qo7lw9O+d3kiBXeJiIiIiIiIiIiUUVJSknM4KCioyOUDAwNJTk4mOTm52NsIDw8vTdU8UmZmJgDBQUEU4+2qEj7eDrKyIMsXgoM9twOE6lDP6l/HLADCwwMrv2J5VP/30jNUhzpCWepZeW22OryX1aGOUD3qWTF1LN/2Wh3eR6ge9awOdYTKrmfp2mt1eC+rQx2hetTTc+pYcHv1nDoWrjrUU3UsP9khXSEhIYVmQz9dlfs7EhERUd5FymnsVPrRUqQ6074o4jm0P4p4Du2PIp5D+6N4grS0NOewr69vkcv7+fkBkJqaWmF18mQ+Pj5ERkJkZFXXRERERERERETEs3luWJ6IiIiIiIiIiEg14e/v7xzOyMgocvn09HQAAgICKqxOIiIiIiIiIiJS/Sm4S0REREREREREpIyCg4Odw8XpajElJQUoXheOIiIiIiIiIiJy+lJwl4iIiIiIiIiISBn5+/sTEREBwOHDhwtdNi4uzhkAVq9evQqvm4iIiIiIiIiIVF8K7hIRERERERERESkHLVu2BGDv3r1kZmYWuNyuXbvyrSMiIiIiIiIiIuKOgrtERERERERERETKQZcuXQC7W8bNmzcXuNzq1audw507d67weomIiIiIiIiISPWl4C4REREREREREZFy0L9/f+fwvHnz3C7jcDhYsGABADVq1KBHjx6VUTUREREREREREammFNwlIiIiIiIiIiJSDjp06EDXrl0BO7hr/fr1+ZZ577332LlzJwDXXXcdvr6+lVpHERERERERERGpXixjjKnqSoiIiIiIiIiIiJwK/vnnH66++mpSU1MJCgpi0qRJ9OjRg9TUVBYtWsRnn30GQLNmzZg3bx4hISFVXGMREREREREREfFkCu4SEREREREREREpRz/99BP33nsviYmJbuc3a9aMd955h6ZNm1ZyzUREREREREREpLpRcJeIiIiIiIiIiEg5O3DgALNnz2bZsmUcOXIEX19fmjRpwuDBgxkzZgyBgYFVXUUREREREREREakGFNwlFeLgwYN8+OGHLFu2jEOHDuHn50eTJk24+OKLueaaa8r0A+amTZtYvXo1mzZt4t9//yUmJobY2Fh8fX2JjIykY8eODB8+nJ49e5bjKxKpvipyfyzI0aNHGTJkCAkJCQB0796dDz/8sNy3I1LdVOT+OHXqVKZNm1asZWfPnk2PHj1KvS2RU0Flnh+XL1/OwoULWbt2LceOHcPb25vatWvTpk0bevbsyeWXX05wcHC5bU+kOqmoffHPP//kuuuuK9E6umYVqRxV8R1VTg2bN2/mt99+Y82aNezYsYMTJ044fw/s1KkTo0aNomvXrsUu79dff+Xzzz9n48aNREdHU7NmTTp06MCVV17JBRdcUKwyUlJSmDNnDt9//z179+4lIyODevXqceGFFzJ27FgaNGhQrHJ27NjBhx9+yIoVKzhy5AhBQUG0bNmSoUOHMmrUKHx8fIr9usTzvfjii8ycOdM5Xpzv6GqvUpmio6OZN28eS5cuZd++fcTFxREeHk79+vXp2rUrAwcOpFOnToWWoTYrlSE9PZ2vvvqK77//nm3btrncK+zcuTOjR4+mY8eORZaj9iqldeLECTZu3MjGjRvZtGkTmzZtIjY2FoDhw4fz/PPPl6i8U7Etfvvtt8yfP59t27YRFxdHnTp16NKlC9dee22x9k8pX+XRZtPS0vjtt99YsWIFGzduJCoqiqSkJIKDg2nevDnnnXceo0ePJjIyslh1UpstPgV3SblbtmwZ99xzjzOoI6/mzZszY8YMGjduXKryr776atatW1fkcoMHD+bFF1/E39+/VNsRORVU9P5YkClTprB48WLnuG6UiVT8/qjgLpHiq6zzY1xcHA8++CBLly4tdLkFCxbQrl27Mm1LpDqqyH2xNMFdo0eP5sknnyzxtkSk+KrqO6pUf2PGjGH16tVFLnf55Zfz9NNP4+fnV+Ayxhgee+wxPvvsswKXGT16NE888QSWZRW4zN69e5k4cSK7d+92Oz80NJRXXnmFPn36FFrnuXPn8uSTT5Kenu52fseOHZk+fToRERGFliPVw9atWxk5ciSZmZnOaYV9R1d7lcr23Xff8fjjjztv9Lpz0UUX8eabb7qdpzYrleXQoUNMnDiR7du3F7rc9ddfzwMPPOC2vam9Slm1adOmwHklCe46FdtiWloat99+Oz///LPb+V5eXkyePJlbb7210LpI+Sprm926dSvXXHMNSUlJhS4XHBzM008/zZAhQwpdTm22ZBTcJeVq69atXHXVVaSkpBAUFMRNN91Ejx49SE1NZdGiRXz++ecAtGjRgi+++KJUGQrGjRuHw+GgU6dOtGjRgjp16hAeHk50dDRbt27l008/Zf/+/QAMGTKEV199tVxfo0h1URn7ozs//fQTN998M7Vq1eLEiROAgrtEKmN/zB3c9fXXXxe6bKNGjQgKCir5CxE5BVTW+TEhIYFx48axefNmAC688EKGDBlC06ZNycrK4uDBg2zatInFixczffp0BXfJaaei98Xk5GTn98LCPPXUU6xatQqATz75hM6dO5f8xYhIsVTVd1Q5NQwYMIC9e/cSGRnJ4MGD6dq1K/Xr18fhcLBhwwbee+89jhw5AsCll17KK6+8UmBZr776KtOnTwfgzDPPZMKECTRu3Jh9+/bx7rvv8s8//wAwadIk7rzzTrdlJCUlMWrUKHbt2gXAlVdeyZAhQwgICODPP//k7bffJjk5mcDAQD799FPatm3rtpzffvuNiRMn4nA4qF27NpMmTeKcc84hNjaWuXPn8sMPPwDQrVs3Zs+ejZeXV+neQPEIDoeDK6+8kk2bNrn8blZYcJfaq1SmBQsW8OCDD+JwOKhVqxZXX301Xbp0ISwsjOPHj7N3715+/vlnQkJCeOONN9yWoTYrlSEzM5Phw4c7A7vatGnDDTfcQPPmzUlKSmLt2rXMmjWL5ORkAO69914mTJiQrxy1Vymr3IEy9evXp2XLlvz+++9AyYK7TsW2ePfdd/PNN98A0KNHD6677joiIyPZvn07b7/9Nnv37gXg6aef5oorrijW+yRlV9Y2u2bNGq699loAOnfuTN++fWnfvr0zVuOHH37giy++ICsrC29vb956660CA7PUZkvBiJSjMWPGmNatW5szzzzTrFu3Lt/8GTNmmNatW5vWrVubqVOnlmobGRkZhc5PSUkxo0ePdm5n69atpdqOSHVXGftjXomJiaZPnz6mdevW5ssvv3SWP2bMmHIpX6S6qoz98Y033nCWISIFq6zz47333uvczrffflvgcg6Ho8jrW5FTUVVcq+YVFxdn2rdvb1q3bm0GDBhQIdsQkRyesN9L9TVx4kTz7bffmszMTLfzT5w4YQYOHOhsQ6tXr3a73J49e8yZZ55pWrdubUaMGGFSUlJc5icnJ5sRI0Y422pUVJTbcnJ//5oxY0a++evWrXNuZ+zYsW7LyMjIMAMGDDCtW7c2nTt3drutxx9/3LmdL7/80m05Un3MmjXLtG7d2gwePNi88sorzs925cqVbpdXe5XK9O+//zqvja+55hoTHx9f4LJpaWlup6vNSmX5/vvvnZ/d6NGj3V4fbNq0yZx11lmmdevWplu3bvl+e1F7lfLw+uuvm59++skcO3bMGGPMvn37nJ/T/fffX6wyTsW2+OeffzqXuemmm/LtoydOnDAXXnihc/+Mi4tzW46Uv7K22bVr15rbb7/d7Nixo8BllixZYtq0aWNat25t+vfvbxwOh9vl1GZLTmG9Um42btzofOJ55MiRbvtcHz9+PC1btgTsJ5IyMjJKvJ2i+kMNCAhw6X5jzZo1Jd6GSHVXWftjXq+++iqHDh2iR48eDBs2rMzliZwKqmp/FJH8Kmt/XLNmDV999RUAN998c6Hppy3LKvL6VuRU4ynnxkWLFjnTtV922WXlXr6I5PCU/V6qr7fffpshQ4bg7e3tdn7NmjV54IEHnOPff/+92+Xef/99Z3d4jzzyCAEBAS7zAwMDeeSRRwA7K8gHH3yQr4yMjAxmz54NQMuWLRk/fny+ZTp16sTIkSMBu6vgv//+O98yS5YsISoqCoCbbrqJJk2a5FvmvvvuIywsDICZM2e6fU1SPRw6dIjXX38dgMcffxxfX98i11F7lcr01FNPkZ6eTkREBFOnTiU0NLTAZQvq+lZtVirLunXrnMMTJ050e33Qvn17LrzwQgDi4uKcmWGyqb1KeZgyZQp9+/aldu3apS7jVGyL7777LgDe3t48/vjj+fbRmjVrcs899wD2/vnFF1+4LUfKX1nbbOfOnXnttdc444wzClymf//+DBw4ELC7XdyyZUu+ZdRmS0fBXVJuli5d6hzO3tHy8vLycgZ8xMXFOX/YK2+BgYHO4bS0tArZhognq4r9cePGjcyZMwdfX18ef/zxMpUlcirxpPOjyOmusvbHOXPmABAUFMQNN9xQ8oqKnOI85dy4YMECwA6yvPzyy8u9fBHJ4Sn7vZzaunfv7hzet29fvvnGGGdbbNGiBR07dnRbTseOHWnevDkAP/74I8YYl/mrVq0iPj4egGHDhhXYrceIESOcw0uWLMk3/8cff3QODx8+3G0ZgYGBDB48GIDt27ezZ88et8uJ53viiSdITk5m+PDhBXbBmJvaq1SmnTt3smLFCgDGjBlDzZo1S1yG2qxUptwPATRu3LjA5XLPy36wB9RexXOcim0xKSnJeU4599xzqVevnttyBgwYQEhICICz2zw5deS+3s3uzjA3tdnSUXCXlJvsDFlBQUGcddZZBS7XrVs35/DatWsrpC7Z/aGCfTIUOd1U9v6YmZnJI488gsPh4D//+Y/2O5FcPOn8KHK6q4z9MT093fmjzAUXXEBwcDBgnysPHDjAwYMHXX5QFDkdecK5ce/evaxfvx6Arl27FnpDQETKzhP2ezn15b7Ra1lWvvn79+/nyJEjgGtbcyc7UOzw4cPs37/fZV7uXgJyB5Tl1b59e4KCggD37Tl7WvPmzalTp06RdSmoHPF8ixYt4ueffyY8PJz77ruvWOuovUplyp3tMPvmJ9jB1nv27CEmJqbIMtRmpTI1a9bMOewuoDvvPMuyXNZRexVPcSq2xY0bNzp/+yysLn5+fs5gtk2bNilz8ykm9+/f7gK31GZLR8FdUm527twJQJMmTQrtWiZ30Ef2OmXlcDg4fvw4K1as4NZbb3UGdzVv3pzzzjuvXLYhUp1U9v743nvvsXXrVpo0acKkSZNKXY7Iqagqzo833HADPXr0oH379vTq1YuxY8fyzjvvEBcXV6ZyRaq7ytgft27d6swc26lTJ44dO8aDDz5It27d6NevH3379qVr16785z//celGQOR0UpXfHbNlZ+0C1J24SCXwhP1eTn2rV692Drt76Cx3myrqobTc8/N241Tccnx8fJzBw3nbc1JSEocPHy5xXbRfVD/x8fE8++yzANxzzz3Fzoik9iqV6a+//gIgNDSUli1bsnDhQi677DK6d+/OoEGD6NmzJxdddBHTpk0jKSnJbRlqs1KZLr30Umf2lBkzZpCVlZVvmX/++Ydly5YBcMkllziXB7VX8RynYlvMXbeiysnORpaZmensWk9ODbkzcZflu5narCsFd0m5SEtLcz69UVCqumxhYWHOCMvsHa60+vXrR5s2bWjXrh29e/fm+uuvd6bfa9iwIVOnTi30R0ORU1Fl74/79u3j//7v/wB47LHH8Pf3L1U5Iqeiqjo/Ll++nNjYWDIyMoiOjmbVqlW88sor9O/f3yVNrcjppLL2x9xfDtPS0hg6dCjz588nOTnZZfqvv/7Ktddey/vvv1+i8kWqu6o6N+a1cOFCAAICAlyyE4hI+fOU/V5ObQ6Hg3feecc5fvHFF+db5tChQ87hotpi7vm514OcthkUFESNGjUKLad+/foAREdHuzy9fvjwYWd3OiWpi/aL6uell17i2LFjdOrUiVGjRhV7PbVXqUz//vsvYN9Teeqpp7j33nvZtm2byzL79+9n6tSpXHXVVc4sM7mpzUplqlmzJs8//zwBAQGsW7eOUaNGsWDBAjZs2MDy5cuZNm0aY8aMISMjg3bt2vHAAw+4rK/2Kp7iVGyLuetWt27dYtUl73pSvW3dupVffvkFgFatWnHGGWfkW0ZttnQU9SLlIvfTGtk/whUmMDCQ5ORkl5tc5cXHx4dbbrmFcePGuUTii5wuKnt/fPTRR0lNTWXIkCHKlCeSR2Xvj61bt6Z///506NCByMhIMjMz2b17N19//TW///478fHxTJkyhbfeeos+ffqUahsi1VVl7Y+5M+RNmzaN9PR0+vbty+TJk2ndujUJCQksXryYV155hcTERJ5//nmaN2+ufVJOG57w3XHNmjXO7jn69++v740iFcwT9ns59b3//vts3LgRgAEDBnD22WfnW6YkbTEwMNA5nLctZpdT3Pacez0/P78S1yX3fO0X1cuaNWuYO3cuPj4+PPHEE267Cy2I2qtUpuzvsbt27WLr1q3UqFGDu+++m4EDBxISEsK2bdt44403+PXXX9m+fTu33347H3/8sUs3S2qzUtkGDBjAvHnzmDVrFvPmzeP+++93mV+7dm2mTJnClVdema8dqL2KpzgV22J5vSapntLT03nooYecGRXvvPNOt8upzZaOgrukXGR3PQPg6+tb5PLZO11qamqZtjtz5kwyMjJwOBzExsaybt06PvnkE9566y2ioqJ47LHHCA4OLtM2RKqbytwfFyxYwPLlywkJCeHBBx8s8foip7rK3B/HjRvHbbfdlm/6Oeecw7Bhw/j000957LHHyMrK4uGHH2bJkiUEBASUeDsi1VVl7Y+5v9RlB3a9+eabzh+9a9WqxTXXXEPr1q0ZO3YsDoeDl19+mQsuuKBEN3tEqquq+u6Y21dffeUcVpeMIhXPE/Z7ObVlZyoG+1rr8ccfd7tcSdpidjuE/G0xu5yStOe828/9xHlZ6iKeKz09nUcffRRjDOPGjaNNmzYlWl/tVSpTSkoKYH/W3t7ezJgxg44dOzrnn3322bz99tvcdNNN/Prrr6xfv54ffvjBJQOu2qxUtoyMDL7++mt+/vlnZ+aW3I4fP84333xDs2bNuPDCC13mqb2KpzgV22LuMnMvV9JypHp68skn+fvvvwEYPnw4F110kdvl1GZLR90ySrnI3Q1bRkZGkctn72xlvancvHlzWrduTdu2benZsye33HIL33zzDW3btuWrr77i6quvJjExsUzbEKluKmt/jI6O5vnnnwfsyOvIyMgSrS9yOqjM82NRqWuvuuoqrrjiCgCOHj3KDz/8UOJtiFRnlbU/5u2e+L777nN5mjlb165dGTBgAADbt29n+/btJdqOSHVVVd8dc5f3/fffAxAZGcm5555bLuWKSMGqer+XU9uOHTuYPHkymZmZ+Pn58dprr1G7dm23y5akLea+UZC3LWaXU5L2nHf7uW8KlKUu4rnefvttdu7cSYMGDZg8eXKJ11d7lcqU+/MePHiwS2BXNi8vL+677z7n+LfffltgGWqzUtGSk5O54YYbmD59OrGxsUyYMIFFixaxadMm1q5dy3vvvUeXLl3YtGkTkyZN4oMPPnBZX+1VPMWp2BZzl5l7uZKWI9XP22+/zdy5cwE466yzePTRRwtcVm22dBTcJeUid3as4qSgy34SpDip9koqLCyMF154AYBt27bxzjvvlPs2RDxZZe2Pzz//PDExMbRv355rrrmmZJUUOU140vkRYPTo0c7h1atXV8g2RDxVZe2PubfTqFEjWrRoUeCy559/vnN406ZNJdqOSHVV1efGH3/8kfj4eACGDh2Kt7d3uZQrIgWr6v1eTl379u1j/PjxxMXF4e3tzf/+9z+6d+9e4PIlaYvZ7RDyt8XsckrSnvNuvyR1yT1f+0X1sHPnTt5++20AHn744VJ9bmqvUplyf8YXXHBBgcu1atWKunXrAvm/w6rNSmWaOnWq87fNZ555hnvvvZeWLVvi5+dHSEgIvXv3Zvbs2fTo0QNjDM8//zxbt251rq/2Kp7iVGyL5fWapHr59NNP+d///gfYyXnefffdQj9TtdnSUXCXlAt/f38iIiIAOHz4cKHLxsXFOXeMevXqVUh9WrZsSbNmzQBYvHhxhWxDxFNVxv545MgRZ3c2PXv25LvvvuPbb7/N95ftxIkTzml//fVXSV+SSLXlaefHM844wzl85MiRCtmGiKeqrP2xfv36zuGi1s09Pzo6ukTbEamuqvrcqC4ZRSpfVe/3cmo6cuQIN9xwA0ePHsWyLJ599llnVtSC5G5TRbXF3PNzX9/lLic5OdkZMFyQQ4cOAVCzZk2XJ8tLWxftF9XDBx98QEZGBo0bNyY1NdXtb2Y7duxwLr9y5UrndHfHQLVXqWi5P6vs4K2CZLexEydOFFiG2qxUJGMM8+fPB6BZs2YMHz7c7XI+Pj7cfvvtADgcDuc6oPYqnuNUbIu5x4u6B5FdF8j/mqT6+Oabb3jiiScAaNiwIe+//z41a9YsdB212dLxqfQtyimrZcuWrFmzhr1795KZmYmPj/vmtWvXLpd1KkpERAR79uzhwIEDFbYNEU9V0ftj7vSW7777bpHL79y5k7vuuguw+1g+55xzir0tkerOk86PxpgKKVekuqiM/TF3EGVWVlahyzocDuewsgfJ6aSqzo0nTpzg999/B+z08K1bty5zmSJSPJ50TSzVX3R0NOPHj2ffvn0APPLII8UK2M19nZa7rbmTe37eTKy52+auXbvcdl8GkJmZ6axj3vYcHBxM/fr1OXToUInqov2iesjurmXfvn3O38MK8+abbzqHly5dSlBQkNqrVKpWrVo5M3Hl/p7qTvb33LzncrVZqSzHjx8nNjYWgDPPPLPQZdu3b+8czv1Zq72KpzgV22LeuhRm9+7dgH1OadKkSaHLimdaunQp999/Pw6Hgzp16vD+++8XK/hUbbZ0lLlLyk2XLl0AO8Jy8+bNBS6Xuxuozp07V1h9jh49Crim0hM5XXja/ihyOvOk/fHff/91DkdGRlbINkQ8WWXsjw0bNqRBgwYAzi+eBdm7d69zuKino0VOJVV1bvz666/JzMwE4PLLLy9zeSJSfJ50TSzVW0JCAhMmTHB+t7n77ru59tpri7Vuo0aNnN+DiuqmPnt+3bp1adSokcu87PYMsGrVqgLL+Pvvv51ZmNy15+xydu/ezbFjxwosJ/c2tF+cPtRepTJ17drVOZz7e6o72d9z8/6upDYrlSX3w3FFPVSX+yH13AGJaq/iKU7Ftnj22Wfj6+tbZF3S09PZsGGDc53cGZmkelixYgV33HEHmZmZhIeHM2vWrGIHPKnNlo6Cu6Tc9O/f3zk8b948t8s4HA4WLFgAQI0aNejRo0eF1GXjxo3OjF16GltORxW9PzZq1Iht27YV+Zete/fuzmnPP/986V6USDXlSefHzz77zDncrVu3CtmGiCerrP1x4MCBgP006bp16wpc7ocffnAO5/4xXeRUV1XnxuwuGX18fBg6dGiZyxOR4vOka2KpvlJSUpg4caIzQHDSpElMnDix2OtblsVFF10E2E9kZ/8wn9eGDRucT2xfdNFFWJblMr979+6EhoYCsGDBggIzJOfu/in3PpAtuy4AX375pdsyUlJS+P777wE7s0Pz5s3dLiee5fnnny/yN7PJkyc7l589e7ZzevbNWrVXqUz9+vVz3tRcsmRJgcutWrXKmTEp73dYtVmpLOHh4YSEhACwfv165wM87uQOlskdDKP2Kp7iVGyLISEh9OrVC7CDfwrqLm/JkiUkJiYWWBfxbOvWreOWW24hPT2dkJAQZs6cSatWrYq9vtps6Si4S8pNhw4dnBf08+bNY/369fmWee+999i5cycA1113nfMLQ7b58+fTpk0b2rRpw9SpU/Otv3HjxkKf8AS7L9QHHnjAOX7ZZZeV+LWIVHeVsT+KSPFUxv64bds2oqKiCq3Hp59+yhdffAFAnTp1GDBgQKlej0h1Vlnnx3HjxuHv7w/A008/7Xy6KLevvvrK+STQhRdeWKx01SKniqq4Vt2xYwf//PMPAOeffz41a9Ys68sQkRIoj/1eTm/p6elMnjzZGTh/3XXXceedd5a4nHHjxjkzdzz11FOkpqa6zE9NTeWpp54C7GDgcePG5SvDz8+PsWPHArBz505mzpyZb5n169c7Axm7d+9Ohw4d8i0zYMAA55Ptb7/9tttsOS+++CJxcXEA3HjjjcV+nXJqUHuVyhIREcGoUaMA+OOPP/j222/zLZOYmMizzz7rHB89enS+ZdRmpTJ4eXlx4YUXAnYPPtOnT3e7XFxcHC+//LJzPHudbGqv4ilOxbY4fvx4wO5S74knnsiXZS86Otq5f9aoUYMrrrjCbTnimbZs2cJNN91EcnIyQUFBvPPOOy7d4BaH2mzp+BS9iEjxPfTQQ1x99dWkpqYyfvx4Jk2aRI8ePUhNTWXRokXOjCHNmjXjhhtuKHH5//77Lw8++CCdOnWiX79+tG3b1vmj/JEjR/jzzz+ZP38+CQkJAJx77rmMHDmy/F6gSDVS0fujiBRfRe+Pmzdv5uGHH6ZHjx5ccMEFtG7dmvDwcLKysti1axcLFy7kjz/+AOzU5U888QRBQUHl+hpFqovKOD82aNCAKVOm8NJLL7F582auuOIKJkyYQKtWrUhISGDJkiV8+umngP1k0IMPPlhur0+kuqjsa9XcT+8NHz68zOWJSMnpO6qUxd13383vv/8OQM+ePRk1ahTbt28vcHlfX1+3GS2aN2/O+PHjeeedd/j777+5+uqr+c9//kPjxo3Zt28fM2bMcAYD33jjjTRr1sxt+TfeeCOLFi1iz549vPTSS+zdu5chQ4YQEBDAn3/+yfTp08nMzCQgIID//ve/Bdbx4YcfZtKkSSQmJnL11Vdz880306FDB+Li4pg7dy6LFy8G7O5G1KXw6UftVSrTlClT+OWXXzh48CD33Xcf69atY8CAAYSEhLB9+3ZmzJjhzBpz9dVXu73BqjYrleWWW25h6dKlpKSkMHXqVP7++2+GDx9O48aNSUtL46+//uKDDz7g4MGDAPTq1YvzzjvPpQy1VykPa9ascQkmiYmJcQ5HRUW5ZB0CGDFiRL4yTsW22KtXLy655BK+/fZbfvrpJ2644QbGjRtHZGQk27dvZ/r06c798+677yYsLKyAd1jKW1nb7N69e7nxxhuJj48H4Pbbbyc0NLTQ72a1atWiVq1a+aarzZacZQrKcSZSSj/99BP33nuvMy1dXs2aNeOdd96hadOm+ebNnz/feXNr8uTJ3HbbbQXOL8qIESN49NFHCQwMLOErEDl1VOT+WBxt2rQB7IjqDz/8sMTri5xKPOH8GB4ezjPPPKM0x3Laq6zz4yuvvMKMGTMKTCtdq1Yt/u///o9OnTqV4lWIVH+VtS86HA4uvPBCjhw5QlhYGL///jt+fn7l8yJEpETKst/L6S3794XiatiwIT/99JPbeQ6Hg4cffrjALkIBRo0axVNPPYWXV8EdX0RFRTFx4kT27Nnjdn5ISAgvv/wyffv2LbSun3/+OU8++SQZGRlu53fo0IG3335bWSdPMVOnTmXatGmA3S1jQV3Rqr1KZdq5cyc333xzodnhR44cyRNPPFFghk21Waksy5cv56677nIJTHCnZ8+evPHGG25vxKu9Slk98MADBXYF5862bdvcTj8V22JqaqozcNgdLy8vbrnlllLde5TSK2ubLUmsRrbCfrdTmy0ZZe6SctevXz8WLlzI7NmzWbZsGUeOHMHX15cmTZowePBgxowZU+qAqyFDhhAZGcnKlStZv349R44c4cSJE2RkZBASEkKzZs3o1KkTl19+OW3bti3nVyZS/VTk/igiJVOR+2OfPn145pln2LBhA//88w8nTpwgNjYWYwxhYWG0bduW888/nxEjRhASElLOr0yk+qms8+Pdd99Nv379+OSTT1izZg3Hjh3D39+fZs2a0a9fP8aOHUtoaGg5vCKR6qmy9sUVK1Zw5MgRAC6++GIFdolUIX1HFU/g5eXFs88+y6BBg/jss8/YtGkTMTExREREcPbZZzN69Gj69OlTZDlNmzblyy+/ZM6cOXz//ffs3buXjIwM6tWrR58+fbjuuuto2LBhkeVceeWVdOzYkQ8//JAVK1Zw9OhRAgMDadmyJUOHDuWKK65wdtUjpx+1V6lMLVu2ZMGCBXzyyScsXryYqKgokpKSqFWrFp07d2b06NH07Nmz0DLUZqWynHvuuXz33Xd88cUX/Prrr/z7778kJCTg7e1N7dq1Ofvss7n00ku56KKLsCzLbRlqr+IpTsW2GBAQwDvvvMPXX3/Nl19+ydatW4mPj6d27dp06dKFMWPG6IFXUZstIWXuEhERERERERERERERERERERER8UAF5+0TERERERERERERERERERERERGRKqPgLhEREREREREREREREREREREREQ+k4C4REREREREREREREREREREREREPpOAuERERERERERERERERERERERERD6TgLhEREREREREREREREREREREREQ+k4C4REREREREREREREREREREREREPpOAuERERERERERERERERERERERERD6TgLhEREREREREREREREREREREREQ+k4C4REREREREREREREREREREREREPpOAuERERERERERERERERERERERERD6TgLhEREREREREREREREREREREREQ+k4C4REREREREREREREREREREREREPpOAuERERERERERERERERERERERERD6TgLhEREREREREREREREREREREREQ+k4C4REREREREREREREREREREREREPpOAuERERERERERERERERERERERERD6TgLhEREREREREREREREREREREREQ+k4C4RERERERERERERERGRPP7880/atGnj/Js6dWpVV6lAq1atctazc+fOnDhxoqqr5PLejR07ttBlp06d6rL8n3/+WUm1LB8lea3Vwan2egrzyCOPOF/rLbfcUtXVERERccunqisgIiIiIiIiIiIiIiIiFaNfv34cOHCg0GW8vLwIDg4mNDSUpk2b0q5dO/r06UOPHj2wLKuSaiqllZGRwRNPPOEcnzhxIrVq1arCGolUH1OmTOGbb74hOTmZpUuXsmzZMi688MKqrpaIiIgLZe4SERERERERERERERE5jTkcDhISEjh48CArVqzgvffeY9y4cQwcOJBffvmlqqsnRfjoo4/4999/AahTpw7XX3991VZIpBrJu88888wzZGRkVF2FRERE3FBwl4iIiIiIiIiIiIiIiOSzd+9eJk6cyLRp06q6KlKAhIQEpk+f7hy/4YYbCAgIqMIaiVQ/48aNIygoCLCPe59//nkV10hERMSVumUUERERERERERERERE5Tfzvf//jnHPOcZmWnblrx44dLFmyhJ9++gmHw+GcP3XqVJo1a8all15a2dWVIsycOZPY2FgAatSowVVXXVW1FRKphsLDw7nqqqt47733AHjrrbcYMWIEgYGBVVwzERERm4K7REREREREREREREREThO1a9emUaNGbuedddZZDBs2jJUrV3LzzTeTnJzsnPfyyy8zcOBA/Pz8KquqUoSkpCTmzJnjHB82bBjBwcFVWCM5VWzbtq2qq1DprrnmGmbNmoUxhmPHjjF//nyuvfbaqq6WiIgIoG4ZRUREREREREREREREJJeePXvy6KOPukw7dOgQK1asqKIaiTtz584lPj7eOa6sXSKl17hxY3r37u0c/+CDD1wyGIqIiFQlBXeJiIiIiIiIiIiIiIiIi8svv5yIiAiXaStXrqyi2og7n376qXP4rLPOomXLllVYG5Hqb+jQoc7hqKgo/vjjjyqsjYiISA51yygiIiIiIiIiIiIiIiIuvLy8OPvss/n111+d0w4fPlzicvbu3cuuXbs4cOAASUlJAISFhREZGck555xDzZo1y63O2dLS0li7di0HDhwgOjqakJAQGjRoQLdu3QgJCSn37VWF9evXs3v3buf44MGDS11WYmIiO3fuZPfu3cTGxpKcnExwcDBhYWG0bt2aNm3a4O3tXR7V9kiJiYls2LCBo0ePEhMTQ2ZmJiEhITRq1IjWrVtTv379Mm/j0KFDbNq0icOHD5OamkpERARt2rShffv2eHmVPhdHdfjsKmp/jIuLY8uWLURFRZGQkEB6ejoBAQGEhobSsGFDWrZsSd26dUtU5kUXXYSvry8ZGRkAfPnll5x//vmlrqOIiEh5UXCXiIiIiIiIiIiIiIiI5FOjRg2X8bi4uCLXSU5OZtmyZfzwww+sWrWKEydOFLr8WWedxfXXX88ll1xS7CCUBx54gC+//NI5vnTpUho1akR8fDyvv/46CxcudOmuMJuPjw+XXnopd911V4mDPkriyJEjTJo0iX/++cc5rWPHjrz55pvUqlWrXLbx7bffuoz369evROtv376dRYsW8fvvv/PPP/+QlZVV4LLBwcFcdtll3HjjjTRu3LhU9fU0DoeDxYsX88EHH7Bp0yYyMzMLXLZZs2YMGDCA0aNHl/j1r1u3jqlTp7Jy5Uq3XfzVrl2bSZMmce211xY7yKsyPrs2bdo4h7t3786HH35Y4LKVvT+uXLmSGTNmsGLFikJfO0DdunW54IILGDNmDG3bti2y7NDQULp37+7M2PXjjz+SkpJCYGBgsesnIiJSEdQto4iIiIiIiIiIiIiIiOSTnWkrm5+fX5Hr3HXXXdx555189913RQZ2AWzevJl7772X8ePHEx0dXeq6bty4kWHDhvHRRx+5DSQByMzMZMGCBYwcOZKtW7eWeluF2bx5M6NGjXIJ7BoyZAizZ88ut8AugF9++cU5XLt2bc4444wS1XHo0KG89dZbbNq0qcgAmaSkJD755BMuvfRSvvrqq1LX2VPs3r2b4cOHc8cdd7B+/fpCA7sA9uzZw4wZM/i///u/Em1n+vTpjBkzhuXLl7sN7AI4fvw4Tz/9NFOmTCE9Pb3IMqvLZ1cR+6Mxhqeffppx48bx+++/F/nawQ60nDt3Lt99912x696jRw/ncFpaGitWrCj2uiIiIhVFmbtEREREREREREREREQkn82bN7uMFyfzjzHGZTwkJIQzzjiDmjVrEhwcTHp6OocPH2bbtm2kpqY6l1u5ciUTJkzg008/LVYQWW579uzh7rvvJjY2FrC7fWzfvj0REREkJyfz999/c/ToUefyx44dY/LkySxcuJCgoKASbaswP/74I/fccw8pKSnOaZMmTeKOO+7Asqxy286ePXvYu3evc7xLly4lWj9voJFlWTRq1IimTZsSEhKCj48P8fHx/Pvvvxw8eNC5XGpqKvfddx/+/v5l6gayKv3555/ceuutJCQkuEz38fGhXbt21K1bl4CAABISEti9ezf79u3L16aLY+bMmbz66qvO8ebNm9O8eXOCgoI4evQof/31F2lpac75S5Ys4fXXX+fee+8ttNzq8NlV1P44ffr0fBnEfHx8aNOmDQ0aNCAwMJC0tDTi4uLYtWuXyzZKomvXri7jv/32W4kz44mIiJQ3BXeJiIiIiIiIiIiIiIiIi6VLl+YLjsid0aYwbdu25bLLLqNPnz4FZpRKSUnhm2++4dVXX3Vm+Nq8eTNvvPEG99xzT4nqes899xAbG0vDhg257777GDBggEsXj8YYvv76ax599FFn4NW+ffuYNWsWt956a4m2VZCZM2fy8ssvO4NvfH19efrppxk2bFi5lJ/bhg0bXMaL091cXgEBAQwZMoSLLrqIXr16ERwc7Ha57du383//9398//33zmn//e9/6datW7lmIqsM+/bt47bbbnMJ7AoPD+fmm29m1KhRhISE5FsnOjqaH3/8kXnz5hV7O9u3b2fNmjUA9O/fn7vuuouWLVu6LBMXF8fzzz/P/PnzndNmzZrF1VdfTaNGjQot39M/u4rYHxMSEnjrrbec497e3txyyy1cd911+bqPzXb06FF+++03FixYUKLgyrZt22JZljOoL+/+JiIiUhUU3CUiIiIiIiIiIiIiIiJOO3fu5NFHH3WZ1qBBAy644IIi133kkUeKDE4BCAwM5IorrqB3795cc801HDp0CIBPPvmESZMmuQ20KUhMTAytWrVi9uzZ1KxZM998y7K47LLLCAoKcgke+eKLL7jlllvKlFUrIyODJ554grlz5zqnhYeHM23aNLp161bqcgvz999/u4y3bt26ROs3b96cX3/9lbCwsCKXbd26Na+//jpTp05l2rRpgN3V38cff8xtt91Wou1WtXvvvZe4uDjneIsWLXj33Xdp2LBhgevUrFmTK6+8kiuvvJJjx44VazvZGasmTJhQYCausLAwnnvuOeLi4li6dCkAWVlZfPHFF9xxxx0Fll0dPruK2B9/++03l0xnN998M5MnTy60HpGRkYwcOZKRI0e6ZAksSnBwMI0aNWLfvn2AHSSXlpaGv79/scsQEREpb15VXQERERERERERERERERGpOg6Hg9jYWNasWcNzzz3HyJEjOX78uHO+l5cXjz/+eLG6SyxOYFduDRo04MEHH3SOJyYm8tNPP5WoDB8fH15//XW3gSS59e/fn/bt2zvHDx48SFRUVIm2lVt8fDwTJkxwCexq1qwZn3/+eYUFdgHs3r3bZbyw4CR3QkJCihUclNutt95KmzZtnONff/11idavan/88Qfr1693jgcFBTF9+vQSvXd16tQp9rJdunTh7rvvLnK5O++802V85cqVhS5fHT67itgfc3cxCTBo0KAS1SkgIKBEyzdo0MA5nJmZ6Qz0EhERqSrK3CUiIiIiIiIiIiIiInKauO6660q0fEBAAE8//TR9+vSpoBpB37598fX1JSMjA4D169dz2WWXFXv9gQMH5uv2rrBt5c589c8//9CsWbMS1Rdg7969TJw40SXQqnv37kybNq3EwTcldeDAAZfxunXrVuj2wA7wGzBgANu2bQMgKiqK6OjoIgN4PMUnn3ziMj5+/HiaNm1aYdubNGkSXl5F59ho1aoVDRs2dH6mW7duLfe6VPZnVxn7Y3ZXrhWlXr16LuMHDhwosItZERGRyqDgLhEREREREREREREREXERGhrKpZdeyn/+858SZ4Zyx+FwkJycTFJSkjOIK7fw8HBnt3c7d+4sUdklCTxr0aKFy3h0dHSJtgWwZs0abr31Vmf3ewAjRozgySefxNfXt8TllVTeOpdnMFl6ejqJiYmkpKRgjHGZl7dbup07d1aL4C6Hw8GqVatcpo0ePbrCthcQEEDPnj2LvXzLli2dwV0pKSkkJSURHBxc4u16ymdXEftj3uVee+01OnToUKr3qThq1KjhMl7RwWQiIiJFUXCXiIiIiIiIiIiIiIiIuEhNTcXLy4vatWuXav3k5GSWLVvG0qVL2bJlC1FRUWRmZhZr3fj4+BJtqyQZdfIGQiUkJJRoWwsWLODhhx92BqhZlsUdd9zBpEmTSlROWaSkpDiHfX198fb2LnVZ27dvZ9GiRaxdu5YdO3YQExNT7HXj4uJKvd3KtHPnTpe6Nm/enMjIyArbXpMmTYrVhWm2vIFEiYmJxQpa8tTPriL2x169elGrVi1nkNWGDRsYNGgQI0eOZMCAAZx55pnFypRWXIGBgS7jufc5ERGRqqDgLhERERERERERERERkdPE//73P8455xyXaSkpKezbt4/ffvuN+fPnk5qaSkZGBnPmzGH79u28++67BAQEFHsbc+fO5X//+1+psmJByQOuSpK5ysfH9dZYcQPOAL766iv27dvnHA8ICOCFF15g8ODBxS6jPGRlZTmHSxvYdeDAAZ599ll+/PHHUtcjMTGx1OtWpuyMcNlatWpVodvLG6xVlLzZ3txltsvN0z+7itgfAwMDeeKJJ5gyZQoOhwOwP9fp06czffp0atSoQceOHenYsSNdu3alY8eO+bKVlUTe/aqoz0RERKSiKbhLRERERERERERERETkNFG7dm0aNWqUb3qrVq3o168f48aN48Ybb2T//v0ArF69mscee4wXXnihWOU/++yzfPDBB2WqY94u5YpiWVaZtldcuQO7wO5+btCgQZWy7dz8/f1JTk4GIC0trcTr79y5k3HjxuULeiqp7CAbT5e7+0woefBVSZVnBqm8qsNnV1H744ABA3j33Xd54okniIqKcpkXHx/Pr7/+yq+//gpAUFCQ83jWoUOHEm8r734VFBRU+oqLiIiUAwV3iYiIiIiIiIiIiIiICADNmjXj7bff5oorrnAGEC1YsIB+/foVGcj03Xff5QvsatWqFUOGDKFDhw40bNiQ2rVr4+/vn6/bun79+nHgwIHyfTHlrGfPnmzcuNH5vixevJj777+fZ599Nl8GoooUEhLirIMxhpSUlHzdyBUkMzOTO++80yU4yN/fn8GDB9OrVy9atWpF3bp1CQ4Oxt/f3yWD0fz583nwwQfL98VUgcoKBixv+uygd+/eLFq0iJ9//pnvvvuOP//8k+PHj+dbLjk5mW+++YZvvvmGESNG8Nhjj5Uo+2D2/pUtJCSkzHUXEREpCwV3iYiIiIiIiIiIiIiIiNMZZ5zBlClTeP75553TnnvuOfr06VNogMTUqVNdxm+//XZuvvnmYgXTVIcu/rp27codd9zBTTfdRFxcHGB31ZiQkMBrr71Wpm7gSqJ+/focPXrUOX7s2DGaNGlSrHV/+OEHtm3b5hxv2rQpM2fOpHHjxkWuWx0+I3ciIiJcxrM/u+rmdPzs3PHx8WHAgAEMGDAAgKioKNavX8+6detYvnx5vgx78+fPJyEhgWnTphV7G7n3L4B69eqVveIiIiJlUHF5QUVERERERERERERERKRaGjNmDE2bNnWOHzp0iI8++qjA5ffs2cPOnTud4926deOWW24pVmBXamoq8fHxZatwJenUqRMffvghderUcU776aefmDBhQqUF0OQN5jl8+HCx1126dKnL+JNPPlms4CDIH/BSXeT+rAD+/fffKqpJ2ZyOn11xNG3alGHDhvHkk0/y448/smDBAi699FKXZZYsWcLy5cuLXeaRI0dcxt11ZSsiIlKZFNwlIiIiIiIiIiIiIiIiLnx9fbnttttcps2YMaPAAKaoqCiX8QsvvLDY21q/fj3GmBLXsaq0adOGTz75xCWwZtWqVVx33XVER0dXyvZz27VrV7HXzf05BQUF0aNHj2Kvu379+mIv60latmxJeHi4c3z37t0uXRtWF6fjZ1ca7dq145VXXuGaa65xmb5kyZJirW+MYffu3c7xWrVqERkZWa51FBERKSkFd4mIiIiIiIiIiIiIiEg+l1xyCc2bN3eOx8bG8uGHH7pdNm/mrdDQ0GJv58svvyxdBatQ48aN+fjjj2ndurVz2ubNm7n22ms5dOhQhW777LPPdhnfunVrsddNSEhwDgcHBxcrsxrYgUXr1q0r9nY8iWVZLoFQxhg+++yzKqxR6ZyOn11ZjBo1ymV8//79xVpv3759JCcnO8c7dOhQrvUSEREpDQV3iYiIiIiIiIiIiIiISD5eXl7cfPPNLtNmzZrlEmSSrUaNGi7jxc0mtWnTJhYtWlT6SlahyMhIPvroIzp27OictmvXLq655hqXzD/lrWPHjvj5+TnHN27cWOx1c39O0dHRxMXFFWu9l156CYfDUfxKephrr73WZXzWrFns27evimpTOqfrZ1da3t7eLuO595nC5N2funfvXm51EhERKS0Fd4mIiIiIiIiIiIiIiIhbl156Kc2aNXOOx8XF8f777+dbrm3bti7jCxYsKLLru3379nH77beTkZFRHlWtEmFhYcyaNYvzzjvPOe3gwYNcc801/PPPPxWyzcDAQJeAky1btuTLnFaQ3J9TVlYWM2fOLHKdN954o9hd2nmqHj160K1bN+d4YmIiN998c4myrFV1V46n62cHsHDhQnbu3Fmidb766iuX8ZYtWxZrvT///NNlvE+fPiXaroiISEVQcJeIiIiIiIiIiIiIiIi45e3tnS971/vvv58va1DdunXp0qWLczw2NpbrrruODRs25CszPT2duXPncuWVV3LgwAH8/f0JCgqqkPpXhqCgIN566y0GDRrknBYdHc3YsWNZvXp1hWyzf//+zmGHw8HKlSuLtd6QIUNcxt9++21effVVkpKS8i27a9cuJk+ezP/93/8BULNmzTLUuOq98MILhIeHO8d37NjBiBEjmD17NomJiW7XiY6OZu7cuYwePZpXXnmlkmrq3un82X3//fdccskljB07ljlz5hTaxWJ0dDQvvPACs2bNck7z8vLisssuK9a2li9f7hxu3rx5sYPCREREKpJPVVdAREREREREREREREREPNfQoUN566232LNnD2BnPXrvvfe48847XZa75557GDt2LJmZmYAdYDJ69GiaN29O69at8fX15fjx42zcuJHk5GTneo888ghvvfWWy7Tqxs/Pj9dee41HH32UuXPnAvb7NGHCBF577TX69u1brtsbMmQIzz77LOnp6QAsXryYgQMHFrler169uOCCC/j111+d06ZPn87s2bPp0KEDderUITk5mT179rhkSmrZsiVXXXUVzzzzTLm+jsrUsGFDpk2bxi233OLMdBYdHc0zzzzDCy+8wJlnnkndunXx9/cnISGBPXv2sHfvXowxgB3oU5VO588OwBjDqlWrWLVqFQDh4eG0atWK8PBwAgMDSU1NZd++fWzfvp2srCyXdW+66SbOOOOMIrexefNml8Cx4cOHl++LEBERKSVl7hIREREREREREREREZECeXt7M2nSJJdps2fPJjo62mVa586deeqpp/D19XWZvnv3bhYvXsw333zDypUrnUFc3t7ePPTQQ1xxxRUV+wIqiZeXF08//TQTJkxwTktNTWXy5MksXLiwXLcVFhbmkr1r2bJlpKWlFWvdV155hfbt27tMS05OZuXKlXz99dcsXbrUJTioXbt2zJo1i5CQkPKpfBXq1q0bn332Ga1atXKZnpmZycaNG1myZAnffPMNv/zyC1FRUc7ALk9xOn92ecXGxrJ69WqWLFnCwoUL+eGHH9iyZYtLYJePjw+33XYbd9xxR7HK/O6771zWHTZsWDnXWkREpHQU3CUiIiIiIiIiIiIiIiKFuuyyy2jatKlzPDk5mXfffTffciNGjGDOnDl07969wLL8/f0ZNGgQc+fO5brrrquQ+lale++9l7vvvts5npmZyX333cecOXPKdTvXX3+9czgxMdElMKUwNWrU4JNPPuHWW2916aYwr+bNm3PPPffw+eefU7du3TLW1nO0aNGCr776ihdeeIH27dtjWVahy7ds2ZJbbrmFKVOmVFINC3a6fnYPPfQQDz/8MH369CEsLKzI5UNCQhg+fDgLFy5k8uTJxdpGZmYmCxYscI4PHjz4lHjvRETk1GAZTws5FxERERERERERERERkWrv4MGDrFu3jqNHj5KZmUnNmjWJjIykc+fOp2Qmoapw7bXXsmbNGgA6derEp59+WqL109PT+euvv9ixYwfx8fEEBQVRu3ZtWrZsSZs2bSqiyh4nOjqaDRs2cOzYMWJjY7Esi5CQEBo1akTbtm2JjIys6iq6dbp+dsYYoqKiiIqK4uDBgyQkJJCZmUlQUJCzq8ZWrVrh5+dXonIXL17sEsA3b968fFnSREREqoqCu0RERERERERERERERESqoZUrVzJu3Djn+Oeff84555xThTUSqZ6uuuoq1q9fD0Dfvn2ZPn16FddIREQkh7plFBEREREREREREREREamGevbsyXnnneccf+utt6qwNiLV04oVK5yBXV5eXtx1111VXCMRERFXCu4SERERERERERERERERqabuu+8+fHx8APj555/ZtGlTFddIpHqZNm2ac3jUqFG0bt26CmsjIiKSn4K7RERERERERERERERERKqpNm3aMHbsWOf4iy++WIW1EalelixZwpo1awAIDw9X1i4REfFIPlVdAREREREREREREREREREpvdtuu42QkBCMMQCcOHGCWrVqVXGtRDxfUlISkydPBqBz585ERERUcY1ERETys0z2VZ6IiIiIiIiIiIiIiIiIiIiIiIh4DHXLKCIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigRTcJSIiIiIiIiIiIiIiIiIiIiIi4oEU3CUiIiIiIiIiIiIiIiIiIiIiIuKBFNwlIiIiIiIiIiIiIiIiIiIiIiLigf4fr7I8JrsfFYkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 711, "width": 1211 } }, "output_type": "display_data" } ], "source": [ "axes = az.plot_trace(\n", " data=pnbd_full.idata,\n", " compact=True,\n", " kind=\"rank_bars\",\n", " backend_kwargs={\"figsize\": (12, 7), \"layout\": \"constrained\"},\n", ")\n", "plt.gcf().suptitle(\"Pareto/NBD Model Trace\", fontsize=18, fontweight=\"bold\");" ] }, { "cell_type": "code", "execution_count": 20, "id": "2cd6f6a3-aed3-45c3-8b97-7fad2ce5b643", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
arviz.InferenceData
\n", "
\n", "
    \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 408kB\n",
             "Dimensions:  (chain: 4, draw: 3000)\n",
             "Coordinates:\n",
             "  * chain    (chain) int64 32B 0 1 2 3\n",
             "  * draw     (draw) int64 24kB 0 1 2 3 4 5 6 ... 2994 2995 2996 2997 2998 2999\n",
             "Data variables:\n",
             "    alpha    (chain, draw) float64 96kB 16.12 16.12 16.12 ... 16.76 16.76 16.76\n",
             "    beta     (chain, draw) float64 96kB 16.98 16.98 16.98 ... 8.639 8.639 8.639\n",
             "    r        (chain, draw) float64 96kB 0.635 0.635 0.635 ... 0.6551 0.6551\n",
             "    s        (chain, draw) float64 96kB 0.5287 0.5287 0.5287 ... 0.3744 0.3744\n",
             "Attributes:\n",
             "    created_at:                 2024-11-23T22:32:50.642976+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.095298767089844\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 226MB\n",
             "Dimensions:            (chain: 4, draw: 3000, customer_id: 2349)\n",
             "Coordinates:\n",
             "  * chain              (chain) int64 32B 0 1 2 3\n",
             "  * draw               (draw) int64 24kB 0 1 2 3 4 ... 2995 2996 2997 2998 2999\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "Data variables:\n",
             "    recency_frequency  (chain, draw, customer_id) float64 226MB -14.28 ... -0...\n",
             "Attributes:\n",
             "    created_at:                 2024-11-23T22:32:56.529120+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 324kB\n",
             "Dimensions:   (chain: 4, draw: 3000)\n",
             "Coordinates:\n",
             "  * chain     (chain) int64 32B 0 1 2 3\n",
             "  * draw      (draw) int64 24kB 0 1 2 3 4 5 6 ... 2994 2995 2996 2997 2998 2999\n",
             "Data variables:\n",
             "    accept    (chain, draw) float64 96kB 0.4747 0.0004368 ... 0.007007 0.4167\n",
             "    accepted  (chain, draw) bool 12kB False False False ... False False False\n",
             "    lambda    (chain, draw) float64 96kB 0.8415 0.8415 0.8415 ... 0.8415 0.8415\n",
             "    scaling   (chain, draw) float64 96kB 0.0002542 0.0002542 ... 0.0002288\n",
             "Attributes:\n",
             "    created_at:                 2024-11-23T22:32:50.645501+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1\n",
             "    sampling_time:              6.095298767089844\n",
             "    tuning_steps:               2500

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
  • \n", " \n", " \n", "
    \n", "
    \n", "
      \n", "
      \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
      <xarray.Dataset> Size: 56kB\n",
             "Dimensions:            (customer_id: 2349, obs_var: 2)\n",
             "Coordinates:\n",
             "  * customer_id        (customer_id) int64 19kB 1 2 3 4 ... 2354 2355 2356 2357\n",
             "  * obs_var            (obs_var) <U9 72B 'recency' 'frequency'\n",
             "Data variables:\n",
             "    recency_frequency  (customer_id, obs_var) float64 38kB 49.0 3.0 ... 0.0 0.0\n",
             "Attributes:\n",
             "    created_at:                 2024-11-23T22:32:50.646870+00:00\n",
             "    arviz_version:              0.18.0\n",
             "    inference_library:          pymc\n",
             "    inference_library_version:  5.15.1

      \n", "
    \n", "
    \n", "
  • \n", " \n", "
\n", "
\n", " " ], "text/plain": [ "Inference data with groups:\n", "\t> posterior\n", "\t> log_likelihood\n", "\t> sample_stats\n", "\t> observed_data" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pnbd_full.idata" ] }, { "cell_type": "markdown", "id": "2deebe6f-2020-459e-a50b-72d9fa5c9db6", "metadata": {}, "source": [ "Let's see how the DEMZ posteriors compare to the MAP estimations:" ] }, { "cell_type": "code", "execution_count": 21, "id": "983b786b-9e39-4cfa-ad43-5f0d0ca27e1a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACXcAAAWPCAYAAADpjVXcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hU1dbH8d+kkgYJvVchQKiCNFFARGlKU1EuRSmKBQtWsCEWbGABBVFEQQQUQelIBxXpvXfpBJKQRkg77x+8JDkpU5KZZIDv53l47j179tlnTTJJjmvWrG0xDMMQAAAAAAAAAAAAAAAAAMCteBR0AAAAAAAAAAAAAAAAAACArCjuAgAAAAAAAAAAAAAAAAA3RHEXAAAAAAAAAAAAAAAAALghirsAAAAAAAAAAAAAAAAAwA1R3AUAAAAAAAAAAAAAAAAAbojiLgAAAAAAAAAAAAAAAABwQxR3AQAAAAAAAAAAAAAAAIAborgLAAAAAAAAAAAAAAAAANwQxV0AAAAAAAAAAAAAAAAA4IYo7gIAAAAAAAAAAAAAAAAAN0RxFwAAAAAAAAAAAAAAAAC4IYq7AAAAAAAAAAAAAAAAAMANUdwFAAAAAAAAAAAAAAAAAG6I4i4AAAAAAAAAAAAAAAAAcEMUdwEAAAAAAAAAAAAAAACAG6K4CwAAAAAAAAAAAAAAAADcEMVdAAAAAAAAAAAAAAAAAOCGKO4CAAAAAAAAAAAAAAAAADdEcRcAAAAAAAAAAAAAAAAAuCGvgg4AAAAAAAAAcHd33XWXTp06lePj5cqV04oVK/Ixotzr06ePNmzYYHXO/v378ykaAAAAAAAAWEPnLgAAAAAAAAAAAAAAAABwQ3TuAgAAAJArs2fP1rBhw3J9vpeXlwIDAxUYGKjg4GDVqFFDYWFhuvXWW1W7dm0nRgq4zg8//KBRo0aZxvz9/bV+/Xr5+Pikja1fv159+/a1a83nnntOTz31lENxjB07VuPGjbM6Z9SoUerevbvVOXn5ufby8pK3t7cCAwMVEhKi0qVLq3Llyqpdu7aaNGmicuXK5WpdybGvn4eHhzw9PeXt7S0fHx8FBAQoKChIwcHBKlGihMqWLavKlSsrNDRUoaGh8vJyr9SII89VutotaunSpfL09MzV9VJSUtSuXTurHakymzJlipo2bZqr6wGZ2dNFzJpChQopKChIgYGBKl26tGrVqqWwsDC1aNFCRYsWdWKkAAAAAAAABcO9MpgAAAAAbhrJycmKiopSVFSUTp48qV27dmn27NmSpBo1aqh79+565JFHVKhQoQKOFNmxpwjInmKi692yZcuyjN1xxx2mwi5HTZo0SQ8//PB1V5SQnJys5ORkXb58WeHh4Tpw4IDWrFmT9nhYWJgeeeQRdevWzaUFVampqUpNTVVSUpLi4+MVFRWV41x/f3+1bNlSnTp10l133ZWn71tBOXXqlFasWKF27drl6vzly5c7VNgFuJuEhAQlJCQoPDxcR48e1bp16yRJ3t7eatWqlXr16qXbb7+9gKME8teNtI0sAAAAAIBtGQEAAAC4oQMHDujDDz9U586d9ffffxd0OEC2IiIitGXLlizjuS2yuSY2Nlbjx4/P0xruaPfu3XrjjTfUtWtXnThxoqDDkSTFx8frzz//1HPPPad27dpp6tSpSk5OLuiwHDZlypQCORdwZ0lJSVq2bJn69++v5557TuHh4QUdEgAAAAAAQK5Q3AUAAADAbZ04cUL9+/fXtGnTCjoUIIuVK1cqJSXFNObt7a3WrVvnee3p06fr5MmTeV7HHR08eFA9e/bUoUOHCjoUk7Nnz+q9997TAw88oL179xZ0OA7ZsGGD9u/f7/B5e/fu1caNG10QEeBeFi9erB49euj48eMFHQoAAAAAAIDDKO4CAAAA4PbefffdtC0bAXeR3ZaMTZo0UVBQUJ7XTkpK0hdffJHnddzVxYsX9eqrr2YpjnMHe/fuVc+ePbVw4cKCDsUhU6dOdfgcunbhZnLu3Dn169dP586dK+hQAAAAAAAAHEJxFwAAAAC3ZxiG3nvvPbZUgtu4fPmy/vnnnyzjd999t9OuMX/+fO3bt89p67mbXbt2acGCBQUdRrauXLmioUOHasaMGQUdit3mzZunqKgou+dfvHhR8+fPd11AgBs6c+aMPvjgg4IOAwAAAAAAwCFeBR0AAAAAgBtbdp1hkpOTdeHCBW3dulXz589XTEyMzXXi4uL0+eef6/3333dFmIBD1q5dq4SEBNOYxWJR27ZtnXaN1NRUffrpp/ruu++ctqazZPdznZKSovPnz2v9+vWaN2+ekpKSbK6zZMkS3X///a4IMc8Mw9A777yjkJAQ3XvvvQUdjk0JCQn65Zdf9Pjjj9s1f8aMGUpMTHRxVIBztGzZMtvXdnx8vE6ePKnVq1frr7/+kmEYNtdavHixNm3apMaNG7siVAAAAAAAAKejuAsAAACASzVt2jTHx7p06aLnn39eQ4cO1d9//21zrcWLF2vEiBHy9vZ2ZoiAw7LbkrFevXoqVaqUU6+zdu1arV+/3urPUUGwFk/Xrl31yCOPqF+/foqPj7e6zsaNG50a1/Lly1W+fHlJV4vjYmJiFB0drXPnzmnbtm3asmWL1qxZY1fh2bU1hg8frpo1a6pSpUpOjdUVfv75Zw0YMECenp5W5yUlJWn69On5FBWQdyVKlLD6e6dPnz7asGGDhgwZYlcHu3nz5lHcBQAAAAAArhsUdwEAAAAoUMHBwRo3bpzuu+8+nTx50urc2NhYbdiwQbfffrvNdQ3D0Pnz53X27FmdO3dOFy9e1JUrV5SQkKCUlBT5+PgoKChIxYoVU4UKFVSlShX5+vo662k5JCkpSbt27dKhQ4cUGRmpxMREeXt767bbbtOtt97q8Fp79+7V2bNndenSpbQ3uYODgxUcHKyKFSuqRo0aslgsLngm+efSpUvas2ePIiIiFBUVpZiYGBUqVEhFihRRkSJFVKlSJVWrVs0l105OTtbq1auzjDtzS8aMPv30U/36668uWdtV6tWrp969e2vixIlW5126dEmJiYny8fFxegweHh5pr4cKFSqkFXKcP39eU6dO1eTJk+0q8oqNjdWIESM0efJkp8fobGfOnNHSpUvVvn17q/MWLVpU4NvcJicna9++fTpz5oyioqJ06dIlpaampn3PSpQoobCwMBUqVMhlMezbt09HjhzR+fPnlZCQoMKFC6tq1apq0KCBS69ry4kTJ3T48OG0r0t8fLwKFy6s4OBglShRQnXq1JG/v3+BxeeumjRpoo8//tiu7nUrV67UO++8Y9e6iYmJOnnypM6fP69z584pNjZWCQkJSkhIkKenp3x9fdO+N5UrV04rMC0IERER2rlzp/777z/FxsYqJSVFAQEB6tatm4KDg22ef+HCBZ05c0bnz5/XhQsXdPnyZV25ckXJycny9vZWQECAihYtmnbfFBAQ4PonlY1rBbunTp3SlStXVLhwYVWvXl0NGjSw++9JXFyctm/friNHjigmJkZBQUEqWrSo6tWr59Lv4blz57R///60n+/Y2FgFBgYqODhYxYoVU506dVS4cGGXXT8/GIahI0eO6Pjx47p06ZIuXbqkhIQEFSlSRMHBwSpdurTCwsJc8rffHgkJCdqxY4eOHDmi6OjotPuQ1q1bq0aNGjbPj4yM1NGjR3XixAnFxsYqPj5eiYmJKlSokPz8/FS8eHGVLl1a5cuXV9GiRfPhGQEAAAC4GVDcBQAAAKDA+fv7q0+fPho1apTNuQcPHsxS3HXtTaQtW7Zo69atOnDggA4fPmyza1BG3t7eqlOnju666y5169ZNJUqUcPh5XOscYs3+/fvT/v/58+c1ceJE/f7779luTdm3b1+7iruio6P166+/atWqVdqxY0eW7QIzCw4OVuPGjfXAAw+odevWdhV62fPcMhs2bJiGDRtmdc6oUaPUvXt3u9Y7ePCgZsyYofXr1+vQoUM2t98KCQnRrbfeqk6dOql9+/Y2uxnZa+PGjdl2hnHmlowZ7dixQ4sXL7ZZsONuGjVqZNe8yMhIp3c8s6ZkyZJ68cUX1a5dO73wwgs2i0ol6Z9//tHq1avVqlWrfIjQNm9v7xwL06ZOnWrztZLdtpr2rJ1XsbGxmjVrllauXKkdO3bY/B3t7e2tsLAwtWzZUo888oiKFy+e5xguX76sSZMm6Y8//tB///2X7RxfX1/de++9Gjx4sMuKRDMyDEOrV6/WH3/8oU2bNun8+fNW53t5ealOnTpq27atHn744eu+EMSZWrVqpZo1a2rfvn1W5507d06XLl1SkSJFTOOXL1/Wzp07tWXLFu3cuVOHDh3SiRMnlJKSYncMISEhatq0qTp06KC7775bXl6OpV9Pnjxp8+9Jt27d9OGHH6Ydr1u3ThMnTtS///6r1NTULPObNWuWpbjrxIkTafdN+/bt0+HDhxUdHW13nJ6engoNDVWbNm3UrVs3VahQwe5zr3H0vmndunX6+uuvtXHjxmzvAYKCgvTAAw/oiSeeUEhISLbrHT9+XOPHj9eiRYtyvF+qUqWKBg0apG7dusnDw8OBZ5S9TZs26bffftPGjRt14sQJq3M9PDwUGhqqVq1aqXfv3nbdj65fv159+/Z1KKZTp04pNDTU6pxy5cppxYoVdq2XnJysxYsXa+HChdqyZYsiIyOtzvf19VX9+vXVvn179ejRI1cFtXfddZdOnTqV4+OZ4z927JgmTJigxYsX6/Lly1nm+/j45FjcdeDAAc2ePVsrV67UsWPH7I6xePHiCg0NVZ06ddS4cWPdeuutCgwMtPt8AAAAALiG4i4AAAAAbsHeDlUXLlzIMrZ9+3b17NkzT9dPSkrS1q1btXXrVn355Zf63//+p+eee85l3VGWLVumYcOGOfRGamYxMTEaO3asfv31V4cK2aKiorRs2TItW7ZM1atX14svvqg2bdrkOg5X27Nnjz777DOtXbvWZkFXRpGRkVq+fLmWL1+u0aNHa9CgQXr44Yfz3LVs+fLlWcaqVq3q0iKQzz77LFdFAteDgupAVK9ePU2ePFkPPvigXdu4fffdd25T3HXnnXdq3bp12f7cb9q0SXv37lWtWrWyPXfr1q3auXNnto/5+/urefPm2b7G8yIuLk5fffWVZs6cqdjYWLvPS0pK0rZt27Rt2zZNnDhRXbp00QsvvKBixYrlKo6///5bb775ptViAEm6cuWK5s6dq0WLFmnw4MF66qmnnFLgkZ25c+dqwoQJOnz4sN3nJCcnp31dJkyYoP/9738aMmRIgXXBcTcNGza0WdwlXb2fyFzcNWrUKM2cOTNP14+MjNTixYu1ePFilStXTq+++qruvffePK2Zk6SkJI0cOVK//PKLQ+eFh4fnudtkSkqK9uzZoz179mj8+PG6//779eqrr7qkU1FCQoLeeecdzZ492+q8mJgYTZ48WfPnz9fnn3+eZevNH3/8UaNHj9aVK1esrnP06FENHz5cv/32m8aPH5/ldWKvNWvWaOzYsdqxY4fd56Smpmrv3r3au3evvv/+e3Xr1k0vv/yygoKCchWDq6WmpmratGmaNGmSzpw5Y/d5V65c0YYNG7RhwwaNGzdOAwcO1GOPPeay37XTp0/XqFGjbH7vM4uNjdXIkSM1b968bAsnbblw4YIuXLigv//+W9988408PT31xx9/qHr16g6vBQAAAODm5pr/WgIAAAAAB9nbeeTSpUsujuTqm6U//PCDHnzwQUVERDh9/Tlz5mjIkCF5KuzasWOHunbtqh9//NGhwq7MDh48qMGDB+uDDz5wWbeevJgyZYoeeughrVmzxqHCrsxOnTqlESNG6IknnrDZTcKW7ApfnLElY7ly5XJ87NixY5o1a1aer5GftmzZYnNOiRIlCvQN64oVK+qTTz6xa+6GDRtsFgXll8KFC6tLly45Pm6tM5e1x7p27er0LlD79u1Tjx49NGnSJIcKuzJLTEzUr7/+qi5duujff/91+PzFixfr8ccfd+h7mJSUpLFjx2ro0KFKTk52+JrWxMbGaujQoXr55ZcdKuzKLC4uThMnTtRDDz2k48ePOzHC65e9hTj5cT9x6tQpPfvss/roo4+cvnZSUpKefPJJhwu