MMMModelBuilder.fit#
- MMMModelBuilder.fit(X, y=None, progressbar=None, random_seed=None, **kwargs)#
Fit a model using the data passed as a parameter.
Sets attrs to inference data of the model.
- Parameters:
- Xarray_like |
array
,shape
(n_obs
,n_features
) The training input samples. If scikit-learn is available, array-like, otherwise array.
- yarray_like |
array
,shape
(n_obs,) The target values (real numbers). If scikit-learn is available, array-like, otherwise array.
- progressbarbool, optional
Specifies whether the fit progress bar should be displayed. Defaults to True.
- random_seed
Optional
[RandomState
] Provides sampler with initial random seed for obtaining reproducible samples.
- **kwargs
Any
Custom sampler settings can be provided in form of keyword arguments.
- Xarray_like |
- Returns:
- self
az.InferenceData
Returns inference data of the fitted model.
- self
Examples
>>> model = MyModel() >>> idata = model.fit(X,y) Auto-assigning NUTS sampler... Initializing NUTS using jitter+adapt_diag...