BaseMMM.plot_posterior_predictive#
- BaseMMM.plot_posterior_predictive(original_scale=False, hdi_list=None, add_mean=True, add_gradient=False, ax=None, **plt_kwargs)#
Plot the posterior predictive distribution from the model fit.
This function creates a visualization of the model’s posterior predictive distribution, allowing for comparison with observed data. It can include highest density intervals (HDI), mean predictions, and a gradient representation of the full distribution.
- Parameters:
- original_scalebool, optional
If True, plot in the original scale of the target variable. If False, plot in the transformed scale used for modeling. Default is False.
- hdi_list
list
offloat
, optional List of HDI levels to plot. Default is [0.94] Provide an empty list to omit plotting the HDI.
- add_meanbool, optional
If True, add the mean prediction to the plot. Default is True.
- add_gradientbool, optional
If True, add a gradient representation of the full posterior distribution. Default is False.
- ax
plt.Axes
, optional A matplotlib Axes object to plot on. If None, a new figure and axes will be created.
- **plt_kwargs
dict
Additional keyword arguments to pass to plt.subplots() when creating a new figure.
- Returns:
plt.Figure
The matplotlib Figure object containing the plot.
- Raises:
ValueError
If the length of the target variable doesn’t match the length of the date column in the posterior predictive data.
Notes
This function visualizes the model’s predictions against the observed data. The observed data is always plotted as a black line. Depending on the parameters, it can also show: - HDI (Highest Density Intervals) at 94% and 50% levels - Mean prediction line - Gradient representation of the full posterior distribution
If predicting out-of-sample, ensure that
self.y
is overwritten with the corresponding non-transformed target variable.