Censored#
- class pymc_marketing.prior.Censored(*args, **kwargs)[source]#
Create censored random variable.
Examples
Create a censored Normal distribution:
from pymc_marketing.prior import Prior, Censored normal = Prior("Normal") censored_normal = Censored(normal, lower=0)
Create hierarchical censored Normal distribution:
from pymc_marketing.prior import Prior, Censored normal = Prior( "Normal", mu=Prior("Normal"), sigma=Prior("HalfNormal"), dims="channel", ) censored_normal = Censored(normal, lower=0) coords = {"channel": range(3)} samples = censored_normal.sample_prior(coords=coords)
Methods
Censored.__init__
(*args, **kwargs)Censored.create_likelihood_variable
(name, ...)Create observed censored variable.
Censored.create_variable
(name)Create censored random variable.
Censored.from_dict
(data)Create a censored distribution from a dictionary.
Censored.sample_prior
([coords, name])Sample the prior distribution for the variable.
Convert the censored distribution to a dictionary.
Generate a graph of the variables.
Attributes
dims
The dims from the distribution to censor.
lower
upper
distribution