Source code for pymc_marketing.clv.models.shifted_beta_geo

#   Copyright 2024 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
from collections.abc import Sequence

import numpy as np
import pandas as pd
import pymc as pm
from pymc.util import RandomState
from xarray import DataArray, Dataset

from pymc_marketing.clv.models import CLVModel


[docs] class ShiftedBetaGeoModelIndividual(CLVModel): """Shifted Beta Geometric model Model for customer behavior in a discrete contractual setting. It assumes that: * At the end of each period, a customer has a probability `theta` of renewing the contract and `1-theta` of cancelling * The probability `theta` does not change over time for a given customer * The probability `theta` varies across customers according to a Beta prior distribution with hyperparameters `alpha` and `beta`. based on [1]_. Parameters ---------- data: pd.DataFrame DataFrame containing the following columns: * `customer_id`: Customer labels. There should be one unique label for each customer * `t_churn`: Time at which the customer cancelled the contract (starting at 0). It should equal T for users that have not cancelled by the end of the observation period * `T`: Maximum observed time period (starting at 0) model_config: dict, optional Dictionary of model prior parameters. If not provided, the model will use default priors specified in the `default_model_config` class attribute. sampler_config: dict, optional Dictionary of sampler parameters. Defaults to None. Examples -------- .. code-block:: python import pymc as pm from pymc_marketing.clv import ShiftedBetaGeoModelIndividual model = ShiftedBetaGeoModelIndividual( data=pd.DataFrame({ customer_id=[0, 1, 2, 3, ...], t_churn=[1, 2, 8, 4, 8 ...], T=[8 for x in range(len(customer_id))], }), model_config={ "alpha_prior": {"dist": "HalfNormal", "kwargs": {"sigma": 10}}, "beta_prior": {"dist": "HalfStudentT", "kwargs": {"nu": 4, "sigma": 10}}, }, sampler_config={ "draws": 1000, "tune": 1000, "chains": 2, "cores": 2, "nuts_kwargs": {"target_accept": 0.95}, }, ) model.fit() print(model.fit_summary()) # Predict how many periods in the future are existing customers likely to cancel (ignoring that some may already have cancelled) expected_churn_time = model.distribution_customer_churn_time( customer_id=[0, 1, 2, 3, ...], ) print(expected_churn_time.mean("customer_id")) # Predict churn time for 10 new customers, conditioned on data new_customers_churn_time = model.distribution_new_customer_churn_time(n=10) print(new_customers_churn_time.mean("new_customer_id")) References ---------- .. [1] Fader, P. S., & Hardie, B. G. (2007). How to project customer retention. Journal of Interactive Marketing, 21(1), 76-90. https://journals.sagepub.com/doi/pdf/10.1002/dir.20074 """ _model_type = "Shifted-Beta-Geometric Model (Individual Customers)"
[docs] def __init__( self, data: pd.DataFrame, model_config: dict | None = None, sampler_config: dict | None = None, ): self._validate_cols( data, required_cols=["customer_id", "t_churn", "T"], must_be_unique=["customer_id"], ) if np.any( (data["t_churn"] < 0) | (data["t_churn"] > data["T"]) | np.isnan(data["t_churn"]) ): raise ValueError( "t_churn must respect 0 < t_churn <= T.\n", "Customers that are still alive should have t_churn = T", ) super().__init__( data=data, model_config=model_config, sampler_config=sampler_config )
@property def default_model_config(self) -> dict: return { "alpha_prior": {"dist": "HalfFlat", "kwargs": {}}, "beta_prior": {"dist": "HalfFlat", "kwargs": {}}, }
[docs] def build_model(self): alpha_prior = self._create_distribution(self.model_config["alpha_prior"]) beta_prior = self._create_distribution(self.model_config["beta_prior"]) coords = {"customer_id": self.data["customer_id"]} with pm.Model(coords=coords) as self.model: alpha = self.model.register_rv(alpha_prior, name="alpha") beta = self.model.register_rv(beta_prior, name="beta") theta = pm.Beta("theta", alpha, beta, dims=("customer_id",)) churn_raw = pm.Geometric.dist(theta) pm.Censored( "churn_censored", churn_raw, lower=None, upper=self.data["T"], observed=self.data["t_churn"], dims=("customer_id",), )
[docs] def distribution_customer_churn_time( self, customer_id: np.ndarray | pd.Series, random_seed: RandomState = None ) -> DataArray: """Sample distribution of churn time for existing customers. The draws represent the number of periods into the future after which a customer cancels their contract. It ignores that some customers may have already cancelled. """ coords = {"customer_id": customer_id} with pm.Model(coords=coords): alpha = pm.HalfFlat("alpha") beta = pm.HalfFlat("beta") theta = pm.Beta("theta", alpha, beta, dims=("customer_id",)) pm.Geometric("churn", theta, dims=("customer_id",)) return pm.sample_posterior_predictive( self.idata, var_names=["churn"], random_seed=random_seed, ).posterior_predictive["churn"]
def _distribution_new_customer( self, n: int = 1, random_seed: RandomState = None, var_names: Sequence[str] = ("theta", "churn"), ) -> Dataset: coords = {"new_customer_id": np.arange(n)} with pm.Model(coords=coords): alpha = pm.HalfFlat("alpha") beta = pm.HalfFlat("beta") theta = pm.Beta("theta", alpha, beta, dims=("new_customer_id",)) pm.Geometric("churn", theta, dims=("new_customer_id",)) return pm.sample_posterior_predictive( self.idata, var_names=var_names, random_seed=random_seed, ).posterior_predictive
[docs] def distribution_new_customer_churn_time( self, n: int = 1, random_seed: RandomState = None ) -> DataArray: """Sample distribution of churn time for new customers. The draws represent the number of periods into the future after which a customer cancels their contract. Use `n > 1` to simulate multiple identically distributed users. """ return self._distribution_new_customer( n=n, random_seed=random_seed, var_names=["churn"] )["churn"]
[docs] def distribution_new_customer_theta( self, n: int = 1, random_seed: RandomState = None ) -> DataArray: """Sample distribution of theta parameter for new customers. Use `n > 1` to simulate multiple identically distributed users. """ return self._distribution_new_customer( n=n, random_seed=random_seed, var_names=["theta"] )["theta"]