BG/NBD Model#

In this notebook we show how to fit a BG/NBD model in PyMC-Marketing. We compare the results with the lifetimes package (no longer maintained). The model is presented in the paper: Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing science, 24(2), 275-284.

Prepare Notebook#

import arviz as az
import matplotlib.pyplot as plt
import pandas as pd
import xarray as xr
from fastprogress.fastprogress import progress_bar
from lifetimes import BetaGeoFitter

from pymc_marketing import clv

# Plotting configuration
az.style.use("arviz-darkgrid")
plt.rcParams["figure.figsize"] = [12, 7]
plt.rcParams["figure.dpi"] = 100
plt.rcParams["figure.facecolor"] = "white"

%load_ext autoreload
%autoreload 2
%config InlineBackend.figure_format = "retina"

Read Data#

We use the CDNOW dataset (see lifetimes quick-start).

data_path = "https://raw.githubusercontent.com/pymc-labs/pymc-marketing/main/data/clv_quickstart.csv"

df = pd.read_csv(data_path)

df.head()
frequency recency T monetary_value
0 2 30.43 38.86 22.35
1 1 1.71 38.86 11.77
2 0 0.00 38.86 0.00
3 0 0.00 38.86 0.00
4 0 0.00 38.86 0.00

Recall from the lifetimes documentation the following definitions:

  • frequency represents the number of repeat purchases the customer has made. This means that it’s one less than the total number of purchases. This is actually slightly wrong. It’s the count of time periods the customer had a purchase in. So if using days as units, then it’s the count of days the customer had a purchase on.

  • T represents the age of the customer in whatever time units chosen (weekly, in the above dataset). This is equal to the duration between a customer’s first purchase and the end of the period under study.

  • recency represents the age of the customer when they made their most recent purchases. This is equal to the duration between a customer’s first purchase and their latest purchase. (Thus if they have made only 1 purchase, the recency is 0.)

Tip

We rename the index column to customer_id as this is required by the model

data = (
    df.reset_index()
    .rename(columns={"index": "customer_id"})
    .drop(columns="monetary_value")
)

Model Specification#

The BG/NBD model is a probabilistic model that describes the buying behavior of a customer in the non-contractual setting. It is based on the following assumptions for each customer:

Frequency Process#

  1. While active, the time between transactions is distributed exponential with transaction rate, i.e.,

    \[f(t_{j}|t_{j-1}; \lambda) = \lambda \exp(-\lambda (t_{j} - t_{j - 1})), \quad t_{j} \geq t_{j - 1} \geq 0\]
  2. Heterogeneity in \(\lambda\) follows a gamma distribution with pdf

    \[f(\lambda|r, \alpha) = \frac{\alpha^{r}\lambda^{r - 1}\exp(-\lambda \alpha)}{\Gamma(r)}, \quad \lambda > 0\]

Dropout Process#

  1. After any transaction, a customer becomes inactive with probability \(p\).

  2. Heterogeneity in \(p\) follows a beta distribution with pdf

    \[f(p|a, b) = \frac{\Gamma(a + b)}{\Gamma(a) \Gamma(b)} p^{a - 1}(1 - p)^{b - 1}, \quad 0 \leq p \leq 1\]
  3. The transaction rate \(\lambda\) and the dropout probability \(p\) vary independently across customers.

Instead of estimating \(\lambda\) and \(p\) for each specific customer, we do it for a randomly chosen customer, i.e. we work with the expected values of the parameters. Hence, we are interesting in finding the posterior distribution of the parameters \(r\), \(\alpha\), \(a\), and \(b\).

Model Fitting#

Estimating such parameters is very easy in PyMC-Marketing. We instantiate the model in a similar way:

model_mcmc = clv.BetaGeoModel(data=data)

We can build the model so that we can see the model specification:

model_mcmc.build_model()
print(model_mcmc)
BG/NBD
         a ~ HalfFlat()
         b ~ HalfFlat()
     alpha ~ HalfFlat()
         r ~ HalfFlat()
likelihood ~ Potential(f(r, alpha, b, a))

We can now fit the model. The default sampler in PyMC-Marketing is the No-U-Turn Sampler (NUTS). We use the default \(4\) chains and \(1000\) draws per chain.

Note

It is not necessary to build the model before fitting it. We can fit the model directly.

sample_kwargs = {
    "draws": 2_000,
    "chains": 4,
    "target_accept": 0.9,
    "random_seed": 42,
}

idata_mcmc = model_mcmc.fit()
idata_mcmc
arviz.InferenceData
    • <xarray.Dataset> Size: 136kB
      Dimensions:  (chain: 4, draw: 1000)
      Coordinates:
        * chain    (chain) int64 32B 0 1 2 3
        * draw     (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999
      Data variables:
          a        (chain, draw) float64 32kB 0.8328 0.9293 0.9555 ... 1.042 1.112
          b        (chain, draw) float64 32kB 2.824 2.756 2.953 ... 3.807 4.156 3.535
          alpha    (chain, draw) float64 32kB 4.397 4.364 4.305 ... 4.039 4.173 4.47
          r        (chain, draw) float64 32kB 0.2511 0.2528 0.2424 ... 0.2196 0.2261
      Attributes:
          created_at:                 2024-04-05T07:20:26.323594
          arviz_version:              0.17.1
          inference_library:          pymc
          inference_library_version:  5.11.0
          sampling_time:              30.46035885810852
          tuning_steps:               1000

    • <xarray.Dataset> Size: 496kB
      Dimensions:                (chain: 4, draw: 1000)
      Coordinates:
        * chain                  (chain) int64 32B 0 1 2 3
        * draw                   (draw) int64 8kB 0 1 2 3 4 5 ... 995 996 997 998 999
      Data variables: (12/17)
          tree_depth             (chain, draw) int64 32kB 4 2 4 4 2 4 ... 4 1 4 4 3 3
          perf_counter_start     (chain, draw) float64 32kB 1.8e+04 ... 1.801e+04
          energy                 (chain, draw) float64 32kB 9.584e+03 ... 9.589e+03
          index_in_trajectory    (chain, draw) int64 32kB -2 -2 3 -3 -2 ... 0 6 -7 1 3
          perf_counter_diff      (chain, draw) float64 32kB 0.009088 ... 0.004634
          step_size              (chain, draw) float64 32kB 0.3874 0.3874 ... 0.4099
          ...                     ...
          smallest_eigval        (chain, draw) float64 32kB nan nan nan ... nan nan
          diverging              (chain, draw) bool 4kB False False ... False False
          max_energy_error       (chain, draw) float64 32kB 0.8383 0.3148 ... -1.02
          lp                     (chain, draw) float64 32kB -9.583e+03 ... -9.585e+03
          reached_max_treedepth  (chain, draw) bool 4kB False False ... False False
          acceptance_rate        (chain, draw) float64 32kB 0.7259 0.9069 ... 0.9577
      Attributes:
          created_at:                 2024-04-05T07:20:26.344549
          arviz_version:              0.17.1
          inference_library:          pymc
          inference_library_version:  5.11.0
          sampling_time:              30.46035885810852
          tuning_steps:               1000

    • <xarray.Dataset> Size: 94kB
      Dimensions:      (index: 2357)
      Coordinates:
        * index        (index) int64 19kB 0 1 2 3 4 5 ... 2352 2353 2354 2355 2356
      Data variables:
          customer_id  (index) int64 19kB 0 1 2 3 4 5 ... 2352 2353 2354 2355 2356
          frequency    (index) int64 19kB 2 1 0 0 0 7 1 0 2 0 ... 7 1 2 0 0 0 5 0 4 0
          recency      (index) float64 19kB 30.43 1.71 0.0 0.0 ... 24.29 0.0 26.57 0.0
          T            (index) float64 19kB 38.86 38.86 38.86 38.86 ... 27.0 27.0 27.0

We can look into the summary table:

model_mcmc.fit_summary()
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
a 0.975 0.282 0.528 1.463 0.007 0.005 1747.0 1655.0 1.0
b 3.192 1.184 1.556 5.320 0.030 0.021 1768.0 1716.0 1.0
alpha 4.479 0.382 3.761 5.213 0.009 0.006 1795.0 1809.0 1.0
r 0.244 0.013 0.220 0.267 0.000 0.000 1742.0 1876.0 1.0

We see that the r_hat values are close to \(1\), which indicates convergence.

We can also plot posterior distributions of the parameters and the rank plots:

axes = az.plot_trace(
    data=model_mcmc.idata,
    compact=True,
    kind="rank_bars",
    backend_kwargs={"figsize": (12, 9), "layout": "constrained"},
)
plt.gcf().suptitle("BG/NBD Model Trace", fontsize=18, fontweight="bold");
../../_images/9b005fe48584129599a2eece56ccb246ec4ed927b33fa09535e905c0c5aed8e2.png

Using MAP fit#

CLV models such as BetaGeoModel, can provide the maximum a posteriori estimates using a numerical optimizer (L-BFGS-B) from scipy.optimize under the hood.

model_map = clv.BetaGeoModel(data=data)
idata_map = model_map.fit(fit_method="map")
idata_map
arviz.InferenceData
    • <xarray.Dataset> Size: 48B
      Dimensions:  (chain: 1, draw: 1)
      Coordinates:
        * chain    (chain) int64 8B 0
        * draw     (draw) int64 8B 0
      Data variables:
          a        (chain, draw) float64 8B 0.793
          b        (chain, draw) float64 8B 2.426
          alpha    (chain, draw) float64 8B 4.414
          r        (chain, draw) float64 8B 0.2426
      Attributes:
          created_at:                 2024-04-05T07:20:31.004335
          arviz_version:              0.17.1
          inference_library:          pymc
          inference_library_version:  5.11.0

    • <xarray.Dataset> Size: 94kB
      Dimensions:      (index: 2357)
      Coordinates:
        * index        (index) int64 19kB 0 1 2 3 4 5 ... 2352 2353 2354 2355 2356
      Data variables:
          customer_id  (index) int64 19kB 0 1 2 3 4 5 ... 2352 2353 2354 2355 2356
          frequency    (index) int64 19kB 2 1 0 0 0 7 1 0 2 0 ... 7 1 2 0 0 0 5 0 4 0
          recency      (index) float64 19kB 30.43 1.71 0.0 0.0 ... 24.29 0.0 26.57 0.0
          T            (index) float64 19kB 38.86 38.86 38.86 38.86 ... 27.0 27.0 27.0

This time we get point estimates for the parameters.

map_summary = model_map.fit_summary()

map_summary
a        0.793
b        2.426
alpha    4.414
r        0.243
Name: value, dtype: float64

Comparing with the lifetimes package#

For the sake of comparison, we also fit the model using the lifetimes package.

bgf = BetaGeoFitter()
bgf.fit(
    frequency=data["frequency"].values,
    recency=data["recency"].values,
    T=data["T"].values,
)

bgf.summary
coef se(coef) lower 95% bound upper 95% bound
r 0.242593 0.012557 0.217981 0.267205
alpha 4.413532 0.378221 3.672218 5.154846
a 0.792886 0.185719 0.428877 1.156895
b 2.425752 0.705345 1.043276 3.808229
Hide code cell source
fig, axes = plt.subplots(
    nrows=2, ncols=2, figsize=(12, 9), sharex=False, sharey=False, layout="constrained"
)

axes = axes.flatten()

for i, var_name in enumerate(["r", "alpha", "a", "b"]):
    ax = axes[i]
    az.plot_posterior(
        model_mcmc.idata.posterior[var_name].values.flatten(),
        color="C0",
        point_estimate="mean",
        ax=ax,
        label="MCMC",
    )
    ax.axvline(x=map_summary[var_name], color="C1", linestyle="--", label="MAP")
    ax.axvline(
        x=bgf.summary["coef"][var_name], color="C2", linestyle="--", label="lifetimes"
    )
    ax.legend(loc="upper right")
    ax.set_title(var_name)

plt.gcf().suptitle("BG/NBD Model Parameters", fontsize=18, fontweight="bold");
../../_images/7edfdaef583f9e2aa8d0660615fcbf1a13d6ae01604b806298b634a6f9129bac.png

Some Applications#

Now that you have fitted the model, we can use it to make predictions. For example, we can predict the expected probability of a customer being alive as a function of time (steps). Here is a snippet of code to do that:

Expected Number of Purchases#

Let us take a sample of users:

example_customer_ids = [1, 6, 10, 18, 45, 1412]

data_small = data.query("customer_id.isin(@example_customer_ids)")

data_small.head(6)
customer_id frequency recency T
1 1 1 1.71 38.86
6 6 1 5.00 38.86
10 10 5 24.43 38.86
18 18 3 28.29 38.71
45 45 12 34.43 38.57
1412 1412 14 30.29 31.57

Observe that the last two customers are frequent buyers as compared to the others.

steps = 90

expected_num_purchases_steps = xr.concat(
    objs=[
        model_mcmc.expected_num_purchases(
            customer_id=data_small["customer_id"],
            frequency=data_small["frequency"],
            recency=data_small["recency"],
            T=data_small["T"],
            t=t,
        )
        for t in progress_bar(range(steps))
    ],
    dim="t",
).transpose(..., "t")
100.00% [90/90 00:02<00:00]

We can plot the expected number of purchases for the next \(90\) periods:

Hide code cell source
fig, axes = plt.subplots(
    nrows=len(example_customer_ids),
    ncols=1,
    figsize=(12, 15),
    sharex=True,
    sharey=True,
    layout="constrained",
)

axes = axes.flatten()

for i, customer_id in enumerate(example_customer_ids):
    ax = axes[i]
    customer_expected_num_purchases_steps = expected_num_purchases_steps.sel(
        customer_id=customer_id
    )
    az.plot_hdi(
        range(steps),
        customer_expected_num_purchases_steps,
        hdi_prob=0.94,
        color="C0",
        fill_kwargs={"alpha": 0.3, "label": "$94 \\%$ HDI"},
        ax=ax,
    )
    az.plot_hdi(
        range(steps),
        customer_expected_num_purchases_steps,
        hdi_prob=0.5,
        color="C0",
        fill_kwargs={"alpha": 0.5, "label": "$50 \\%$ HDI"},
        ax=ax,
    )
    ax.plot(
        range(steps),
        customer_expected_num_purchases_steps.mean(dim=("chain", "draw")),
        color="C0",
        label="posterior mean",
    )
    ax.legend(loc="upper left")
    ax.set(title=f"Customer {customer_id}", xlabel="t", ylabel="Probability Alive")

axes[-1].set(xlabel="steps")
plt.gcf().suptitle("Expected Number of Purchases", fontsize=18, fontweight="bold");
../../_images/7acf278bafac4cd8f2f09a06be929787b96b8f2b43f13c38f53be51f12893db6.png

Note that the frequent buyers are expected to make more purchases in the future.

Probability of a Customer Being Alive#

We now look into the probability of a customer being alive for the next \(90\) periods:

steps = 90

expected_probability_alive_steps = xr.concat(
    objs=[
        model_mcmc.expected_probability_alive(
            customer_id=data_small["customer_id"],
            frequency=data_small["frequency"],
            recency=data_small["recency"],
            T=data_small["T"] + t,  # add t days
        )
        for t in progress_bar(range(steps))
    ],
    dim="t",
).transpose(..., "t")
100.00% [90/90 00:01<00:00]
Hide code cell source
fig, axes = plt.subplots(
    nrows=len(example_customer_ids),
    ncols=1,
    figsize=(12, 15),
    sharex=True,
    sharey=True,
    layout="constrained",
)

axes = axes.flatten()

for i, customer_id in enumerate(example_customer_ids):
    ax = axes[i]
    customer_expected_probability_alive_steps = expected_probability_alive_steps.sel(
        customer_id=customer_id
    )
    az.plot_hdi(
        range(steps),
        customer_expected_probability_alive_steps,
        hdi_prob=0.94,
        color="C1",
        fill_kwargs={"alpha": 0.3, "label": "$94 \\%$ HDI"},
        ax=ax,
    )
    az.plot_hdi(
        range(steps),
        customer_expected_probability_alive_steps,
        hdi_prob=0.5,
        color="C1",
        fill_kwargs={"alpha": 0.5, "label": "$50 \\%$ HDI"},
        ax=ax,
    )
    ax.plot(
        range(steps),
        customer_expected_probability_alive_steps.mean(dim=("chain", "draw")),
        color="C1",
        label="posterior mean",
    )
    ax.legend(loc="upper right")
    ax.set(title=f"Customer {customer_id}", ylabel="Probability Alive", ylim=(0, 1))

axes[-1].set(xlabel="steps")
plt.gcf().suptitle(
    "Expected Probability Alive over Time", fontsize=18, fontweight="bold"
);
../../_images/9306869e65a9e740a499444b5e87b1dd8f371803e98db09e5074cbf504aaf62f.png

Tip

Here are some general remarks:

  • It’s important to remark these plots assume no future purchases.

  • The decay probability is not the same as it depends in the purchase history of the customer.

  • The probability of being alive is always decreasing as we are assuming there is no change in the other parameters.

  • These probabilities are always non-negative, as expected.

Warning

For the frequent buyers, the probability of being alive drops very fast as we are assuming no future purchases. It is very important ot keep this in mind when interpreting the results.

%load_ext watermark
%watermark -n -u -v -iv -w -p pymc,pytensor
Last updated: Fri Apr 05 2024

Python implementation: CPython
Python version       : 3.11.8
IPython version      : 8.22.2

pymc    : 5.11.0
pytensor: 2.18.6

pandas        : 2.2.1
arviz         : 0.17.1
xarray        : 2024.2.0
pymc_marketing: 0.4.2
matplotlib    : 3.8.3

Watermark: 2.4.3