ParetoNBDModel.distribution_new_customer#
- ParetoNBDModel.distribution_new_customer(data=None, *, T=None, random_seed=None, var_names=('dropout', 'purchase_rate', 'recency_frequency'), n_samples=1000)[source]#
Compute posterior predictive samples of dropout, purchase rate and frequency/recency of new customers.
In a model with covariates, if
data
is not specified, the dataset used for fitting will be used and a prediction will be computed for a new customer with each set of covariates. This is not a conditional prediction for observed customers!- Parameters:
- data
DataFrame
,Optional
DataFrame containing the following columns:
customer_id
: Unique customer identifierT
: Time between the first purchase and the end of the observation periodAll covariate columns specified when model was initialized.
If not provided, predictions will be ran with data used to fit model.
- Tarray_like, optional
time between the first purchase and the end of the observation period. Not needed if
data
parameter is provided with aT
column.- random_seed
RandomState
, optional Random state to use for sampling.
- var_namessequence of
str
, optional Names of the variables to sample from. Defaults to [“dropout”, “purchase_rate”, “recency_frequency”].
- n_samples
int
, optional Number of samples to generate. Defaults to 1000
- data