BaseGammaGammaModel#
- class pymc_marketing.clv.models.gamma_gamma.BaseGammaGammaModel(data, *, model_config=None, sampler_config=None, non_distributions=None)[source]#
Base class for Gamma-Gamma models.
Methods
BaseGammaGammaModel.__init__
(data, *[, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build model from the InferenceData object.
BaseGammaGammaModel.build_model
(X, y, **kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create the fit_data group based on the input data.
Create attributes for the inference data.
Posterior distribution of mean spend values for each customer.
Posterior distribution of mean spend values for new customers.
Compute the average lifetime value for a group of one or more customers.
Compute the expected future mean spend value per customer.
Compute the expected mean spend value for a new customer.
BaseGammaGammaModel.fit
([method, fit_method])Infer model posterior.
BaseGammaGammaModel.fit_summary
(**kwargs)Compute the summary of the fit result.
BaseGammaGammaModel.graphviz
(**kwargs)Get the graphviz representation of the model.
BaseGammaGammaModel.load
(fname)Create a ModelBuilder instance from a file.
Create a ModelBuilder instance from an InferenceData object.
Perform transformation on the model after sampling.
BaseGammaGammaModel.predict
([X, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
BaseGammaGammaModel.predict_posterior
([X, ...])Generate posterior predictive samples on unseen data.
BaseGammaGammaModel.predict_proba
([X, ...])Alias for
predict_posterior
, for consistency with scikit-learn probabilistic estimators.Sample from the model's posterior predictive distribution.
Sample from the model's prior predictive distribution.
BaseGammaGammaModel.save
(fname)Save the model's inference data to a file.
BaseGammaGammaModel.set_idata_attrs
([idata])Set attributes on an InferenceData object.
BaseGammaGammaModel.thin_fit_result
(keep_every)Return a copy of the model with a thinned fit result.
Attributes
X
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Default sampler configuration.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
output_var
Output variable of the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
y