HSGPKwargs#
- class pymc_marketing.hsgp_kwargs.HSGPKwargs(**data)[source]#
HSGP keyword arguments for the time-varying prior.
See [1] and [2] for the theoretical background on the Hilbert Space Gaussian Process (HSGP). See , [6] for a practical guide through the method using code examples. See the
HSGP
class for more information on the Hilbert Space Gaussian Process in PyMC. We also recommend the following resources for a more practical introduction to HSGP: [3], [4], [5].- Parameters:
- m
int
Number of basis functions. Default is 200.
- L
float
, optional Extent of basis functions. Set this to reflect the expected range of in+out-of-sample data (considering that time-indices are zero-centered).Default is
X_mid * 2
(identical toc=2
in HSGP). By default it is None.- eta_lam
float
Exponential prior for the variance. Default is 1.
- ls_mu
float
Mean of the inverse gamma prior for the lengthscale. Default is 5.
- ls_sigma
float
Standard deviation of the inverse gamma prior for the lengthscale. Default is 5.
- cov_func
Covariance
, optional Gaussian process Covariance function. By default it is None.
- m
References
[1]Solin, A., Sarkka, S. (2019) Hilbert Space Methods for Reduced-Rank Gaussian Process Regression.
[2]Ruitort-Mayol, G., and Anderson, M., and Solin, A., and Vehtari, A. (2022). Practical Hilbert Space Approximate Bayesian Gaussian Processes for Probabilistic Programming.
[3]PyMC Example Gallery: “Gaussian Processes: HSGP Reference & First Steps”.
[4]PyMC Example Gallery: “Gaussian Processes: HSGP Advanced Usage”.
[5]PyMC Example Gallery: “Baby Births Modelling with HSGPs”.
Methods
HSGPKwargs.__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
HSGPKwargs.construct
([_fields_set])HSGPKwargs.copy
(*[, include, exclude, ...])Returns a copy of the model.
HSGPKwargs.dict
(*[, include, exclude, ...])HSGPKwargs.from_orm
(obj)HSGPKwargs.json
(*[, include, exclude, ...])HSGPKwargs.model_construct
([_fields_set])Creates a new instance of the
Model
class with validated data.HSGPKwargs.model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
HSGPKwargs.model_dump
(*[, mode, include, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
HSGPKwargs.model_dump_json
(*[, indent, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
HSGPKwargs.model_json_schema
([by_alias, ...])Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
HSGPKwargs.model_post_init
(_BaseModel__context)Override this method to perform additional initialization after
__init__
andmodel_construct
.HSGPKwargs.model_rebuild
(*[, force, ...])Try to rebuild the pydantic-core schema for the model.
HSGPKwargs.model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
HSGPKwargs.model_validate_json
(json_data, *)Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
HSGPKwargs.model_validate_strings
(obj, *[, ...])Validate the given object with string data against the Pydantic model.
HSGPKwargs.parse_file
(path, *[, ...])HSGPKwargs.parse_obj
(obj)HSGPKwargs.parse_raw
(b, *[, content_type, ...])HSGPKwargs.schema
([by_alias, ref_template])HSGPKwargs.schema_json
(*[, by_alias, ...])HSGPKwargs.update_forward_refs
(**localns)HSGPKwargs.validate
(value)Attributes
model_computed_fields
model_config
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].model_extra
Get extra fields set during validation.
model_fields
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
m
L
eta_lam
ls_mu
ls_sigma
cov_func