AdstockTransformation#
- class pymc_marketing.mmm.components.adstock.AdstockTransformation(l_max=FieldInfo(annotation=int, required=True, description='Maximum lag for the adstock transformation.', metadata=[Gt(gt=0)]), normalize=FieldInfo(annotation=bool, required=False, default=True, description='Whether to normalize the adstock values.'), mode=FieldInfo(annotation=ConvMode, required=False, default=<ConvMode.After: 'After'>, description='Convolution mode.'), priors=FieldInfo(annotation=Union[dict[str, Union[Annotated[Prior, InstanceOf], float, Annotated[TensorVariable, InstanceOf], Annotated[VariableFactory, InstanceOf]]], NoneType], required=False, default=None, description='Priors for the parameters.'), prefix=FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Prefix for the parameters.'))[source]#
Subclass for all adstock functions.
In order to use a custom saturation function, inherit from this class and define:
function
: a function that takes x to adstock xdefault_priors
: dictionary with priors for every parameter in function
Consider the predefined subclasses as examples.
Methods
AdstockTransformation.__init__
([l_max, ...])AdstockTransformation.apply
(x[, dims])Call within a model context.
AdstockTransformation.plot_curve
(curve[, ...])Plot curve HDI and samples.
Plot the HDI of the curve.
Plot samples from the curve.
AdstockTransformation.sample_curve
(parameters)Sample the adstock transformation given parameters.
AdstockTransformation.sample_prior
([coords])Sample the priors for the transformation.
Set the dims for all priors.
Convert the adstock transformation to a dictionary.
Update the priors for a function after initialization.
Attributes
combined_dims
Get the combined dims for all the parameters.
function_priors
Get the priors for the function.
model_config
Mapping from variable name to prior for the model.
prefix
variable_mapping
Mapping from parameter name to variable name in the model.
lookup_name
default_priors
function